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Abstract— This work studies the usability of Augmented Reality (AR)
in aircraft manufacturing processes based on a commodity monocular
handheld/head-mounted camera. The application aims to assist the
assembly operator in the installation work-flow of aircraft parts.
However, for this use-case well known pure marker-based approaches
are less favorable due to the prior complex preparation of the scene.
A webcam is used as an input for two separat AR systems. One of
which detects markers, whereas the other detects natural features.
This research aims to combine both systems into a semi-marker-based
AR approach. The core task is the registration process between a
feature-based AR system and a marker-tracking system to extend the
feature-based system with global reference and scale. The reference
of the feature-based system is defined during the initialization step
and changes within every application. Therefore a global reference is
missing. Furthermore a stereo setup is assumed, which does not provide
the system with an accurate scale. With the constraint of an initial
marker in a feature-based system the robustness can be enhanced and
yet still retains its main independence of reference.

To evaluate the overall performance of the proposed hybrid AR system
different test scenarios were recorded with various movement patterns
and lighting-conditions. By doing this the efficiency of the Marker-
Tracking-System was evaluated and the dependency of the implemented
algorithm on the choice of measurements.

I. INTRODUCTION

This research topic contributes to the area of Computer Vision.
The primary objective is to connect two systems built on different
conceptions of Augmented Reality. Both systems are visual tracking
systems affected individually by various limitations.

The focus of this research is the open-source marker-free system
PTAM which shows good performance in stable environments built
for monocular galvanic moving cameras, similar to those of head-
mounted or hand-held cameras. The system in its native form
tolerates an inaccurate scale based on a stereo assumption applied
during its initialization step. Furthermore the camera estimation
is only defined relatively to a coordinate frame set during the
initialization. The main goal is to provide the system with the
missing scale information, to make it applicable in an installation
process typically found in aerospace technology.

By combining both systems the disadvantage of the marker-free
solution (no reference in the global world) is countered by the
marker-based one. Therefore the final system will benefit from the
accuracy of the marker-tracking system and the independence from
prior installations which is provided by the native PTAM system.
The problem of finding the scale and global reference information
can be seen as an absolute orientation problem, described by
Berthold K. P. Horn [7]. The module designed to accomplish this
task is the registration interface, that either registers the PTAM
feature map or every camera pose generated by the PTAM system
independently from the system. However, the second strategy is
expected to be predominant due to error accumulation which arises
when integrating in PTAM.

II. STATE OF THE ART

A broad range of applications which combine real environments
with computer generated content can be categorized as Augmented
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Virtuality (AV) or Augmented Reality (AR). In 1994 Paul Milgram
and Fumio Kushino introduced the concept of Mixed Reality (MR)
[12], which is shown in Fig. 1. The users subjective experience is
placed ”anywhere between the extrema of the virtuality continuum”
[12]. The term AV is nowadays seldomly used and AR is often used
as a synonym for MR.
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Fig. 1: Virtuality Continuum defining Mixed Reality [12].

Although the concept of AR is a young discipline the related
research is extensive, as multiple algorithms and strategies originate
from the field of Computer Vision and Robotics.

A. Tracking Sensors and Approaches

Before a virtual element can be placed in a real environment, the
AR system must track the user’s (at least relative) movement in the
scene. The respective pose should be provided with 6 Degrees of
Freedom (DoF). Three of them are used for positioning (x,y,z) and
the others are used for orientation (roll,pitch,yaw). The problem of
determining this camera pose is often defined as pose estimation or
pose tracking. Techniques used in tracking can be subdivided into
three groups: sensor-based, vision-based and hybrid methods.

Vision-based tracking is the most relevant area in regards to this
research work. It uses image processing techniques to estimate the
camera pose relative to the real scene. This area is divided into
two main disciplines [16]: feature-based (ad-hoc) and model-based
(a priori knowledge). The feature-based approach can be further
divided as AR distinguishes between two sub strategies, those using
features extracted from a maker as reference and those working
solely on natural features.

Applications in which physical markers (known as fiducial markers)
are placed in an environment in order to be detected by the AR
system, are referred to as marker-based approaches. These systems
have been gaining popularity in recent years, due to their easy
implementation through available toolkits such as ARToolKitPlus
[15], the successor of ARToolKit or ARTag [6]. The methods in
[13], [9], which propose square planar fiducial markers have become
popular methods for camera pose estimation in AR, because of their
robustness, low-cost and real-time characteristics.

Marker-less strategies operate in a completely unknown environ-
ment. Within the area of AR, no marker-less solution has yet
prevailed. Existing marker-less approaches are far more complicated
and still less robust than the marker-based alternatives. However,
they are more robust towards occlusions. The marker-less systems
usually build maps storing the detected features. Two basic ap-
proaches are common in marker-less AR: extensible tracking and
simultaneous localisation and mapping [14].

A linked tracking and mapping is less favourable for handheld
cameras for multiple reasons, e.g. updating the whole map is
expensive and data association errors accumulate into the map
over time. To improve the process, Davison proposes to use a
sparse map containing only high-quality features [3] and later an
approach for monocular hand-held cameras [4]. Parallel Tracking
and Mapping (PTAM) introduced by George Klein and David



Murray [10] combines the idea of natural feature tracking and map
building in 3D. This approach uses keyframes to obtain low quality
features stored in dense maps instead of using every video frame.
The decoupled extensible tracking and mapping approach enables
the computation of expensive bundle adjustments to refine the map
continuously.

B. Registration Problem

To register an AR system in the ”global” reference frame a regis-
tration method is needed. Different kinds of strategies can be found
in literature. Some rely solely on geometrical characteristics, others
use a least-squares method as a linear solving strategy, furthermore
there exist iterative methods or non-linear optimization approaches.
The authors of [5] provide a comparative analysis of four efficient
and common algorithms for estimating 3-D rigid transformations.
However, none of the analysed algorithms showed a salient perfor-
mance in all evaluation tests. Based on this comparison the research
work applies the Horn method to solve the registration problem.
The presented algorithms use either Singular Value Decomposition
(SVD) from an orthonormal matrix [1], unit quaternions [7] or polar
decompositions [8] to represent rotations.

III. GENERAL FRAMEWORK

A. PTAM

Parallel Tracking and Mapping, known as PTAM [10], is especially
designed to track the motion of a hand-held camera in small AR
workspaces. The motion tracking runs parallel to a mapping thread
which builds an extensible 3D map of point features (e.g Fig.2).
Whereas most AR systems require initial knowledge of the working
scene, PTAM avoids dealing with the typical limitations of these
approaches by using natural features exclusively.

Fig. 2: A section of the initial map of 761 points and the two initial keyframes is
extended to 3761 points and 46 keyframes. The grid on the ground is the dominant
plane.

1) Mapping: The mapping thread is organised into two tasks. First
a stereo-vision step is performed to obtain the initial map, which
can be expanded and optimised for new keyframes. The PTAM
initialisation uses two keyframes, selected manually by the user.
From the first keyframe FAST corners are extracted and patches
around these corners are instantiated. Through the patch tracking
system the corresponding points in the second keyframe are found.
Via five-point algorithm and RANSAC the essential matrix can be
estimated for triangulation of the initial map, which is optimised
through bundle adjustment. In general the bundle adjustment runs
with low priority due to its computational complexity. Once the

initial map is established a virtual ground plane is estimated using
the map points. The best plane which is located at z = 0 of the
world coordinate frame is found with RANSAC using a three point
consensus set. Subsequently computer rendered objects dependent
on the AR application are aligned with the real environment based
on this virtual grid plane.

2) Tracking: The tracking can be seen as a two step algorithm,
starting after the stereo-initialization. For every new frame a first
rough camera pose is estimated for an assumed motion model.
Based on this pose the map points are projected into the image
plane. The tracking uses the Pyramid Levels and searches only for
a small number of correspondences of the coarsest feature points.
For these matches the camera pose can be updated with a more
accurate estimation. Subsequently a fine search of a large number
of points leads to a more accurate pose estimation.

B. EasyAR

To encode and decode the fiducial markers within the EasyAR
application the hamming code technique is applied. There are two
main matrices involved in handling hamming code patterns. The
code generator matrix is used for construction and the parity check
matrix is applied in the identification step.

Fig. 3: Hamming coded fiducial marker (zeros in black, ones in white)

The specific hamming coded marker which is used for testing the
system is presented in Fig.3. It has a size of 7 ⇥ 7, where the
coded part measures 5⇥5. The real size of the marker used in this
application after printing amounts to 4cm ⇥ 4cm, which refers to
266px⇥ 266px.

1) Marker Generation: The marker is generated based on an
incoming decimal ID, which is converted into a 12-bit integer.
From this binary vector with help of the hamming code matrix,
the hamming words are generated that can be converted into a
fiducial marker. The result is given in Fig.3. Within the chosen
implementation of the hamming code marker the white corner (1,1)
of the inner square is used to identify the markers orientation.

2) Marker Identification: The identification step can be seen as the
inverse strategy to the marker construction idea. Once the sub-image
containing the marker is extracted from an incoming binary image it
is divided into the 7⇥7 sub images in order to obtain the hamming
code matrix. Each of the 49 squares is converted into one binary
value in respect to its dominant pixel value. These candidates need
to pass some test criteria before they can traverse the correction
step by the parity check matrix.
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IV. METHODOLOGY AND REALISATION

A. Combining EasyAR with PTAM

Since the real scale in the feature-based tracking approach PTAM is
not known and to receive a more reliable orientation than obtained
by the stereo-initialization, a marker-based system is introduced
into PTAM. Global reference frames received by a precise tracking
system allow PTAM to either register its feature map to the world
frame or to transform the PTAM generated pose separately - without
influencing the map. Both strategies are discussed.

PTAM provides a feature map in which a pose is defined by
6DoF, in which 3DoF refer to translation and 3DoF to rotation.
An additional optical tracking system, such as a marker-based
tracking system, can provide the missing scale information (the
7th DoF). This problem is known as the problem of absolute
orientation. Originally PTAM assumes a translation of 10cm during
the initialization in order to process scale information which leads
to errors in the feature triangulation and therefore mainly in the z-
axis estimation. The major drawback of PTAM is that the origin and
orientation of its system depends on the features that are detected
during the stereo initialization. Therefore the quality of the system
is generally determined by the user and his ability to accomplish
the initialization step. Furthermore the origin and the orientation
change with every initialization.

The extension proposed by this paper is either adding further input
parameters to the PTAM system, which will be considered as
an ”internal” approach or in leaving PTAM as it is, solving the
registration as an ”external” approach.

PTAM Stereo
Initialization

Collect corresponding
pose measurements

Find Absolut
Orientation

Apply transf. on
PTAM map (intern)

Apply transf. on PTAM
camera pose (extern)

Stereo-image-pair could
not be matched.

|posegraph| < threshold

Specified quality

reached?

External registrationInternal registration

Improvable?

Fig. 4: Workflow of the registration interface.

• Internal approach
Along with the intrinsic parameters the computed scaling
factor, the rotation matrix and the translation vector are added
to the PTAM process. These transformation factors need to

be applied to the PTAM map and the current camera pose. It
is important to ensure, that PTAM does not track the camera
based on the inconsistent map, during the registration process.
There are two approaches to solve this issue. The first method
stops the tracking for the incoming keyframes during the
registration time-slot and the second approach saves the old
map before the registration process is initiated. By doing so,
the tracking can continue using the old map and switches
automatically to the new map, once it is fully registered.
This should be adhered to, to prevent the PTAM tracker from
loosing the reference and consequently triggering the recovery
mode. In this case the registration is only done once in the
PTAM system. Afterwards the PTAM system estimates the
camera poses relatively to the global frame.

• External approach
Alternatively an external approach could be chosen. In this
case, the PTAM map remains as a relative map to its initial
coordinate system. Only the estimated camera pose for each
image frame is prompted by the main system and transformed
respectively. This method applies a registration optimization
strategy and the PTAM system does not further increase in its
complexity.

Camera

Marker World

PTAM

1 2

3

4 5

Fig. 5: Transformation-Relation-Graph of the registration problem.

Fig. 5 illustrates the relationship of the different coordinate systems
involved in the registration problem. Each node within the graph
can be seen as a cartesian coordinate system, an arrow as the
transformation between two different coordinate systems.

The goal of the marker-tracking system (EasyAR) is to determine
the transformation W

T

C

from the ”Camera” to the ”World” coor-
dinate frame, represented by arrow 2, as well as its geometrical
representation: W

T

C

= W

T

M

M

T

C

. The marker is positioned in
the ”World” coordinate frame and it is assumed, that its position
and orientation in the ”World” is known up to a negligible error
dependent on the tool used to measure the marker pose. Therefore
the transformation W

T

M

, described by arrow 3, is known. To
conclude on the missing transformation between the marker and
the camera M

T

C

, EasyAR recognises the 4 marker corner points
and identifies the ID of the observed fiducial marker. Knowing
the 2D marker corners detected in the camera image and their
corresponding global 3D locations the transformation from the
camera to the marker can be estimated.
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While the upper part of the graph keeps the coordinate system
relationships in EasyAR, the lower part illustrates the integration of
the marker-tracking-system into PTAM. Recalling the main target of
the marker tracking system - the registration of the PTAM map into
the ”World” coordinate system - the overall goal of the project is
to find the transformation described by arrow 5 and its geometrical
representation: W

T

P

= W

T

M

M

T

P

. The PTAM system keeps a
map of cloud points, where 4 of these cloud points correspond to
the marker corner coordinates. Through the stereo initialisation step
a PTAM pose in respect to the fiducial marker is estimated. The
transformation can be described with M

T

P

.

B. Absolute Orientation

The Horn method [7] describes a method to find the absolute
orientation for two sets of corresponding measurements in two
different coordinate systems. The absolute orientation addresses the
rigid-body transformation recovery between the two systems based
on these measurements. It is a closed-form optimal solution con-
sidering all point measurements without applying outlier detection.
In this work the handling of outlier measurements is constrained
beforehand and separated from the absolute orientation algorithm.
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Fig. 6: Absolute Orientation Problem based on a minimum of 3 measurements M1,
M2, M3.

In the Fig.6 the measurements M1...Mn

and their references to each
coordinate system {r

l,i

}, {r
r,j

} are illustrated. In the following i, j

are indices from 1� n measurements, where n � 3.

The general formulation of the absolute orientation is given by the
transformation from the left to the right coordinate system.

r

r

= sR(r
l

) + r0 (1)

The scale factor is described by s, R(r
l

) defines a rotated mea-
surement from the left coordinate system and the offset is defined
by r0 .

This transformation can be split into a translation and a rotation
plus a scale. It can be stated that the Horn method needs at least
3 corresponding pose measurements to solve the transformation.
Three 3D points (x,y,z) provide 9 equations to find the 7 unknown
parameters. Due to errors in a point measurement, the Horn method
is not able to find a perfect transformation between the two
coordinate systems. Therefore it is appropriate to involve more than
3 points. In addition the term in Equ.1 apparently will not suit all
measurements. The objective is to minimize the sum of errors as
shown in Equ.2.

nX

i=1

kr
r,i

� sR(r
l,i

)� r0k2 (2)

All measurements are represented by their relation to the center
point of each related cloud. In order to calculate the relative
coordinates the centroids r̄

l

, r̄
r

are computed first. A measurement
is kept in its relative location to the centroids: r0

l

, r

0
r

.

Horn describes three possibilities to find the appropriate scale
between the two systems. The symmetrical term (Equ.3) is used
since it can be computed independently from the rotation and
translation.

s =

sP
n

i=1 kr0r,ik2P
n

i=1 kr0l,ik2
(3)

Rotations are described by unit quaternions (Hamilton). The matrix
M contains the sum of the product S of pose measurements from
the left with the right coordinate system. From this matrix the
symmetrical matrix N is computed as a linear combination of M.
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The unit quaternion refers to a unit vector in the direction of
the Eigenvector corresponding to the highest Eigenvalue �

max

of
matrix N.

As a final step of the absolute orientation algorithm the translation
vector is computed, which is dependant on the rotation matrix and
the scale factor.

r0 = r̄

r

� sR(r̄
l

) (4)

V. RESULTS

To illustrate the registration process and the significantly different
scale of the native 3D measurements taken either from EasyAR or
PTAM the following 3D plots are provided (Fig.7, Fig.8). Fig.7
shows the measurements before applying the transformation on the
PTAM measurements, and in Fig.8 the measurements are closely
aligned due to the applied scale, translation and rotation on the
PTAM measurements.

In Fig.9 and Fig.10 the AR visual result is shown. In Fig.9 the
virtual element is aligned to the PTAM ground plane (before regis-
tration) and in Fig.10 it is globally aligned with a small rotational
error. Fig.11 and Fig.12 reflect the measurement distribution in
respect to their Distance To Marker (DTM). Tests have shown, that
a better distribution with a small DTM performs best.

Throughout the experiments and development the hybrid system
appeared sensitive in multiple dimensions. A good camera cali-
bration ensures a higher accuracy of both systems and therefore
more precise measurements for the registration process. The image
resolution plays a further role in both systems.
Both systems add an uncertainty to the final hybrid system. There-
fore a partly detached or bent marker might have a big influence
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Fig. 7: Native correspondent 3D measurements taken from the PTAM system and
EasyAR.

Fig. 8: 3D corresponding measurements after the alignment of PTAM using the absolute
orientation transformation on the PTAM measurements.

Fig. 9: PTAM virtual element fixed on the dominant plane defined in PTAM before
the registration takes place.

in terms of pose estimation.
Furthermore the scale and quality of the marker are relevant. In
general the detection errors within the pose calculation of EasyAR
are higher in the direction of the z-, than in the x/y-translation
based on the camera geometry. Similar to EasyAR, PTAM is a
source of error, especially in the z-dimension. The system can
be corrupted if the setup changes during the application or the
environment contains repetitive patterns which can lead to location
estimation jumps. In terms of registration, corresponding poses are
not always available. An inexperienced user may not identify the
best strategy of measurement selection which eventually results in
a poor measurement distribution.

Fig. 10: Good PTAM alignment even in case EasyAR can not recognize the marker
(in the image caused by reflections).

Fig. 11: DTM for SETUP 1. Translation error between the
registration measurements after applying the transformation on
the PTAM measurements: 1.25 (avg)

Fig. 12: DTM for SETUP 2. Translation error: 0.52 (avg)

VI. CONCLUSION

This research work presents a hybrid visual-camera-tracking strat-
egy that combines the markerless-visual-tracking module PTAM
with global reference information by introducing a single maker in
the scene. The restriction introduced by the marker is reasonable
due to the benefit it entails for industrial applications, where a global
scale, position and orientation are imperative. Only the registration
process requires the marker, afterwards the PTAM system proceeds
without it. Experiments have shown that in robust maps, the marker
can even be removed from the scene, once the initial map is build.
However, in small maps, which cover only the regions close to the

5



marker and the marker itself, the marker removal leads to tracking
failure or complete loss of reference. The final solution does not
require a preparation of the environment prior to the application,
except for the marker installation. PTAM constructs its map on-
the-fly. Therefore the proposed approach is suitable for industrial
processes, which frequently change their setup.

VII. FUTURE WORK

Several ideas on possible extensions can be addressed. Linking
PTAM with additional sensors might be one of them (fusion
strategy). Combining PTAM with an accelerometer would replace
the motion estimation by true acceleration values which leads to
more robustness and higher speed in tracking, since it decreases
the area to search for features.

To increase the flexibility of the registration process it would be
interesting to work without a marker-system. This could be accom-
plished by using single positions with known global coordinates
as references instead of the estimated camera pose. These features
could be manually selected by the user in the PTAM feature map
and the correspondent feature needs to be recognized in the current
image frame.

Obviously the quality in terms of robustness and accuracy of the
marker-tracking system EasyAR could be optimized by using more
than one marker, more points per marker or in addition even
natural features. A multi-marker system combines the information
of different markers which can cope with partly occluded markers.

Furthermore the PTAM version, used in this research, only performs
with an acceptable accuracy if applied in small workspaces and
shows significant issues for 360� camera movements. At the time
of this research there are two further developments of PTAM
discussed: [11] (edgelets for motion blur), [2] (a multi-map frame-
work), which could be of interest to optimize the performance and
flexibility.

Finally it should be stated, that technical changes in terms of the
equipment (e.g camera) and marker installation can also lead to
tracking improvements. The use of a camera with higher resolution
or a wide view objective could result in significant improvements
in PTAMs feature detection process and also for the camera pose
estimation on behalf of EasyAR.
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Evaluation of Bias Field Correction Methods on Breast MRI

S M Masudur Rahman Al-Arif

Abstract— Cancer is the most deadly disease in the
world. The diversity of cancer is immense. In women,
breast cancer is the most prominent cancer. One out
of four female cancer patients is diagnosed with breast
cancer. Mass screening programs have been initiated in
many countries in order to detect breast cancer in early
stage. Data show that, if breast cancer is detected in
premature stage, the five year survival rate approaches
100%. Magnetic Resonance Imaging (MRI) is one of
the best imaging modalities to detect breast cancer in
terms of sensitivity and specificity. However, due to cost,
time and lack of expert radiologists, MRI is not used as
a primary device. Automatic image analysis techniques
can be used in order to help the radiologist for reading
and interpreting MRI images. In this work, we address
an inherent problem of MR images called ’bias field’
effect that stands in the way of any image processing
application. We compare performances of state of the art
fully automatic bias field correction methods on breast
MRI. We have carried out evaluation in terms of novel
and existing metrics. A ranking of the algorithms is made
based on their performance in removing bias field from
the image. A critical trade off between bias field removal
and tissue distortion is found. Best algorithms have been
identified based on this trade off. Finally, the quantitative
result is also verified by qualitative analysis.

I. INTRODUCTION

In women, breast cancer is by far the most promi-
nent cancer and has the highest death rate. Statistics
show that, in 2012, 1.7 million women were diagnosed
with breast cancer and another 6.3 million had already
been diagnosed with breast cancer in the previous
five years. Since 2008, breast cancer incidence has
increased by more than 20%, while death rate has
increased by 14%. It represents one in four of all
cancers in women [1]. If the tumor is still confined
to the breast at the time of detection and has not
spread through lymphatic system, five year survival ap-
proaches 100% [2]. MRI has a higher sensitivity than
mammography and ultrasound. Its sensitivity varies
from 89 to 100% over all ages where sensitivity of
mammography falls to 40-50% for women with dense
breasts. The MRI specificity varies from 82-96% [3],
[4]. Although MRI provides acceptable sensitivity and
specificity values, it is only used for reevaluation
purposes in mass screening programs. The reason lies
in the cost and time needed for evaluation. Screening
using MRI involves large reading times compared
to mammography, which would imply the need of
more trained radiologists. Therefore, it is important
to provide computer algorithms to automatically an-
alyze breast MRI to aid in the interpretation and the

This work is submitted for the degree of MSc Erasmus Mundus
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detection of breast cancer. The first problem in any
computer aided analysis of MR images is the high
intra-tissue variability. The intensities measured from
the same tissue smoothly vary across the image. This
problem occurs due to practical limitations of the MRI
scanners. The most visual effect can be seen in the
fatty tissue inside a breast MRI and the difference
in the intensity is usually severe in different part of
the breast. An example of this is shown in Fig. 1. It

Fig. 1: Inter-tissue variability inside fatty tissue

is very crucial to correct this non-uniformity before
processing the MRI for further image analysis. This
non-uniformity of the signal intensity is also called
bias field. Most of the existing research on bias field
have been focused on brain MRI and many algorithms
exist for this type of images. However, there is only
a little work on applying or developing bias field
correction algorithms to breast MRI. Moreover, brain
and breast bias fields are different in nature, shape and
smoothness, mainly due to differences in the coils used
for image acquisition.

In this work, we compare state of the art bias
field correction methods for breast MRI with both
quantitative and qualitative results on a dataset of
53 breast MRI scans. A novel evaluation metric is
introduced which correlates with the qualitative results.
This paper is divided into five sections. The main
issue, its necessity and effects have been discussed
in the introduction. A more detailed description of
the problem, literature review and all the bias field
correction methods are discussed in the Background
(see Sec. II). In Sec. III, Methodology, evaluation
procedures, metrics and base of comparison is dis-
cussed in details. All the results for all the cases has
been summarized and discussed in Sec. IV. Finally,
conclusions are given in Sec. V.

II. BACKGROUND
A huge number of bias field correction algorithms

have been proposed in the last decade. Based on the
initial approach, all the methods can be classified
into two broad classes: prospective and retrospec-
tive. The classification tree is shown in Fig. 2 and
it is based on the work of Vovk et al. [5]. While



Fig. 2: Classification of bias field correction algorithms

all prospective methods require interaction with the
MRI devices, retrospective methods are more gen-
eral and more related with the image analysis re-
search. These methods only use the acquired image
to estimate the bias field in an MRI scan [6], [7].
Retrospective methods are further divided into four
types: filtering-based methods, surface fitting-based
methods, segmentation-based methods and histogram-
based methods. Filtering-based methods assume the
bias field to be a low frequency entity and removes
it by low-pass filtering of the image. However, these
methods inherently assume that no useful information
is present in the low frequency band, which does not
hold for most of the scanned anatomical structures;
e.g., fatty tissue for breast MRI. Thus, the applicability
of this method is limited [8].

Surface fitting methods do not apply the principle of
low-pass filtering. Instead, surface fitting methods fit
a parametric function corresponding to a set of image
features that contain information on the bias field.
The surface is usually polynomial-based or spline-
based. Based on the kind of image features used to
compute the surface, these methods can be classified
into intensity-based [9] or gradient-based [10].

Image segmentation often requires bias field correc-
tion for better performance, but perfect segmentation
can make the bias field estimation very easy. Thus,
these two procedures can be thought as complementary
of each other. Based on this idea, a set of bias
field correction methods are developed to iteratively
segment and perform bias field estimation at the same
time. These algorithms are further divided into classes
based on their segmentation procedure,e.g., Expecta-
tion Maximization (EM)-based [11], FCM-based [12]
and nonparametric Mean-Shift, Max-shift algorithm-
based [13], [14].

Finally, the most commonly used methods are
histogram-based methods. These methods directly
work on image histograms and needs very little or
no initialization. This property makes these meth-
ods fully automatic and highly general for all type
of MRI. Although a number of segmentation-based

methods also operate on image intensity histograms,
the distinction between the segmentation-based and
histogram-based methods is that the latter provide no
segmentation results. The most popular of this class is
the nonparametric non-uniformity normalization (N3)
method [15]. Having in mind the application to breast
screening programs, the correction algorithm should
be fully automatic. Thus among all the works we
only chose seven fully automatic algorithms from
the state of the art to compare their results with
each other. These algorithms are Mean-Shift (MS)
bias field correction [14], [16], modified Fuzzy C-
Means-based Bias field Correction (BCFCM) [17],
sparseness of gradient-based Non-Uniformity Correc-
tion (NUC) [18], Non-parametric Non-uniformity Nor-
malization (N3) [15], improved N3 (N4) [19], FCM
segmentation-based Coherent Local Intensity Correc-
tion (CLIC) [20] and Level-Set image segmentation-
based bias field correction (LevSet) [21]. Of these
seven methods, MS, BCFCM, N3 and N4 were defined
to correct the bias field in 3D image volumes, while
the rest only work with 2D slices for now. Based
on our mentioned classification, NUC is a gradient-
based surface fitting method; MS, BCFCM, LevSet
and CLIC are segmentation-based methods and N3,
N4 are histogram-based methods.

III. METHODOLOGY

In this work we compare the results of applying
seven different bias field correction algorithms on 53
breast MR scans. As not much work has been previ-
ously done on breast MRIs comparing the performance
of bias field correction methods, novel techniques
for evaluation are proposed. The evaluation mainly
focuses on three visible tissues in breast MRI: fatty
tissue, dense tissue and pectoral muscle (see Fig. 3).
Manual segmentations of these tissues are used as
masks for evaluation.

Fig. 3: Manual segmentation

A. Material

The data set used to evaluate the bias field correction
results consists of 53 pre-contrast coronal T1-weighted
MR breast volumes from 53 different patients. The age
of the screened women ranged from 23 to 76 years
(45.84 ± 11.97 of average). The cases were collected
from 2003 to 2009. Breast MRI examinations were
performed on either a 1.5 or 3 Tesla Siemens scanner
(Magnetom Vision, Magnetom Avanto and Magnetom
Trio), with a dedicated breast coil (CP Breast Array,



Siemens, Erlangen). Clinical imaging parameters var-
ied; matrix size: 256 x 128 or 256 x 96; slice thickness:
1.3 mm; pixel spacing: 0.625 − 1.25 mm; flip angle:
8◦, 20◦ or 25◦; repetition time: 7.5 − 9.8 ms; echo
time: 1.7 − 4.76 ms. Patients were scanned in prone
position.

B. Algorithms
The evaluated algorithms are:
1) Mean-Shift (MS)
2) Modified FCM (BCFCM)
3) N3 bias field correction (N3)

• Spline Fitting Levels 4 (N3 SF4)
• Spline Fitting Levels 6 (N3 SF6)

4) Nick’s Improved N3 (N4)
• Spline Fitting Levels 4 (N4 SF4)
• Spline Fitting Levels 6 (N4 SF6)

5) Sparseness of Gradient (NUC)
6) Level Set (LevSet)
7) Coherent Local Intensity Correction (CLIC)

Some of these algorithms are publicly available, some
are collected through requests to appropriate author-
ity. Implementations are in C++ and/or Matlab. The
iterative framework for all cases is written in Mat-
lab and all algorithms are called from this iterative
framework. V TK, DCM and NRRD file formats
are used. Different parameters for the algorithms are
empirically found and/or suggested by the authors to
obtain good results. N3 and N4 are both evaluated with
two different spline fitting levels.

C. Evaluation Metrics
Different metrics are considered for quantitative

comparison of bias field correction algorithms. In
previous bias field correction comparison studies [16],
[22], [23], researchers used visual or qualitative re-
sults and Coefficient of Variation (CV) as quantitative
measure. Visual results can be extremely hard to
determine by human eyes and the metric CV also has
disadvantages (see Sec. III-C.4). To overcome these
limitations, in this work, along with CV, we propose
and use different metrics:

• Standard deviation (STD)
• Percentage Count (PC)
• Entropy (E)
• Coefficient of Variation (CV)
• Bhattacharyya Distance (BD)
1) Standard Deviation and Histograms: Bias field

correction algorithms reduce the intensity variation
within the same tissue. The standard deviation repre-
sents the spread of the intensity distribution of a certain
tissue class. Therefore, after correcting the bias field,
standard deviation of that tissue class should decrease.
For a tissue class X with N voxels, standard deviation
can be defined as:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2, (1)

where µ = 1
N

∑N
i=1 xi and xi ∈ X .

Fig. 4 shows normalized histograms of three tissues
(dense tissue, pectoral muscle and fatty tissue) for
a single case before and after application of bias
field correction algorithm. It can be seen in Fig. 4

(a) Before correction (b) After correction

Fig. 4: Histogram of different tissues

that dense tissue and pectoral muscles signal intensity
distributions follow a unimodal Gaussian distribution
both before and after application of bias field correc-
tion. However, the signal intensity distribution of the
fatty tissue shows bi-modality. Performance of tissues
with unimodal distributions can be easily measured
by standard deviations, but standard deviation of a
bimodal distribution is not useful. In order to measure
the effect of the bias field correction algorithms other
metrics are needed.

2) Percentage Count (PC): Percentage Count (PC)
is a novel metric proposed in this thesis. PC is a kind
of local histogram-based metric which only computes
the percentage of voxels having intensity near the peak
histogram bin intensities. In other words, PC is the
percentage of voxels present in vicinity of the peak
histogram count. A range of 20 is chosen around the
peak histogram count intensity. All the voxels that have
intensities in that range are considered. Higher percent-
age count represents better result. Therefore, increase
of PC from the original PC indicates improvement. PC
is defined as:

Percentage Count(PC) =

∑x+ r
2

i=x− r
2
Pi∑N

j=1 Pj
, (2)

where Pi is the number of voxels having intensity level
i; x is the approximate intensity which has maximum
number voxels, N is the maximum intensity and r is
the range. The range is empirically set to 20 for this
work. Fig. 5 shows which part of a histogram is chosen
to measure PC.

Fig. 5: Percentage Count



3) Entropy (E): Entropy is a statistical metric which
represents the randomness of a distribution. As bias
field correction reduces the dynamic range of a tissue,
randomness of the tissue intensity distribution should
also be decreased from the original image and such
amount of decrease can be used as a metric. It can be
expressed as:

Entropy(E) =

number of bins∑
i=0

bin counti
log2(bin counti)

,

(3)
where bin counti is the number of voxels counted
in i-th histogram bin and number of bins is taken
as 50. While PC is a histogram-based local metric,
entropy is a histogram-based global metric as the
whole histogram is taken into account. Entropy has not
been used before for evaluating bias field correction
results.

4) Coefficient of Variation (CV): The third metric
is Coefficient of Variation (CV). It has been used
in [16], [23] to compare the performances of different
algorithms. Mathematically it is expressed as:

CV (C) =
σ(C)

µ(C)
(4)

where σ and µ are the standard deviation and the mean
of the tissue class C. CV quantifies the variation of
tissue intensity and should be reduced after bias field
correction. CV is invariant to multiplicative uniform
intensity transformation (intensity scaling or contrast),
which an intensity inhomogeneity correction method
could introduce. A drawback of CV is its sensitivity to
uniform additive intensity transformation (brightness),
which changes the mean but not the variance of a
tissue [5].

5) Bhattacharyya Distance: Variability between
different tissue classes is very important for breast
MRI analysis. Bias field correction algorithms should
be able to increase the difference between signal
intensity distributions of two different tissue classes.
Fig. 4 illustrates how inter-class variability is affected
by the bias field correction. In order to quantify the
effect, Bhattacharyya distance [24] between the signal
intensity distributions of fatty and dense tissue or
pectoral muscle can be calculated. If p and q are
two histograms for same intensity range X , then the
Bhattacharyya distance between p and q is defined as:

DB(p, q) = −ln(BC(p, q)) (5)

where BC(p, q) =
∑
xεX

√
p(x)q(x). Larger values

of DB indicate more separation between p and q.

D. Visual Inspection
Apart from the quantitative analysis, a qualitative

comparison between the algorithms is also performed.
In order to do this, a smaller number of cases are
carefully chosen from the dataset. Of 53 cases, eight
cases with strong bias field are selected. One slice from
each view is chosen and given to 2 different experts for

rating. Each inspector was asked to rate all the cases
according to two different 5 point scale. One scale
determines the amount of bias field present in a slice,
the other scale determines the amount of distortion
in tissues. The scales are shown in Fig. 7. Finally,

Fig. 7: Rating scales for visual inspection

based on the average rating, a ranking between the
algorithms is made.

IV. RESULTS AND DISCUSSIONS

The different bias field correction algorithms are
evaluated in this chapter using dataset of 53 cases
and the metrics explained in the previous chapter.
To summarize the results, box plots are used. Box
plot is a convenient way of graphically depicting
groups of numerical data through their quartiles [25].
Box plots of the metrics on fatty tissue bias field
removal are shown in Fig. 6. To recall the metrics
from Sec. III-C, increase in PC and decrease in E
& CV indicates better bias field removal. In terms
of PC the performance is: N4SF6 > LevSet >
N4SF4 > N3SF6 > CLIC > N3SF4 > MS >
BCFCM > NUC > ORG. In terms of Entropy
(E): LevSet > N4SF6 > N4SF4 > N3SF4 >
N3SF6 > CLIC > BCFCM > NUC >
MS > ORG. Ranking of algorithms in terms of
CV is: LevSet > N4SF4 > N4SF6 > CLIC >
N3SF4 > N3SF6 > BCFCM > NUC > MS >
ORG. We can conclude that LevSet, N4’s & N3’s
perform well in terms of bias field removal and NUC,
BCFCM, CLIC & MS do not remove bias field much.

While bias field correction algorithms remove bias
field from the image, it also cases distortion in other
tissues. These distortion can be expressed in terms
of standard deviations. The standard deviations of
dense tissue and pectoral muscle before and after
the application of algorithms are shown in Fig. 8.
It can be seen that N4’s, N3SF6 and LevSet, which
perform good bias field removal, causes substantial
increase in standard deviation for both tissues. N3SF4,
MS, BCFCM, NUC and CLIC perform the best in
terms of low distortion. N3SF4 is the only algorithms
that performs well in both bias field removal and
low distortion. Variability between tissue classes is
a critical issue. This is also affected by bias field
correction algorithms. Fig. 9 shows that all the al-
gorithms except CLIC, NUC, BCFCM, N4SF4 and
N3SF4 reduces the distance between fatty tissue and



Fig. 6: PC (left), Entropy (middle) and CV (right) for all algorithms

(a) (b)

Fig. 8: Standard deviations for (a) dense tissue and (b) pectoral muscle

(a) (b)

Fig. 9: Bhattacharya distances from fatty tissue to (a) dense tissue and (b) pectoral muscle

TABLE I: Bias field correction scores

Methods MS BCFCM N3SF4 N3SF6 N4SF4 N4SF6 NUC CLIC LevSet
Expert 1 2.33 2.33 3.05 3.16 4.37 4.21 1.5 2.75 4.5
Expert 2 3.70 3.75 3.38 3.38 4.75 4.95 2 3.75 5

TABLE II: Distortion scores

Methods MS BCFCM N3SF4 N3SF6 N4SF4 N4SF6 NUC CLIC LevSet
Expert 1 4.08 4.08 4.08 3.67 3.91 3.2 4.13 4 3.12
Expert 2 4.29 4.25 4.38 3.54 4.41 2.38 3.87 3.87 2.87



dense tissue. The distance between fatty tissue and
pectoral muscle shows that N4SF4, N3SF4, NUC,
LevSet and CLIC increases the distance after bias
field correction. After considering bias field removal,
distortion and inter class distances, we can conclude
that only N3SF4 performs well in all categories. Some
of the resulted volumes were also sent to two experts
for visual evaluation. Average scores for the algorithms
are summarized in Table. I and II. If we consider
score 3 to be the baseline score, then three algorithms
unanimously outperform the baseline score in terms of
bias field and distortion. They are: N3 SF6, N3 SF4
and N4 SF4. This trend is similar to what we observed
during the quantitative analysis.

V. CONCLUSIONS
In this work, we have extensively studied the effect

of seven different state of the art bias field correction
methods on breast MRI. The evaluation process, which
includes the metrics used, and a complete comparison
of their performance have been described. The effect
of bias field correction on tissue segmentation has
been also investigated. The quantitative findings have
been verified by blind qualitative analysis. A critical
trade off between correction of bias field and tissue
distortion has been found. Finally, the best algorithms
have been identified based on this trade off.

Among seven algorithms, N4SF6 and LevSet meth-
ods obtain the best bias field removal results. The
distortions caused by these algorithms are also very
large. These algorithms also decreases the inter-tissue
distances. On the contrary, MS, BCFCM, NUC and
CLIC cause least amount of tissue distortions. MS
and BCFCM also increase the distances between tissue
classes. However, none of them correct the bias field
completely. Considering the trade off, N3SF4 is found
to be moderate in both ends. This algorithm also
passed the baseline score in qualitative analysis by the
two experts.
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Ego-motion estimation with low-power processing using a smart
panoramic compound camera

Gerard Bahi Vila, Ramon Pericet Camara and Dario Floreano

Abstract— This work focuses on developing an ego-motion
estimation method using light weight embedded sensors in GPS
denied environments. The approach presented fuses inertial
information and optic flow information to provide a velocity
estimate which aerial vehicles can use for navigation in indoor
cluttered environments. The solution proposed in this work is
targeted for vehicles weighting less than 100 grams. Using the
I2A algorithm, up to 20,000 optic flow vectors per second can be
obtained from the sensor, which then perform voting to deter-
mine the direction of motion. This direction of motion estimate
is used to correct the velocity estimate obtained through an
extended Kalman filter using the inertial information.

I. INTRODUCTION

In a scenario of a natural disaster there are many situations
in which the use autonomous vehicles for exploring the
area is much safer. One example of these situations is the
earthquake that took place in May 2012 on the North of Italy
[1].

Teleoperated flying and ground robots were used to an-
alyze the state of half collapsed buildings. Flying robots
were proven to have some advantages with respect to ground
vehicles. They were capable of providing views from several
attitudes and they are able to access areas regardless of stairs
or wreck in their path. Even though teleoperated robots were
proven useful, to drive the robots without any collision was
found not only difficult but also stressful for the pilots, as
it was known that the robots probably would not be able to
recover from such a collision.

One possible solution in such a situation is to utilize
flying robots with embedded sensors that are able to navigate
autonomously and avoid collisions. In addition the flying
platform should be as small as possible as this reduces the
risk of collision and increases the areas the robot can reach.

For flying robots to navigate autonomously in GPS denied
environments sensors have to be embedded in the robot
so that ego-motion can be computed reliably. Ego-motion
describes the amplitude and direction of the robot velocity
vector. This information can be used in closed loop con-
trollers to maintain a position or follow a trajectory.

Many solutions in the literature use monocular vision
sensors in order to compute optic flow based ego-motion
estimation. However these sensors present some ambigu-
ity, as they are not able to distinguish between scale and
speed changes as explained more in detail in [2]. In order
to overcome this ambiguity, several solutions use inertial
sensors and monocular sensors and they combine them using
simultaneous localization and mapping (SLAM) [3], [4].
However, these SLAM based solutions usually require a large

amount of computation and memory not suitable for the
targeted platforms processing power.

Some other proposed solutions use feature tracking and
matching. These methods require cameras with a resolution
high enough to capture those features, and also enough
computing power to compute matching between them. A
survey of several techniques using these approaches can be
found in [5]. The payload generated by the cameras needed
makes these methods not suitable for the desired hardware.

There are also solutions which use optic flow based
methods in order to find a direction of motion constraint
using several optic flow vectors. Lim et al. [6] developed a
method using catadrioptic devices and fish eye lenses whose
image plane can be approximated by a sphere. These lenses,
which provide a very large field of view, allow for getting
translational optic flow data using information from antipodal
points to cancel the rotational component of the optic flow
[6]. Given the translational optic flow, an estimate of the
direction of motion can be computed. In [6], two methods for
doing so are compared: RANSAC and a coarse-to-fine voting
algorithm. The last option has shown better performance
with respect to accuracy and frame rate. This approach if
changing the sensor for a more lightweight option it would
be a suitable option for computing a direction of motion
constraint. This approach would need to be combined with a
solution able to provide the magnitude of the velocity vector
in order to define ego-motion.

Recently, methods that fuse optic flow and inertial sensor
measurements have been developed. Kendoul et al. [7] use
a 3 nested Kalman filtering approach which fuses visual and
inertial information in order to obtain the velocity and the
scene structure. Briod et al. [8] use an extended Kalman
filter approach using accelerometers to integrate the velocity
and position. For reducing the uncertainty and drift of the
estimation, they use the direction of motion constraint given
by the translational optic flow information obtained by high
precision sensors.

The aim of this paper is to provide a method capable
of estimating ego-motion using very lightweight sensors in
order to assist autonomous navigation in GPS denied envi-
ronments, adding the minimal amount of payload possible.
The method is designed for modern micro-air vehicles which
can only carry a limited amount of payload as well as a
limited amount of computational power due to their small
structure.

The paper describes the method as follows. Section II
describes the sensor used for developing the method. Section
III explains the details of the implementation. The outcome



of the method is described in section IV followed by the
conclusions in section V.

II. CURVACE SENSOR

The compound eyes of insects are very efficient for local
and global motion analysis over a large field of view (FOV).
This feature makes them an excellent sensor for accurate and
fast navigation in 3D dynamic environments.

The Curvace is a sensor which mimics the insect com-
pound eyes [9]. For doing so the sensor is composed of
micro-lens arrays integrated with adaptive photoreceptors.
Using this technique, the sensor is able to provide a much
larger field of view than conventional cameras and also a
limitless depth-of-field.

Figure 1 shows the Curvace sensor developed. The sensor
has a volume of 2.2 cm2, a weight of 1.75 g and consumes
0.9 W at maximum power. The resolution of the sensor is
15 rows by 42 columns. What is more it also contains a
gyroscope and an accelerometer in order to provide inertial
information.

Fig. 1: Representation of the Curvace sensor. Left: an image of the
prototype. Right: Representation of the FOV of the sensor. [9]

III. APPROACH

The method developed should extract optic flow informa-
tion from the Curvace sensor. The optic flow data is then
combined as in [6] to output a direction of motion estimate
which is robust to noise from the optic flow sensor. The
estimate found may then be used to provide ego-motion
estimation in a way similar to in [8] but with the direction
of motion estimate used in place of high-precision optic
flow sensor readings. This method provides an ego-motion
estimate that has a sensor payload of 2 grams.

A. Optic flow extraction

The method used for extracting optic flow from the sensor
is the Mandyam V. Srinivasan method [10], commonly
known as I2A. The code used is an assembly language
implementation of this method programmed by Andreas
Steiner [11].

The code was modified in order to be able to use the data
given by the Curvace sensor, and also to make it capable
to support different window sizes. This implementation was
chosen since it can use architecture-specific assembly calls
of the microchip, making the algorithm faster than any other
implementation in C, thus allowing a higher frame rate.

The method involves approximating the frame at time step
n by computing an interpolation from the frame at time step
n−1 shifted ±1 units horizontally and vertically. The x and
y shift which provide the interpolation of the current frame
from the previous frame with the minimum error is the optic
flow observed in the time step n.

Some implementations also take into account a diagonal
shift, however the version described which only uses horizon-
tal and vertical interpolation is widely used in the literature
achieving good performance [12] [10].

In the original method Srinivasan in his work uses a 2D
Gaussian window function. However, Taylor et al. [12] state
that no advantage was found on using the Gaussian function
instead a rectangular window which has clear efficiency
advantages.

B. Direction of motion estimation

Once the translational optic flow is obtained, the next step
is obtaining the direction of motion constraint. For doing so,
firstly the image plane is approximated as a unit sphere. This
constraint is actually very suitable for the Curvace sensor
since the ommatidia of the sensor have spherical shape (see
figure 1). As shown in the literature, having the image plane
represented by a sphere has the advantage the translational
component of the optic flow vector, given a position on the
sphere surface, generates a great circle, whose plane contains
the direction of motion [13].

In an ideal situation without noise, two optic flow vectors
that are not contained in the same great circle would be
enough to determine the direction of motion, as the intersec-
tions of the great circles would give the focus of expansion
and the focus of contraction. The focus of expansion is going
to be the point whose angle between it and the optic flow
vectors is higher than 90°.

However, since the optic flow data is noisy, an algorithm
to compute an estimate of the direction of motion is needed.
Lim [13] proposed a coarse to fine voting strategy which
outperforms other techniques such as RANSAC or least
mean squares in terms of accuracy or frame rate according
to the results found in the literature. The approach taken in
this step is based on his work.

For performing a voting algorithm, firstly a voting space
needs to be defined. Since the image plane is approximated
by a unit sphere, spherical polar coordinates can be used.
Using this coordinate system has the advantage that only
voting on θ and φ is needed since r is always 1, reducing
the voting space for the direction of motion which is a 3D
vector to instead only two dimensions.

In order to determine if a bin is crossed by a great circle
the method proceeds as follows:

• The great circle plane is defined by the normal vector of
the plane, computed by doing the cross product between
the position vector and the optic flow vector.

• The bin corners are converted into Cartesian space.
• The sign distance between the bin corners and the great

circle plane is computed.



• If the sign of the distance is not equal for all the bin
corners it means the great circle goes trough the bin so
the vote for that bin is increased in one unit.

C. Ego-motion estimation

In this section, the sensor fusion method used for obtaining
the velocity estimation is going to be described. The direction
of motion estimate obtained from the visual information is
fused with the accelerometers data using an extended Kalman
filter. This approach is based on [8] where an extended
Kalman filter is used to fuse inertial data with very precise
optic flow measurements.

It has been stated in [14] and [8] that this approach keeps
one degree of freedom which is unobserved, hence subject to
suffer from drift. This degree of freedom corresponds to the
direction of motion which means that it will change every
time the direction of motion is changed, allowing to keep
the velocity uncertainty bounded if sufficient movements are
undertaken by the robot.

Figure 2 shows graphically how the velocity uncertainty
changes when no direction of motion constraint is applied
versus when it is applied, giving two different paths as
example: one which follows a straight line and another one
which keeps changing the direction of motion. As expected,
the last case is the one that gives more reliability of the
velocity measurement.

(a)

(b)

(c)

Fig. 2: 2D representation of the effect that a direction of motion
constraint has over the velocity uncertainty when fused with inertial
sensors. (2a) shows the case when no direction of motion constraint
is applied. (2b) shows the case when direction of motion constraint
is applied on a straight path. (2c) shows the case when direction of
motion constraint is applied on a path with turnings. Black arrow:
velocity vector. Grey ellipse: velocity uncertainty. White square:
robot. Dashed line: path. [8]

For estimating ego-motion using EKF the state is de-
fined by a 6 element vector containing the three velocity
components in body frame and the accelerometer biases: x
= (vBx , v

B
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B
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B
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z )

T . The estimation of the biases
allows for the compensation of calibration errors or temper-
ature changes, as well as orientation and estimation errors
which affect the velocity integration indirectly. The Kalman
filter state and the prediction equations are based on [8].

In the context of the algorithm presented in section III-
B, it is not necessary to implement such a direction of

motion constraint given by [8], as the algorithm determines
an estimate of the direction of motion directly. However, the
concept of using the unit vector to compare the results while
disregarding the magnitude may be applied. As such, the
proposed measurement used to update the EKF is:

zk = m̂B (1)

with the non-linear measurement model relating the ex-
pected state after the prediction step x̃k to the expected
measurement of

h[x̃k] = v̂B (2)

where m̂B represents the 3D Cartesian direction of motion
in the body frame determined from the algorithm, and v̂B

is the unit velocity vector in the body frame estimated by
the first three elements of x. This measurement model has
a corresponding observation matrix found from the Jacobian
Hk = ∂h[x]

∂x
The Kalman filter update is given then by the following

equations:

Kk = P̃kH
T
k (HkP̃kH

T
k +Rk)

−1 (3)

xk = x̃k +Kk(zk − h[x̃k]) (4)

Pk = (I −KkHk)P̃k (5)

where zk is the appropriate measurement, Rk is the
measurement noise, h[x̃k] and its Jacobian Hk correspond
to the non-linear measurement model

IV. RESULTS

A. Optic flow extraction

This section describes the outcome of several tests per-
formed in order to analyze the response of the I2A imple-
mentation for optic flow extraction. To do so rotational move-
ments were applied to the sensor in different orientations so
that the linear response to changes in angular speed could
be measured in both of the optic flow components.

One of the main reasons for choosing this method was
the performance of the assembly implementation available.
Some tests were carried out in order to know the maximum
frame rate possible using this implementation.

For doing so a known amount of regions of interest and
a known amount of frames to be computed was configured
to the Curvace sensor. Table I shows the data measured and
the frame rate computed with that information. It can be
observed that this method is able to compute around 20000
optic flow vectors per second.

N ROIs N frames Time (s) Optic flow vec./sec.
180 6000 50.9 21218.075
160 6000 46.2 20779.22
140 6000 40.2 20895.52
120 6000 35 20571.43

TABLE I: Frame rate measured of the optic flow extraction method.



For the following experiment the sensor was placed hori-
zontally on an e-puck (see figure 3a) which would then spin
meaning that the image plane was perpendicular to the axis
of rotation (see figure 3b). The e-puck was placed the n
inside a cylindrical tube which had painted vertical black and
white stripes. The optic flow was extracted from 10 different
regions distributed along the image plane, see figure 4a. This
experiment should provide a defined regression line from
all regions of interest. Given that the optic flow data has a
linear relation with the angular speed. Figure 4b shows this
relationship on a 2D window of the image plane.

(a) Experimental setup used
for characterizing the op-
tic flow with the Curvace
mounted on an e-puck.
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(b) Image plane orientation with
respect to the axis of rotation.
Blue dots: Image pixels. Red
dashed line: axis of rotation

Fig. 3: Experiment setup

(a) ROI distribution.
(b) Representation of the optic
flow given by one ROI.

Fig. 4: Region of interest distribution in the image plane for the
optic flow calculation (Left). Detail of the optic flow computed
in a ROI given a certain angular speed (Right). Red arrow: optic
flow vector. Red arch: optic flow vector angle with respect to the
horizontal axis. Green arrow: angular speed.

A linear regression between the optic flow vectors mag-
nitude and the angular speed was computed using the x
component of the optic flow vector and the angular speeds,
see figure 5. The x component is used as it should be the
only component varying with horizontal rotation. Table II
shows the goodness of fit of the regression values obtained
for each region of interest. All values obtained are over
90%, which shows a very high proportion of the variance
in the data is explained by a linear model. However, it is
also important to know the distribution of the values given a
certain speed, which may provide additional insight into the
sensor’s performance.

For showing the variability of the data and how much over-
lap exists between different optic flow vectors at different
speeds, a box plot for each region and speed was computed.
For simplifying the process of comparing the data for each
region, the standard deviation was computed for each speed,

ROI id 1 2 3 4 5
R2 value 0.9207 0.9472 0.9088 0.9538 0.9298
ROI id 6 7 8 9 10
R2 value 0.9533 0.9519 0.9460 0.9299 0.9343

TABLE II: R2 values for linear regression of optic flow x
component against angular speed, for each of the region of interest,
using the stripes pattern.

giving one standard deviation value for each speed and each
region. From these standard deviation values, the mean of
the standard deviation for each region at different speeds
was computed. The region with the lowest average standard
deviations gave a value of 0.069277. The region with the
highest mean of standard deviations got a value of 0.094817.
Figure 5 shows the boxplot of the region with the highest
mean of standard deviations.
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Fig. 5: Optic flow x component (horizontal sensor orientation)
regression with respect angular speed of Region 1

Using this setup the optic flow vectors measured should
have an angle of 0 or 180 degrees depending on the side of
the image plane. For analyzing if that behavior was produced,
the atan2 of the optic flow measured vector components was
computed. The function atan2 provides the angle of a given
vector within the range of [−π, π]. In order to be able to
check the variability, abs() was applied to the results since
−π and π would be very similar, however those results would
be considered very different by the statistical measurements
without applying abs().

In order to have an idea of the variability of the angle, the
same procedure of getting the mean of the standard deviation
as before was applied. The region with the lowest average
standard deviation across all angular speeds gave a value of
19.0359498°. Figure 6 shows the region with the highest
average standard deviation, with a value of 24.5025401°.
Again in this case the difference on the variability between
minimum and maximum standard deviation values is quite
low, around 5.4°.

The results presented show a high linear relationship
between the angular speed and the optic flow data, since
all the R2 values are over 0.9. The outcome of the algorithm
ensures a reliable optic flow implementation that can be used
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Fig. 6: Optic flow angle variability with respect angular speed of
Region 10

as a basis for the following steps of this work in terms of
efficiency and accuracy.

B. Direction of motion estimation

This section analyzes the results of the direction of motion
estimation algorithm. The algorithm follows a coarse to fine
voting strategy using the optic flow data from the Curvace
sensor.

For evaluating the accuracy of the voting algorithm, sev-
eral tests were run with the simulator since the output can
be compared with ground truth information. Using the optic
flow data acquired for characterizing the optic flow extraction
method it was possible to get a noise model. For adding noise
to the optic flow the following procedure was used. Firstly a
noise with the same variability as the optic flow variability
when not moving was added. After that a noise with higher
variability was added to the optic flow vector proportionally
to the magnitude of the optic flow. That means that if one
component represented 70% of the magnitude then the same
percentage of error would be added to it.

Since the optic flow needs to be de-rotated using the
gyroscopes, noise also needs to be added on those sensors.
In order to do so, gyroscope values were measured without
moving the device which allow for modeling the bias and
the variability as well as the distribution of this noise.

In order to know the robustness of the method with several
amounts of noise, 3 types of noise (A,B,C) were tested. A is
the realistic noise approximation with a standard deviation
of 0.05, B is a pessimistic approximation with a deviation
of 1 and C has more variability than B with a deviation of
1.5 in order to check the robustness of the method.

Table III shows the mean and the standard deviation error
compared with ground truth of the three datasets at the three
noise levels.

The results presented in this section show a reliable
method for computing an optic flow based direction of
motion estimate which is robust to noise. Further experiments
using the output of this algorithm for ego-motion estimation
need to be carried out, in order to assure the accuracy given

Noise Datasets Error mean Error std
θ φ θ φ

A
tx90XY -1.539 1.040 3.876 3.766
tx90YZ 2.057 -4.668 4.429 2.798

tx90XYZ -0.971 -2.542 3.994 3.609

B
tx90XY -2.103 1.576 3.922 4.041
tx90YZ -0.333 -2.803 5.873 3.915

tx90XYZ -1.966 -1.437 5.097 4.297

C
tx90XY -1.851 1.624 4.020 3.772
tx90YZ -0.847 -1.649 6.082 13.242

tx90XYZ -2.462 -1.117 4.926 3.897

TABLE III: Mean and standard deviation of the error when
estimating direction of motion, applying noises A,B and C.

by the algorithm is high enough for a reliable ego-motion
estimation.

C. Ego-motion estimation

This section shows the results of the ego-motion estima-
tion algorithm which uses an EKF based approach in order
to fuse inertial information with the direction of motion
estimate obtained from the optic flow.

For analyzing the sensor fusion data, a simulated data
set containing inertial and optic flow information of the
sensor performing different movements was recorded. As
the simulator provides ground truth for the inertial sensors
as well as the optic flow, noise needed to be added to the
data. For the gyroscopes, the same distribution used for
the previous stage was used. In order to model the noise
of the accelerometers, real data from accelerometers was
recorded having those steady, which then allowed to model
the noise for the three axes. For the optic flow data, the same
procedure described in the previous section was followed and
the three noise types where used for the two datasets. The
direction of motion estimation algorithm was run at the same
specifications used for generating the results of the previous
section.

Figure 7 shows the output of the algorithm, as well as the
error against the ground truth. It can be observed that the
components that present less movement are the ones with
lowest uncertainty. This is expected, as explained in section
III-C, since the update cannot reduce the uncertainty along
the movement direction as the magnitude of the motion is
not known.

After successfully testing the algorithm with simulated
data the next step would be to test it on a flying platform.
This test will assure that the uncertainty given is not too high
for being used as a closed loop controller input and have a
fully validated method.

V. CONCLUSIONS

In order to assist flying platforms to navigate au-
tonomously in GPS denied environments, ego-motion esti-
mation algorithms have been proven a reliable solution [8]
[7] [6]. Presented is an alternative which lowers the amount



(a) Velocity plot (noise A) (b) Velocity plot (noise B) (c) Velocity plot (noise C)

(d) Velocity error plot (noise A) (e) Velocity error plot (noise B) (f) Velocity error plot (noise C)

Fig. 7: Velocity and velocity error plot of the sensor fusion algorithm when applying three different levels of noise to the dataset
taccx90XYZTurning. RGB solid lines: XY Z components of the velocity estimate, respectively. RGB dashed lines: XY Z components of
the velocity ground truth, respectively. RGB semitransparent area: uncertainty of the XY Z components, respectively.

of sensor payload needed for ego-motion estimation by using
the Curvace sensor.

One of the most remarkable features of the optic flow
extraction method implemented in the Curvace is the effi-
ciency. The algorithm allows to compute up to 20000 optic
flow vectors per second.

On the direction of motion estimate method chosen, one
of its main advantages is its versatility. The method allows
to have a trade-off between computational time and accuracy
achieved. This characteristic allows to adapt to the needs of
the flying platform in terms of precision.

The approach presented on this work shows a very
lightweight solution to this problem as the payload added
for the sensors needed is of 2 grams. As the payload is
very low, the method could be used in aerial vehicles as
small as the LadyBird Quadcopter. This quadcopter has a
total weight of 25 grams appropriately and a width of 12.5
centimeters. Such devices, coupled with the system presented
in this work, show the potential for autonomous navigation
in cluttered, GPS-denied environments.
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A Method for Dynamically Balancing Kicking Motions for the NAO
Robots

Mariela De Lucas Alvarez

Abstract— Balancing moving robots has always been a chal-
lenging task in the field of robotics. Within the Robocup
challenge, this is a present concern for soccer playing NAO
robots. A method for solving balance pertaining kicking motions
is proposed. In order to accomplish this task, the Zero-Moment
Point (ZMP) is addressed to generate balancing motion patterns
to sustain a kick. This Inverse Dynamics problem is controlled
with a ZMP observing Linear Quadratic Regulator.

I. INTRODUCTION

The NAO humanoid robots, as used within the RoboCup,
are expected to perform a wide variety of maneuvers ranging
from walking, standing up from a fallen down position,
diving to save the ball, etc. Within the Standard Platform
League, the soccer competition comprises many tasks that
represent a great challenge to accomplish. There is a lim-
itation related to the kicking execution, where there is a
need to effectively observe the motions of the robot in order
to perform in stable manner. With this in mind, there is a
pressing need to design a method for observing balance and
stability, taking into account external disturbances to generate
fluid and dynamic motions that suit the characteristics of a
soccer match.

Along these lines, the proposed solution is to design a
balancer that acknowledges the dynamic characteristics of
the NAO. The suggested solution follows the groundwork
of many other researchers who have explored this problem
with the development of linear models to pattern motions of
bipedal robots. Such is the Cart-Table model which uses a
notion to determine a location for stability as a mixture of a
Zero-Moment point and Inverted Pendulum based approach.
This method is approached along with a linear quadratic
controller that compensates for motion errors. This is in-
tegrated in a module within an existing software framework
to balance movements considering external disturbances for
efficient control needs pertaining kicking tasks. Conclusively,
satisfying the dynamic nature of a game play and this way
enhancing the balancing capabilities of the NAO robot.

II. BALANCING HUMANOID ROBOTS

There have been many strategies to create balanced mo-
tions for bipedal robots. From the point of view of control
and walking pattern generation, there can be two ways of
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approaching these goals. One is by knowing details of the
dynamic infrastructure of the robot, such as mass, location
of the center of mass and inertia of the links to construct
the walking patterns, relying on the accuracy of the models.
Another one will use a contrary approach where it will work
using limited knowledge of the dynamics of the system,
relying on a feedback control.

The first can be called zero-moment-point-based ap-
proaches and the second ones inverted-pendulum-based ap-
proaches, since they frequently model the zero-moment
point and an inverted pendulum respectively. Throughout
the chronicles of the RoboCup competition, many teams
have conjugated both categories by using zero-moment-
point-based linear inverted pendulum models to accomplish
efficient balanced walking motions.

Works on biped walking by Kajita et al have reviewed
both approaches. In [2] they analyzed the dynamics of a
linear three-dimensional inverted pendulum in which motion
is constrained to move along an arbitrarily defined plane
to synthesize a model for biped walking generations. Also,
in [1] they introduced a new method for biped walking
pattern generation by using a preview control of the zero-
moment point. Both approaches laid the groundwork for the
implementation of walking and kicking engines of RoboCup
team B-Human from University of Bremen and the German
Research Center for Artificial Intelligence.

This last work lays the foundation of this solution, [5].
It covers two techniques of dynamically balancing the NAO
robot by estimating the motions of the robot and using them
to determine its zero-moment point. Consequently, offering
a solution to the inverse dynamics problem.

A. Zero Moment Point

The concept of Zero Moment Point (ZMP) was first
introduced by Vukobratovic and Borovac [3] as a method
to localizing the point within the supporting polygon at
which the reaction forces of will keep a robot balanced.
The acceptance of this concept is based on its importance
for biped gait analysis, synthesis and control. Consequently,
the significance of the Zero Moment Point is built on more
than three decades of diverse applications related to various
humanoid locomotion devices.

The most important task of a locomotion system is to
maintain the balance or stability, for instance, while per-
forming a gait . This is achieved by maintaining the whole
support polygon area in contact with the ground. The foot
relies freely on the support and the only contact with the



environment is accomplished via the friction force of the ver-
tical force of the ground reaction. As previously explained,
the zero-moment point lies within the supporting foot. If it is
not located in the foot, the fictional ZMP, is outside the foot
sole and will cause the robot to tilt over and fall eventually.

When existent, the zero-moment point provides the loca-
tion at which the reaction force of that ground exerts on the
foot must act, such that all torques are canceled out. The
ZMP, p0, then satisfies the equality,

zmp× fr,z + τxy = 0 (1)

and hence,

zmp =
n× (−τxy)
n · fr,z

=
1

fr,z

 τy
−τx
0

 (2)

with fr,z being the vertical component of the reaction
force, τxy the total torque of the robot relative to the
projection of origin of the support polygon on the ground,
n the normal vector, also on the ground and × denoting the
cross product of the two vectors.

It is important to explain how the notion of the zero-
moment point relates to the ground surface. It is crucial to
note that a zero-moment point lying outside the foot polygon
makes no sense, since in fact it does not exist. To understand
the meaning of this, lets assume that the ZMP is no longer
within the support polygon. In view of the fact that this
point was obtained from the condition where horizontal and
vertical moments are zero, we can consider it as a fictitious
zero-moment point (FZMP), Fig.1(b). Therefore, if the ZMP
can only exist within the support polygon, we call it a
fictitious location the calculated ZMP that lies outside the
support polygon .

Another issue that must be clarified is the difference
between center of pressure (CoP) and ZMP. The pressure
between the foot and the ground can be translated in to a
force acting at the center of pressure. If this force balances
all active forces acting on the robot during the gait, its acting
point will be the ZMP. Hence, when the robot is dynamically
balanced the CoP and the ZMP will coincide. If the robot
is not balanced the ZMP will not exist and the robot will
collapse about the foot edge where the CoP is localized.

From (2), it is inferred that the position of the ZMP
depends on the dynamics of the machine, and therefore,
determining the proper dynamics of the mechanism above
the foot is essential to ensure a desired zero-moment point
position. Figure 2.1 shows the how reaction forces act on
a dynamically balanced gait and the relations between the
center of pressure and the zero-moment point.

The concept of ZMP has had an essential role throughout
the years in theoretical approaches and practical development
of humanoid robots and biped locomotion, and with the
accelerated research to incorporate humanoid robots close to
humans, it is highly expected that its notion will not cease
to be present.

(a) (b)

Fig. 1. ZMP and FZMP. a) In a dynamically balanced gait, the vertical
component fr,z of the reaction force fr acts on the ZMP, p0, to cancel the
horizontal torque, τxy , of the total, τ , relative to the origin of the foot, o.
b) In an unbalanced gait, the ZMP does not exist, and the ground forces
act on the CoP. The FZMP, Fp0, lies outside the foot sole.

III. DYNAMIC MODELS FOR BALANCE
ESTIMATION

A. ZMP and 3D Linear Inverted Pendulum Mode

To apply the Cart-Table model, to a balancing robot we
must consider controlling an inverted pendulum constrained
to a certain defined plane where a mass is moved along in
equilibrium. This linear dynamics scheme is called Three-
Dimensional Linear Inverted Pendulum mode (3D-LIPM)
[1], [2], [11]. The cart represents the motion of the CoM
and the table, the supporting foot. The cartesian position of
the CoM is defined by,

pcom =

x
y
zc

 (3)

where zc is de vertical position of the CoM defined at a
constant height. This constrained height is represented with
normal vector (kx, ky,−1) and z intersection, zc as,

z = kxx+ kyy + zc (4)

If we consider the plane to be horizontal (kx = ky = 0)
the dynamics under the constraint control is given by,

ẍ =
g

zc
x+

1

mzc
τy,

ÿ =
g

zc
y − 1

mzc
τx

(5)

where m is the CoM, g is gravitational acceleration
and τx, τy are the torques around the x-axis and y-axis
respectively. For the 3D-LIPM under a constrained plane,
the ZMP can be calculated,

px = − τy
mg

py =
τx
mg

(6)

where px,y are the locations of the ZMP on the ground.
Consequently, we can substitute from (5) to (6) to have the
Cartesian positions of the ZMP,



Fig. 2. Inverted Pendulum. This diagram shows an inverted pendulum
under a constrained plane zc.[1]

px = x− zc
g
ẍ

px = y − zc
g
ÿ

(7)

The concept behind the Cart-Table model is that if the cart
accelerates, i.e. the CoM, at a proper rate, the table, i.e. the
support leg, can sustain it upright for a moment. At this point
the ZMP exists within the constraint plane and the moment
around the ZMP is zero and can be verified below using set
of equations (7),

τzmp = mg(x− px)−mẍzc = 0 (8)

IV. ZMP PATTERN GENERATION

A. Cart-Table Model for ZMP tracking

To represent the NAO as the Cart-Table model, the cart
motion gives the trajectory of the CoM. The constraint factor
is approached by first settling the level of the support leg
to the constant plane zc before initializing the balance. The
ZMP is easily calculated then from the equations in (7). This
linear model uses the ZMP reference of a certain period and
generates the corresponding CoM trajectory. To control the
ZMP a variable, ux, is used as the time derivative of the
horizontal acceleration of the CoM,

ux =
d

dt
ẍ (9)

Observing this ux as the input of the ZMP (7), the set of
equations can be translated into a dynamical system,

d
dt

xẋ
ẍ

 =

0 1 0
0 0 1
0 0 0

xẋ
ẍ

+

00
1

ux

px =
[
1 0 −zc/g

] xẋ
ẍ

 (10)

The positions, velocities and accelerations for the CoM
are Kalman-filtered in a combined state, to obtain values for
the x and y components. This dynamic system yields the
next CoM point in the trajectory so that the resulting ZMP
follows the reference specified.

Fig. 3. Cart-Table Model.[1]

B. Pattern Generation by Linear-Quadratic Regulation

To control the motions of the NAO, an optimal linear
discrete-time finite-horizon quadratic regulator similar to [5]
was designed. The system is discretized with sampling time
of T as,

xk+1 = Axk +Būk,
pk = Cxx+1,

(11)

where,

xk ≡
[
x(kT ) ẋ(kT ) ẍ(kT )

]T
,

ūk ≡ ux(kT ),
pk ≡ px(kT ),

A ≡

1 T T 2 1
2

0 1 T
0 0 1

 ,

B ≡

T 3 1
6

T 2 1
2

T

 ,

C ≡
[
1 0 −zc/g

]
.

With this model the controls to be applied at kT are,

uk = −(R+BTPkB)−1BTPkAxk (12)

Pk = Q+AT (Pk−1−Pk−1B(R+BTPk−1B)−1BTPk−1)A

The LQR is essential a method for finding an ideal state-
feedback controller. The cost or performance index, J , can
be interpreted as an energy function, so that by making it as
small as possible keeps small the total energy of the system.
It is defined as a quadratic cost function,

J =
N∑

k=0

(
xT
kQxk + uT

kRuk

)
. (13)

The energy function weighs both the state xk and control
input ut, so that if J is small, then neither xk nor uk can be
very large. The two matrices Q and R were selected based
on the terms that to keep J small the state must be smaller
is opting for a large Q. For a large control matrix R, then
uk should be smaller than J .



Fig. 4. CoM pattern generation by ZMP control.

From the dynamics of (11) and the controller (12) a CoM
observing pattern generator as a ZMP tracking control system
can be designed as in Fig. 4. The commands of the dynamic
update yield new positions for the CoM which can be easily
approached by following an inverse kinematic solution to
calculate the joint angles for the support leg.

V. POSE TRANSFORMATIONS FOR INVERSE KINEMATICS

It was necessary to calculate several pose transformations
in order to construct the linear model described above. The
software framework that handles the motions of the NAO
integrates its own coordinate system. To observe specific
body locations of the NAO lets take into account the next
rulings on the CoM and foot limbs with regards to the torso,

TTC , TTF (14)

The transformations above do not have to be calculated
since they are known in the system and are given as homo-
geneous matrices. The superscript, T , refers to the torso of
the NAO, F refers to the foot, and C to the CoM. These
are obtained through the a torso matrix provided within the
software framework, which provides a transformation from
the ground to the origin of the NAO.

To observe the motions of the CoM, we must relate it to
the ground projection of the support foot. This is given by
the following transformation sequence,

GTC =
(
TTF

)−1 · TTC ·
[
I t
0 1

]
(15)

where, G, refers to the ground, I corresponds to an identity
matrix, and t refers to a translation vector t = [0, 0,−zfo]
constructed with the robot model defined in the software
framework. Lets recall that, according to the coordinate
system of the NAO, the foot origin, fo, is located in the ankle
of the robot. Hence, it needs to be translated to the ground.
After obtaining the dynamic update, the new CoM position
needs to be in reference to the torso of the NAO given that
the inverse kinematics solution only takes positions for end
effectors with that reference,

FTC =G TC ·
[
I t
0 1

]
(16)

where t = [0, 0, zfo],

TTF =T TC ·
(
FTC

)−1
(17)

Fig. 5. Coordinate sytem of the NAO. Visualization of the coordinate
system references as used in the inverse kinematic solver. Red is for x-axis,
green is for y-axis and blue is for z-axis.[4].

VI. RESULTS

To evaluate the performance of the controller a series of
preprogrammed kicking sequences were run to observe the
behavior of the ZMP with regards to the demanded ZMP.
The experiments consisted in executing the following tests,

• A sequence where the NAO lifts the kicking leg and
sustains it to balance in the support leg

• A sequence where the NAO executes a straight kick.
This was tried out using different Q and R parameters

• A series of sequences where the NAO executes a 30◦,
45◦, 60◦, and a 70◦ kick.

A kick sequence consist of three stages. First the NAO
assumes the kicking stance, where it leans its body towards
the support leg in order to reach the desired constrained
height as established by the 3DLIPM. Second, the kicking leg
starts its motions while the support leg balances. Third, the
kicking sequence finalizes and the NAO assumes the stand
pose.

(a) (b)

Fig. 6. a) Balance with no kick. b) Balance with straight kick.

All the plots show 4 consecutive motion executions. Re-
sults above are to compare the disturbances generated with
a kick motion and without, where the ZMP references are
tracked. The pattern shows how the NAO leans, sustains
balance or kicks, and assumes the standing position again.
To asses how the model fits, the dark line shows the desired
ZMP location.

The plots below show the tests for straight kicks with
different LQR parameters, show for both y-axis and x-axis.
It was observed that most of the overshoots are present in
the saggital motion during a straight kick. This makes sense
given that the NAO strives to sustain its balanced posed while



it swings the kicking leg backwards and forwards. The lateral
motions in general appear to be smoother given that there
are virtually no disturbances for this motion. Some small
overshoots are observed, however, when the NAO re-assumes
the standing position

(a)

(b)

Fig. 7. Straight kick testing different parameters. a) First test kick in
Y-axis and X-axis, and b) second test kick in Y-axis and X-axis.

(a)

(b)

(c)

(d)

Fig. 8. Angular kick executions. a) 30◦, b) 45◦, c) 60◦, and d) 75◦.

A somewhat different scenario is observed for the ZMP
patterns in the angular kick test above. The saggital motions
still overshot, but appear more compact and closer to the

demanded ZMP for the motions with a wider kick [8(c),8(d)].
In spite of these overshoots, it is important to note that their
notation is in mm and some do not represent a significant
disturbance for the balance of the NAO. The lateral motions
are shown to be more affected but still managed in an
acceptable manner by the controller as the NAO widens the
kick motion away from its support leg to hit a ball in a
certain angle. Regardless of the type of kick, the ZMP shows
considerable disturbance while the kick foot is moved.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In the previous sections, a method was presented for
tracking the ZMP trajectory of a kicking NAO in order
to regulate the desired position to sustain a balanced pose.
The Cart-Table model was presented as a reliable method
for representing the ZMP. After reviewing other methods
that incorporated this notion to generate motion patterns, the
solution was given as a ZMP observing Linear-Quadratic
Regulator. It was reinforced that, as in any optimization
problem, the choice of parameters play a key role in the
robustness of a controller.

To show the efficiency of the solution, the balancer was
tested with a series of preprogrammed kicks. In here it was
observed that each kick affected differently the response
behavior of the regulator from which was useful to observe
its robustness. The regulating response from the controller
efficiently corrected the pose of the NAO for the straight
kicks, while the angular kicks manifested larger disturbances
difficult to control.

B. Discussion and Future Works

The results obtained in from the proposed approach were
sufficient given that the cost parameters were chosen with-
out a design procedure and selected through recommended
guidelines that were found throughout the research. It makes
sense that by choosing larger values for Q and smaller for R
the state control efforts sufficiently kept the calculated ZMP
close to the demanded ZMP. Theoretically, larger values of
Q result in poles of the system matrix A, from the Riccati
equation (12), being further left in the s-plane so that the
state reaches decay faster. On the contrary, a large R means
that less control effort is used, so the poles are slower and
the state values of x become larger.

In comparison to the results shown in [5] where a preview
controller is used for the Cart-Table model, this solution
appears to have an acceptable response and smaller over-
shoots across time. Thus, it is safe to say that the Cart-Table
model used to generate patterns for the ZMP can improve
the robustness of the system using different controllers.

This approach includes the use of estimating the cost of
the controller using the Algebraic Riccati Equation to solve
for the state-variable feedback to determine the cost before
the control is applied to the system. Although generally,
obtaining a guaranteed solution to stabilize a system will
seldom offer meaningful understanding of the robustness of
the system. In addition, the improvement to angular kick



responses would enable the testing on an online-generator for
kicking motions for the enhanced adaptability of the NAO
robot in the soccer pitch.
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Abstract— Vision-based human activity recognition is a state-
of-the-art task, though it has been developed already for more
than twenty years. The task is on high demand in monitoring
systems, human-computer interaction and robotics.

This article describes an action recognition module which
was developed as a one camera based solution. An action is
presented by a space-time volume and described by a movement
history in the neighbouring frames. The history is accumulated
in a static vector-image, called Motion History Image. The pixel
values of the image represent the motion properties.

Thereupon the action representation image is specified by
a shape descriptor. Afterwards a machine learning technique,
in particular the Support Vector Machine, is used to classify
actions. The accuracy of the approach is improved by an
implementation of a buffer to store the intermediate results
for the final decision.

The solution for the visual activity recognition was imple-
mented for the REEM robot with the possibility to be extended
to other robots.

I. INTRODUCTION

Nowadays robotics is a fast developing industry. Even so
the most of the robots are still used for research and study,
there are robots in our daily life, like vacuum cleaner robots,
robot-pets and a big field of robotics aims at the industry
sector. The robot-human interaction, with the perception and
analysis of people behaviour is essential for the robots to
leave the laboratory accommodations and work in a realistic
environment. Visual activity recognition in robotics aims to
help in communication.

The activity recognition application is developed for the
wheeled robot REEM by PAL Robotics. The robot has a
wide range of sensors: microphones, stereo-camera, lasers,
ultrasounds, accelerometers and gyroscopes [1]. REEM is a

Fig. 1: The human-robot interaction with the REEM robot

ROS based robot, the Hydro Medusa version of ROS was
used in this work.

This work was supported by PAL Robotics

A. Related work
Activity recognition can be considered as a process of

frame labelling according to an action in the video sequence
[2]. The process contains two main phases: image repre-
sentation and classification. All the approaches, designed by
representation and classification can be categorized into two
main directions: single-layered approaches and hierarchical
approaches. The single-layered approaches recognize actions
based on a frame sequence. While hierarchical approaches
recognize human activity by a set of simple events.

1) Single-layered approaches: any activity is represented
as a set of images, which can be categorized into classes.
The methods are divided into two groups via human activity
interpretation.

First group is the Space-time approaches which consider
a video as a 3D volume (x, y and time dimensions). An
action can be described by a space-time trajectory here, as
it is made in the work of Sheikh et al. [3]. Space-time
volume is another way to describe an action. In the Temporal
Template method, presented by Bobick and Davis [4], the
volume is described by the neighbour frames difference. Also
Space-Time Features can be extracted from the XYT volume
to describe and recognize an action. Good examples are a
HOG3D descriptor of Alexander Klaser [5], or Ivan Laptev’s
HOGHOF descriptor [6].

Another group of the single layered approaches is sequen-
tial approaches. They consider the action representation as
a sequence of observations (feature vectors). The exemplar-
based recognition approaches of the group compare a se-
quence of features vectors with a template sequence. For
instance, Yacoob and Black [7] consider the input video as a
set of signals and describe only the changes of feature values.
On other hand, the activity can be described as a trained
model, which corresponds to sets of the feature vectors.
Yamato et al. [8] was the first who adopted HHMs from
speech recognition to action recognition.

2) Hierarchical approaches: are suitable for recognition
of a complex high-level activity. These approaches can be
divided into three main groups.

Statistic approaches use statistical state-based models for
the activity representation. Multiple layers of state-based
models, such as HMMs and DBNs, are used in methods to
recognize activities. The good example of the HMMs using
is the approach presented by Oliver et al. [9].

Syntactic approaches use a grammar syntax to describe
an activity. Stochastic context-free grammars (SCFGs) are
widely used in the class of the approaches. For instance, a



method based on SCFGs was proposed by Bobick and Ivanov
[10].

Description-based approaches describe the high-level ac-
tivity by sub-events. For example, the approach presented
by Walterio and Sundaram [11] models human activity by
processing of a global motion in the frame.

All the approaches can be processed offline and online, de-
pending on computational complexity and working platform.
Commonly, offline solutions give more accurate results, but
most of the applications, like a robot-human interaction,
security monitoring and other systems which require direct
reaction, demand online solutions. The huge challenge is to
achieve high accuracy with a real-time solution.

B. Outline of the paper

The goal of the work is to develop an activity recognition
application, which will identify a set of actions in real time.
Hand waving is the most common action, that the REEM
robot faces in events. Therefore the results of the developed
approach are presented for the hand waving activity in the
first place. Nevertheless the chosen strategy is able to scale
up to another actions. The solution must be applicable to
other robots, including robots with a single camera. There-
fore, the algorithm has to work with a monocular camera
only. The most important requirement for the developed
solution is the robustness and real-time processing.

The overview of the developed solution is presented in
Section II. The approach is described in details in Sections
III, V and IV where the Regions of Interest location, the
Action Recognition Module, the Final Decision Module are
described. The experiments are presented in Section VI.
Section VII contains conclusions and future work.

II. ALGORITHM OUTLINE

The developed recognition module describes the space-
time volume by a Motion History Image to recognize an
action. The approach is based on Temporal Template method,
presented by Bobick et al. [4].

The outline of the implemented strategy is presented on
the figure 2. Before the recognition process, to reduce
the amount of processing data and remove most of the
background, the ROI is placed for each frame in a sequence.
A sequence of ROIs is accumulated in a buffer for processing
by the action recognition module.

Fig. 2: Scheme of the activity recognition approach

The activity recognition module contains an action repre-
sentation block and an action classifier. One output of the
classifier is a decision made according to one ROI sequence.

This result is not the final decision about the action. To
increase the robustness of the approach, the classifier outputs
are stored in a buffer, called the voting vector. When the
vector reaches a given size, the voting process takes place to
have the final result.

III. REGION OF INTEREST MODULE

The region of interest (ROI) is detected as a region of
frame where the action is more probable, in other words, the
area where people are. Therefore, people in the frame are
the main target to build a ROI around and the location of a
ROI is defined by a people detector.

The placed ROI is stored in a buffer, because the space-
time approach needs a sequence of frames to recognize an
action. When the amount of people in the frame is more
than one and people move, the ROIs need to be tracked. The
number of buffers is equal to the number of tracked ROIs.

Moreover the size of ROIs changes from frame to frame.
Robustness of the action recognition depends on the stability
of the tracked ROI. The ROI is expected to have a constant
size, as long as it is possible. Meanwhile the position can be
changed in case of people movement.

A. ROI location

The location of a ROI is defined by a people detector.
They can be detected by a full-body detector or by a face
detector, depending on the distance between a robot and a
human.

1) Full-body ROI: the full-body detector based on His-
togram of Oriented Gradients (HOG) [12] integrated in
REEM is used. The HOG descriptor evaluates an image and
describes the shape of it by the distribution of local intensity
gradients. The people detector allows to recognize a human
when the full-body is seen on the frame. The detector runs
at 4 Hz in REEM.

The width of the ROI provided by the person detector
is enlarged by 20%. This extension gives a space for arm
movements (Figure 3a). The full-body detector is applicable
only when the body is seen on the frame completely. For the
cases of a close person location, ROI is built based on a face
detector.

2) ROI based on face detection: the face location is
the main criteria for the ROI position. The face detector
is implemented in a separate node. It uses Haar cascade
classifier for the detection [13].

The size of the calculated ROI is proportional to the face.
The region has 6 times the width and 4 times the height of
the face region. Figure 3b illustrates the ROI.

B. ROI tracking

Position of the moving person is changing from frame
to frame and so the ROIs. To observe an action the ROI is
tracked by its location. A buffer is a storage of tracking ROIs.
Each track has its own slot. According to the coordinates
of the new rectangles center the tracker assigns the ROI to
a slot or creates a new one. The tracker has a threshold
for a position choice. It is a value of an Euclidean distance



(a) The full-body detector based (b) The face detector based

Fig. 3: ROI size and location

between centres of the current and the buffered ROIs. The
value is sensitive to the frame rate, distance to the person
and speed of the people movement.

The tracking of ROIs are not saved directly to the buffer,
but need to be stabilized first.

C. ROI stabilisation

The tracked ROI’s size and position depend on the face
or full-body detectors, so the accuracy of the detection
impacts the ROI position. The ROI location is stabilised to
compensate the frame to frame variation in the detected ROI
size. ROI stabilisation is implemented using the data from
the REEM’s laser sensor.

1) Leg detector: it processes the positions of all the
reached object edges to find possible leg positions. The
proper detection of the leg positions is a sophisticated
task, because characteristics of the leg patterns can be very
contrasting (figure 4).

Fig. 4: Clusters of points from laser range scans which
correspond to person legs [14]

The detector is based on the work of Arras et al. [14]. The
approach uses AdaBoost to train a classifier.

The detected leg positions have to be expressed in image
frame coordinates, to place it on the image and process the
data with the camera data.

2) Leg position projection: the laser frame is 10 cm above
the robot reference frame. The positions can be projected to
the image coordinate system by the intrinsic and extrinsic
matrices as show in eq. (1).

s ·

uv
1

 =

fx 0 Cx
0 fy Cy
0 0 1

 cTLL

X

X

Z

1

 (1)

Where the cTL is the homogeneous transform from the
laser frame to the camera frame and fx, fy and Cx, Cy are
the camera intrinsic parameters considered.

3) Stabilization technique: the stabilization strategy de-
pends on leg positions. The scheme contains three steps
presented on Figure 5.

Fig. 5: ROI stabilization scheme

The leg position is searched in the bottom half of the ROI,
the legs closest to the ROI vertical centre are selected. It is
possible, that the legs are not detected, in this case, the ROI
has the size of the last ROI from the buffer and its own
position.

If the legs position is found, the second step will be to
calculate a difference between the previous position and the
new one. Two values are calculated. The difference between
robot - person distances of the previous ROI position and
the current one, eq. (2). The second value is the distance
between the leg locations in 2D image frame. Euclidean
distance estimates the value eq. (3).

D1 = |d1 − d2| (2)

D2 =
√

(x1 − x2)2 + (y1 − y2)2 (3)

If the differences are less than the thresholds, the position
stays the same, otherwise the position is changed. For the
tracked ROI its size is fixed with the value in the buffer.
The stabilization is needed to achieve activity recognition
by limiting the impact of the surrounding area.

The stabilised ROIs are stored in the allocated spot of the
buffer to be processed by the action recognition module.

IV. ACTION RECOGNITION MODULE

The activity recognition approach is based on the Tem-
poral Template method, where an activity is described by
motion images [4].

A. Temporal Templates

The origin of the method is based on the representation of
a movement by a static vector-image. Each pixel is a vector
value which represents motion properties. The assumption
of the method is that the background is static. Therefore the
action can be registered by a subtraction of a frame sequence.

The temporal template, in general, can be represented
by two types of images: Motion Energy Image (MEI) and
Motion History Image (MHI), see Figure 6.

The MEI is a binary picture. It indicates a region of motion
and is defined as follows.

Eτ (x, y, t) =
τ−1⋃
i=0

D(x, y, t− i) (4)

Where D(x,y,t) is a sequence of binary images which
indicates a region of the motion. In other words, each image



(a) Motion-Energy Image (b) Motion-History Image

Fig. 6: MEI and MHI, buffer size 5 frames, 4 frames/sec

of the sequence is a binary result of the neighbour frames
subtraction. The resulted shape of the Motion Energy Images
blob guidances to estimate the view condition and the action
itself.

The Motion History Image (MHI) is a grayscale image
which shows the way an object moves. The intensity of a
pixel represents the temporal history of the motion at the
pixel position. Pixel H can be presented by

Hτ (x, y, t) =

{
τ, ifD(x, y, t) = 1
max(0, Hτ (x, y, t− 1)− 1), otherwise

(5)
The MHI images provide information about a direction of

the motion.
Motion History and Motion Energy Images can define

variety of movements, describing its direction, area of move-
ment and even point of view.

The original matching method proposed by the authors is
based on the comparison of Hu moments computed for each
components [4].

The method doesn’t require time consuming calculations
and can be run in real-time, so the Motion-History Image
is used as a basis in our work. However a different way
to describe the motion images is adopted and a machine
learning algorithm is used for matching.

B. Solution details

In the implemented approach the Motion History Image
is calculated for a sequence of tracked ROIs. A number
of frames in the sequence defines a depth of MHI (how
many frames will be described by the image). On this
stage a difference of the two neighbour frames is calculated
and transformed into a binary image, using a thresholding
technique. The binary result of the subtraction is used to
update the Motion History Image. One important parameter
of the update is the observation time (duration time), it is the
time interval of the history representation.The observation
time is made flexible to the time step value and the size of
the frame buffer, it is set by the formula (6).

tobs = (Nframes− 2) ∗ timestep (6)

The image normalisation for the thresholding and calcu-
lation of the observation time allows to estimate the proper
Motion History Image. The image is the resulting description
of an action.

The MHI is a gray scale image and it can be represented
by a descriptor. The descriptor has to robustly capture salient
information from the image patch. Histogram of Oriented
Gradients is used for the purpose.

To achieve a constant size of the descriptor for all the
MHIs, each image is resized to a pattern size. After the
resizing the MHIs have size 64x128 pixels for the full-
body ROI and 128x128 pixels for the face based ROI. The
HOG descriptor size is 3780 and 30870 correspondingly. The
HOG descriptors of the Motion History Images is the final
representation of an action.

To compare the HOG descriptors and recognize an action,
the Support Vector Machine (SVM) is used [15]. For the
activity recognition task the binary SVM has two classes:
the descriptors of the action sequences and the descriptors
of the sequences without the action.

V. FINAL DECISION MODULE

Action recognition is a long term continuous process.
When a new person appears in front of the REEM robot,
the ROI buffer takes some time to be filled. After the accu-
mulation process the buffer has enough images to transmit
them to the action recognition module. The ROI’s sequence
is processed and an answer comes up from the recognition
module. Therefore it takes a few frames to have the first
recognition result after a new ROI is localized. Afterwards,
each new frame with the tracked ROI brings one more result.

The process becomes a sliding window along the time
axis, see Figure 7. In the implemented approach, a single
decision (action recognition module output) is not considered
as a final answer. The final decision is made conforming to
a sequence of the frame decisions.

Fig. 7: Time scale of the voting process

The local answers are stored in a buffer, called the voting
vector. When the vector size reaches the fixed value the
decision process takes place. One voting vector is a set of
binary answers (yes or no). The decision process considers a
percentage of the positive answers, Apos , and the last answer
value. When the calculated percentage is higher than a given
threshold and the last answer is positive, the final decision
is positive and the movements are counted as an action.

The last positive answer is an important constraint for
the comparison. It reduces the false positive results, when
a person stops doing an action but is still standing in front
of the robot. In this case, the tracking buffer is still full, that
forces to continue the evaluation process. The voting vector



in turn is filled with the positive answers and even the action
is not recognized any more, the percentage of the positive
answers in the vector is still higher than the threshold and the
final decision is still positive. Hence there is the condition
for the last positive answer that doesn’t happen.

The output answer of the module is the final decision.

VI. EXPERIMENTS

The hand waving is the main action we aimed to detect
in this work. Nevertheless to evaluate the approach and
compare the results of the hand waving with some other
action, the sitting down detection results are also evaluated
in the Section.

A. Activity recognition parameters

There are two important parameters which have a big
influence on the final decision accuracy. The size of the
voting vector defines the number of considered answers and
the threshold of positive values characterizes the needed
percentage of positive answers in the voting vector for the
positive decision.

To tune the parameters a set of tests were run. The dataset
of already tracked ROIs is used for the tests. The results
present the accuracy of the recognition approach without the
tracking part, so they are more stable and the influence of
the parameters is more clear.

1) Voting vector size: it is changed from 1 to 10 answers.
The threshold value is fixed up to 50 %. The data is presented
on the Figure 9a and Figure 9b). The maximum values of the
recall and the precision point to the most accurate solution.

(a) Hand waving action (b) Sitting down action

Fig. 8: Recall and precision for the different voting vector
sizes

According to the plots, the best voting vector sizes is equal
7 for the hand waving action and 5 for the sitting down
action.

2) Positive decision threshold: the parameter is studied
for the voting vector size of 7 answers in hand waving case
and 5 answers in case of sitting down. The threshold is
changed from 0 to 100 percentages. The results are evaluated
by the recall and the precision for each threshold case, Figure
10.

According to the plot, the maximum values of the recall
and the precision are achieved for the 40% threshold value
for both actions.

(a) Hand waving action (b) Sitting down action

Fig. 9: Recall and precision for the different threshold values

B. Accuracy evaluation

The experiments are aimed to test accuracy of the ap-
proach. The results of the experiments are evaluated by the
ROC curve, which presents the correspondence between True
Positive rate (sensitivity or recall) and False Positive rate
(specificity). The closer the curve follows the left and the
top borders of the ROC space, the more accurate the test.
[16].

The tests are run for the created ROI sequences databases.
The ROC curves are built for the four different sizes of the
Voting Vector and the threshold is changed from 0 to 100 %.
The results are presented for the two different actions: hand
waving and sitting down.

(a) Hand waving detection (b) Sitting down detection

Fig. 10: ROC curve for the different voting vector sizes

The test also were run for the ROS bag file datasets. The
files are recordings of the published data in ROS.

The hand wave detector was set up for 7 answers in the
voting vector and 40 % threshold in the decision process.
The results are presented in the table I.

TP TN FP FN TP rate FP rate
18 19 3 3 0.857 0.136

TABLE I: Results of the waving action dataset. Voting vector
size = 7, threshold=40%

The sitting down detector was run for the 5 answers in the
vector size and the threshold 40%. The results are presented
in the table II.

True Positive appears when at least one positive result is
detected during the hand waving action (5 seconds). False



TP TN FP FN TP rate FP rate
5 8 2 6 0.5 0.2

TABLE II: Results of the sitting down action dataset. Voting
vector size = 5, threshold=40%

Negative is defined when no positive answers are detected
during the hand waving action (5 seconds). False Positive is
the detected hand waving when there was no hand waving
action. True Negative appears when no positive results are
found for not-waving action.

C. Discussion

The tests were run for ROI sequences and ROS bag files
databases. The ROI sequences allow to test the accuracy of
the implemented approach and define an influence of the
parameters. The values of the ROC curves are above the
guess line, therefore the approach is applicable for the hand
waving as well as for the sitting down action recognition.

The running tests with the rosbag datasets consider influ-
ence of the ROI allocation and tracking on the final decision.
The results for the hand waving is more accurate comparing
to the sitting down action results.

The sitting down and hand waving actions are different
in the way of movement. The hand waving action is using
hands only, it can be characterised as a gesture. While the
sitting down is the movement of the whole body. Hence the
experiments show that the developed approach is applicable
for both type of activities.

VII. CONCLUSIONS AND FUTURE WORKS

The developed approach is based on the Temporal Tem-
plate representation of movements. An action is represented
as a space-time volume and projected by the Motion His-
tory Image (MHI). Histogram of Oriented Gradients (HOG)
descriptor characterises the image. The classification task is
solved by a Support Vector Machine.

Before the action recognition process, Regions of Interest
(ROI) are located for each frame in the sequence. The ROI
is defined according to a data from the full-body and the
face detectors. The regions are tracked and stabilized using
a data from the leg detector and the buffer which contains
previous ROI positions.

The solution is integrated inside a ROS-based environment
and it can be ran in real time on the REEM robot. An action
can de detected after 3 seconds of observation, assuming that
the ROI is detected correctly.

Two types of actions were considered to test the approach
on the robot: hand waving and sitting down. The set of
experiments were run to define correct values of the voting
vector size and the threshold for the final decision. Those
parameters are different for the actions, while the observation
time parameter, which defines the Motion History Image is
set automatically and doesn’t depend on the action type.

The accuracy of the action recognition module was inves-
tigated with the different parameter sets. The results for both
actions show good accuracy.

The proposed method can be migrated as a visual activity
recognition module to different robots, on conditions that the
robot is equipped with at least one camera.

In spite of the positive results there are drawbacks of the
solution. First of all, the number of the possible recognisable
actions are limited by the Temporal Template method. To
leave out the limitation the concept can be extended to a
combination of the simple actions. For instance, the com-
bination of MHI can describe more sophisticated actions,
versus the presented solution.

Moreover the activity recognition application is con-
structed by modules, so there is a possibility to use another
action representation, instead of the Temporal Templates.
Depending on the representation, the solution can achieve
higher accuracy and be able to detect more actions.

The approach can be also improved by the background
subtraction in advance to the Region of Interest detection.
The algorithm can be extended to use depth information. As
REEM has a stereo camera, the depth image provided by
dense stereo could be used to filter out the background in
the Regions of Interest.
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Sparse Coral Classification Using Deep Convolutional Neural Networks

Mohamed E. Elawady, Neil M. Robertson, and David Lane

Abstract— Autonomous repair of deep-sea coral reefs is a
recent proposed idea to support the oceans ecosystem in which
is vital for commercial fishing, tourism and other species. This
idea can be operated through using many small autonomous
underwater vehicles (AUVs), swarm intelligence techniques, and
machine vision algorithms to locate and replace chunks of
coral which have been broken off, thus enabling re-growth and
maintaining the habitat. We present an efficient sparse classifi-
cation for coral species using supervised deep learning method
called Convolutional Neural Networks (CNN). in which it is
evaluated using computation of Weber Local Descriptor (WLD),
Phase Congruency (PC), and Zero Component Analysis (ZCA)
Whitening to extract shape and texture feature descriptors,
which are employed to be supplementary channels (feature-
based maps) besides basic spatial color channels (spatial-based
maps) of coral input images from two different coral datasets
(University of California San Diego’s Moorea Labeled Corals,
and Heriot-Watt University’s Atlantic Deep Sea), we also
experiment state-of-art preprocessing underwater algorithms
for image enhancement and color normalization and color
conversion adjustment.

I. INTRODUCTION

Coral reef ecosystems provide for over half a million
people: they create substantial socioeconomic benefits from
tourism and fisheries while providing coastal protection, en-
hancing biodiversity and contributing to carbon sequestration
that mitigates global warming [1], [2]. Global conservation of
reefs and their resources in a world characterized by multiple
stressors and disturbances will require unified efforts to
create international marine and climate policies alongside
local adaptive community management tools [3].

A. Coral Threats

Based on mid-90’s statistics [4], 10% of coral reefs
were destroyed and can’t be recovered again, and there are
only less than 30% healthy coral reefs around the world.
Figure 1 shows human activities that threaten the coral reefs
around the world starting from Caribbean coast of Atlantic
ocean; passing through east Africa coast & Red sea; ending
to central part of Pacific ocean, those activities involve
coastal development (sun blocking from eroding soil over
aquatic world), underwater pollution (oil, gas, and mineral
exploration & extraction), destructive fishing methods (very
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popular in south Pacific and southeast Asia using poison
fishing and dynamite fishing), and unsustainable tourism (i.e.
touching during diving sessions), such that they damage both
cold deep and warm shallow corals physically and don’t
allow them to grow again or recover in decades [5], [6].

Fig. 1: Threads to Coral Reefs [5]

B. Coral Transplantation

Some types of coral reef have a slow survival ability for
recovering or re-growth using small healthy coral wreckage
resulting their artificial coral colony after some decades.
Possible strategies are provided for coral gardening through
involvement of SCUBA divers in coral reef reassemble
and transplantation. Although, some limitations (restricted
time and depth per diving session respect to human abil-
ities) are introduced a small survival rate in transplanted
corals (especially cold sea corals due to their deep depth
conditions). Coral ecologists investigate new robot-based
strategy in deep-sea coral restoration in such that autonomous
underwater vehicles (AUVs) grasp cold-water coral samples
and replant them in damaged reef areas. Successful trans-
plantation trail [7] is already occurred in 2008 for cold-water
coral Lophelia (at 82m water depth) in Kosterfjord, Sweden.

As deployment of single AUV operation is time limited.
Inspired from behavioral of natural swarms of insects (bees,
wasps and termites) in building complex colonies, team
of marine biologists and robotics experts introduced an
innovative underwater project ’coralbots’ to speed-up the
regenerated coral process using intelligent swarms of inter-
connected AUVs. Proposed work consists of two stages:
offline data training and online identification. offline training



will be on surface workstation for fast computation and long
execution time which extracts features from coral-labeled
images besides spatial information and then apply deep
learning process (supervised, unsupervised, or hybrid) to get
well-trained parameters for further successful classification.
However, online identification will be on remotely operated
underwater vehicle (ROV) which collect images from several
AUVs and find out which species are included, and detect
their coordinates in real-time processing for further coral
transplantation.

II. RELATED WORK

This chapter discusses most-recent research in classifica-
tion for coral species using optical camera sensors, then ex-
plains convolutional neural networks (deep learning method)
as a feature extraction and classification technique.

A. Coral Classification

Marcos [8] developed an automated rapid classification
(5 classes: coral, sand, rubble, dead coral, and dead coral
with algae) for underwater reef video, he used color features
based on histogram of normalized chromaticity coordinates
(NCC) and texture features from local binary patterns (LBP)
descriptor, those features feed into linear discriminant anal-
ysis (LDA) classifier. In case of using more classes [9],
his method output inaccurate classification. Strokes [10]
described an automated algorithm for the classification of
coral reef benthic organisms and substrates which divides
image into blocks, then finds distance between those blocks
and identifies species blocks based on color features (nor-
malized histogram of RGB color space) and texture features
(radial samples of 2D discrete cosine transform) by using
inconvenient distance metric (manually assigned parame-
ters) after unsuccessful results of well-known mahalanobis
distance. Beijbom [11] introduced Moorea Labeled Corals
(MLC) dataset and proposed multi-scale classification algo-
rithm for automatic annotation, he developed color stretching
for each channel individually in L*a*b* color space as
pre-processing step, then used Maximum Response (MR)
filter bank approach (rotation invariant) as color and texture
feature, followed by applying Radial Basis Function kernel
(RBF) of Support Vector Machines (SVM) classifier, this
method seeks all possibilities (time-consuming) to find a
suitable patch size around selected image points for species
identification.

Rather than depending on human-crafted features to get
a proper coral classification, the proposed work decides
letting the feature mapping to be done automatically by deep
convolutional neural networks regardless to any under-water
environment condition. by feeding new images, the network
can learn and adapt the constructed feature maps respect to
desired class outputs.

B. Convolutional Neural Networks

Traditional architecture firstly extracts hand-designed key
features based on human analysis for input data, secondly

Fig. 2: Difference between shallow traditional and deep
modern classification architectures

applies those features in form of data vectors to generic clas-
sifier in order to get predicted target classes (in other words,
classifier is totally dependent on how features constructed
not input data). Deep architecture trains learning features
across hidden layers; starting from low level details (i.e.
edges, corners) up to high level details (i.e. shape, texture);
to get better data representation for simple classifier (please
see figure 2 for graphical details).

A convolutional neural network (CNN) [12], [13] is a type
of feed-forward back-propagation neural networks respect
to biological-based visual processes. it consists of trainable
multiple convolutional stages [14], in which input and out-
put of each stage are variant representation of one/multi-
dimensional array (i.e. 1D for audio, 2D for image, 3D
for video, ...), the output data is learned to extract high-
receptive features from all sides of input one. A typical CNN
is composed of two or three hidden stages, followed by a
classification layer. LeCun presented first back-propagation
CNN entitled ”LeNet-5” for handwritten digit recognition,
which is a large network which contains 6 layer hidden
layers whose its input is 28x28 input image of single hand-
written character and its output is multi-invariant feature map
of input character.

Each hidden stage/layer consists of four steps: train-
able convolution, non-linearity activation, contrast normal-
ization, and pooling/sub-sampling. Convolution filters an
input map into translation-invariant maps with different train-
able weights and biases, Non-linear activation function (i.e.
hyperbolic, sigmoid, ) adds independent relationship within
objects inside, contrast normalization keeps output maps in
pre-defined range measures, final feature map is subsampled
or max-pooled from output maps of the last stage (make it
small in size to further faster calculation in next layers).

III. METHODOLOGY

The proposed classification framework (as shown in fig-
ure 3) contains three main levels (input layer, hidden layers,
output layer). Input layer consists of three basic channels
of color image plus extra channels for texture and shape



Fig. 3: Architecture overview of proposed CNN

descriptors consisting of following components: zero com-
ponent analysis whitening, phase congruency, and Weber
local descriptor (as shown in figures 4), and preprocessing
step (color correction/enhancement, smoothing filter) can be
applied for further classification improvement. Hidden layers
contains one or more layer(s) [usually 2 or 3] in which
each layer consists of convolution layer followed by down-
sampling layer in such way that the network can find suitable
weights of convolutional kernel and additive biases. Almost
first layer represents feature extraction by finding visual
strokes, edges, and corners, and up-coming layers starting
from second layer show how those features can combine in
different aspects to get a discriminative output map for each
target class. Output layer acts as a classification layer and
symbolize reconstructed maps from last hidden layer into
binary vector (placement of number one in specific element
corresponding to desired class and number zero in the rest
elements).

Fig. 4: Example of feature maps for Crinoid coral using
ADS dataset

A. Preprocessing
1) Hybrid Patching: Three different-in-size patches are

selected across each annotated point (61x61, 121x121,
181x181), then unified size scaling step is applied to those
patches by scaling them up to size of the largest patch
(181x181) allowing pixel randomization (blurring) in inter-
shape coral details and keeping up corals edges and corners
(please see figure 5), or scaling them down to size of the
smallest patch (61x61) for fast classification computation
over small data representation of different scaling selections.

Fig. 5: Example of hybrid patching

2) Zero Component Analysis Whitening: Zero Component
Analysis (ZCA) whitening [15] makes data less-redundant
by removing any neighboring correlations in adjacent pixels
in such that output data removes amplitude information
and keeps recognizable edges. it stimulates image scanning
retinal process which decorrelates similar intensity values
of contiguous pixels (high correlated adjacent pixels) after
few moments of eye-focusing. It requires one smoothing
parameter (very small number) preventing division of zero in
its calculation with respect to tiny eigenvalues which leads
to a better-visual output features (dispatching off the inter-
process aliasing artificats).

3) Weber Local Descriptor: Weber Local Descriptor
(WLD) [16] is inspired from psychological law in 19th
century “Weber’s Law” and represents human perception of
a pattern depending on ratio between change in image pixel
and original pixel value. it consists of two components: dif-
ferential excitation and orientation. The differential excitation
component computes the salient micro-patterns relative to
nearby neighboring pixels by calculating a function of the
ratio between ratio between the relative intensity differences
of a current pixel against its neighbors and the intensity of the
current pixel. The orientation component constructs statistics
on the computed salient patterns along with the gradient ori-
entation of current pixel by building histograms of dominant
orientations. This method shows a robust edge representation
of high-texture images against high-noisy changes in illumi-
nation of image environment. WLD has proven promising
results in different object recognition issues [17], [18], [19].

4) Phase Congruency: Phase Congruency [20], [21] rep-
resents image features in such format which should be high
in information and low in redundancy using Fourier trans-
form, rather than set of edges (sharp changes in intensity).
in other words, Phase Congruency [22] is a dimensionless



measure for the of a image structure independently of the
signal amplitude which is based on Kovesi’s work [23].
Those features are better than gradient-based features which
are fully invariant to image illumination and contrast, and
also partially invariant to scale and rotation transformation
in case of application of suitable normalization process in
frequency domain [24].

B. Network Architecture

1) Kernel weights & bias initialization: The network [25]
initializes biases to zero, and kernel weights using uniform
random distribution using the following range:

rng = ±
√
6 ∗ (fin ∗ fout).
fin = Nin ∗K2.

fout = Nout ∗K2.
(1)

where Nin and Nout represent number of input and output
maps for each hidden layer (i.e. number of input map for
layer 1 is 1 as gray-scale image or 3 as color image), and k
symbolizes size of convolution kernel for each hidden layer.

2) Convolution layer: Convolution layer constructs output
maps by convoluting trainable kernel over input maps to
extract/combine features for better network behavior using
the following equation:

xlj = f(
∑
iεmj

[
xi
l−1 ∗ klij + blj

]
). (2)

where xi
l−1 & xlj are output maps of previous (l − 1) &

current (l) layers with convolution kernel numbers (input i
and output j), f(.) is activation function for calculated maps
after summation, and blj is addition bias of current layer l
with output convolution kernel number j.

3) Down-sampling layer: The functionality of down-
sampling layer is dimensional reduction for feature maps
through network’s layers starting from input image ending to
sufficient small feature representation leading to fast network
computation in matrix calculation, which uses the following
equation:

ylj = hn(
l∗xlj). (3)

where hn is non-overlapping averaging function with size
nxn with neighborhood weights w and applied on convoluted
map x of kernel number j at layer l to get less-dimensional
output maps of kernel number j at layer l (i.e. 64x64 input
map will be reduced using n=2 to 32x32 output map).

4) Activation function: The logistic (sigmoid) function
which is the most common activation function for classical
neural networks and very useful in gradient decent training
due to existence of function’s derivatives. the function’s
equation is as follows:

f(x) =
1

1 + e−βx
; [−∞,+∞]⇒ [0, 1]. (4)

where input x can be infinite value, and output f(x) will be
in bounded range [0,1].

5) Learning rate: Inspired from Lawrence’s convergence
learning rate in CNN application for face recognition [26],
an adapt learning rate is used rather than a constant one with
respect to network’s status and performance as follows:

αn = g(
αn−1

[n/ (N/2)] + 1
+ en). (5)

where αn & αn−1 are learning rates of current & previous
iterations (if first network iteration is the current one, then
learning rate of previous network iteration represents initial
learning rate as network input), n & N are number of current
network iteration & total number of iterations, en is back-
propagated error of current network iteration, and g(.) is
linear limitation function to keep value of learning rate in
range (0, 1].

IV. RESULTS

This section shows the results of sparse classification with
hybrid patching around annotated points using convolutional
neural networks initially referring to Palm’s toolbox for
deep learning [14], in which it discusses results for best
configuration selection, and shows output representation of
the proposed method with respect to selected configuration.

A. Evaluation Metrics

There are many popular assessment methods for quanti-
tative measures in classification problems. The statistics of
confusion matrix (contingency matrix)[?] is general quanti-
tative representation of relationship between target classes
and algorithm output classes, resulting of some important
accuracy quantities (overall accuracy “OA”, precision, recall,
sensitivity, specificity, and F-score). training and test errors
are also used to validate classification performance over
different selection of network parameters.

B. Network parameters

Finding best network architecture and validating its per-
formance needs to compare quantitative results with keeping
the rest network parameters constant (size of hybrid input
image = 181x181, number of output classes = 9, number of
samples per class = 300, normalization method = min-max
with in range [-1,+1], initial learning rate = 1, network batch
size = 3, and ratio of training/test sets = 2:1).

C. Experimental Results

In large-scale experiments of 50 network epochs, testing
phase of MLC dataset has almost the same results across
different configurations as shown in figure 6a, but training
phase starts converging to correct target classes by increasing
number of hidden output maps (12-24) and using additional
feature-based maps as supplementary channels. Using ADS
dataset in figure 6b, testing phase has best significant ac-
curacy results with same selected configuration for MLC
dataset.

Sub-figures 7a, 7d represent confusion matrices for MLC
and ADS dataset, in which rows & columns represent the
assignments of target classes & predicted output classes



(a) MLC dataset (b) ADS dataset

Fig. 6: Comparison of network architecture

respectively. In MLC dataset, the highest classification rates
are for Acrop (coral) and Sand (non-coral), and the lowest
classification rates are for Pavon (coral) and Turf (non-
coral), where misclassification occurred outputting Pavon as
Monti/Macro and Turf as Macro/CCA/Sand due to similarity
in their shape properties or growth environment. However in
ADS dataset, non-corals has better classification rate then
corals, where DRK (non-coral) has almost perfect classifi-
cation rate due to its distinct nature (almost dark blue plain
image), LEIO (coral) has excellent classification rate due to
its distinction color property (orange), and LOPH (coral) &
ENCW (coral) has lowest classification rates due to their
color confusion with each other & with BLD (non-coral).

Sub-figures 7b, 7e show the evolution of training and test
errors in MLC and ADS datasets across network epochs,
such that the proposed method’s errors have better conver-
gence curves (almost half) with ADS dataset over MLC
dataset. From epoch 30 in MLC dataset, increased gap
starts to appear between training and test errors leading to
algorithm over-fitting over training data. From epoch 35 in
ADS dataset, training and test errors are almost stagnant
(no major improvement) with respect to typical evolution
of neural networks. MLC and ADS datasets have similar
evolution curves (Sub-figures 7c, 7f) for learning rate across
presented network epochs.

V. CONCLUSIONS AND FUTURE WORKS

The proposed framework presented first investigation of
deep learning techniques (especially convolutional neural
networks) in a supervised sparse-based classification method
for coral species, investigated computation of supplementary
channels (feature-based maps) besides basic spatial color
channels (spatial-based maps) to act as coral input data,
introduction of new coral-labeled dataset “Atlantic Deep
Sea” representing cold-water coral reefs, and hybrid image
patching procedure for multi-size scaling across different
square-based windowing around labeled points. Although,
the implementation of classification method lacks fast perfor-
mance of proposed algorithm and handling large-sized input
data.

Future work of proposed method will cover avoiding
information loss of dimension reduction for convolutional
neural networks, composition of multiple deep convolutional
models for N-dimensional data, development of real-time
image/video application for coral recognition and detection,
code optimization and improvement to build GPU computa-
tion for processing huge image datasets and edge enhance-
ment for feature-based maps, finally intensive nature analysis
for different coral classes in variant aquatic environments.
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I. Introduction
Growing popularity of the scene reconstruc-

tion from image resources available online in-
fluenced not only the scalability of the solu-
tions as in for example [10] and [1], but also
quality of obtained scenes. In one of the most
recent works by Shan et al. [7] the quality
of their reconstruction was tested with use of
Amazon Mechanical Turk, where people were
presented with real photo and image taken
from the model. Then they had to choose the
one that is more realistic, according to their
perception. Surprisingly at low resolutions re-
sults were quite impressive in favor of the
reconstructed model.

Taking all this into consideration, one can
find multiple possibilities given by this form of
scene reconstruction. Constructing real world
levels for gaming industry, 3D scene moni-
toring, 3D localization using images just to
name few. One of the most intuitive is creating
3D maps, which is already a quite common
application of this techniques. Looking into
the future, 3D maps are most probably the
next step in the domain of world mapping.
This is especially important in the case of
documenting world heritage, such as famous
buildings and monuments that might change
or be destroyed in time. That is why efficient
techniques in temporal changes detection are
of very high importance for the development
of this domain. And this is one of the main
problems discussed in this work.

II. Related works
Although the large-scale reconstruction do-

main is still relatively young research direc-
tion, there have already been presented some
promising algorithms that deal with detection
of scene changes over time. One of the early
works on this topic was done by Schindler et
al. [6]. In their approach they try to proba-
bilisticaly infer temporal order of images, based
on the detected features in the available set.
They continued their aproach in [5], where the

framework is applied to reconstructed point
cloud and the inference is based on occlusions
between objects present in the scene. These
solutions provide good framework for order-
ing the data with respect to time dimension,
however require at least some amount of in-
formation about when the images were taken.
It also does not address directly the problem
of changes detection and their representation.
Taneja et al. [8] presented an algorithm that
explicitly deals with detecting and present-
ing the changes in urban enviroment. They
use the reconstructed model to project points
from old images, to new images creating an
inconsistency map. The energy minimization
approach is then used to remove redundan-
cies and also to include semantic knowledge
about objects, that should not be considered
in the algorithm, such as cars for example.
This technique gives quite impressive results
with good scalability and was used in their
later work [9], to locate changes in city-scale
models. Sakurada et al. [4] uses image pairs
from two different time stamps to compute per
pixel change in depth. They obtained very high
accuracy of the detection however the scala-
bility of the solution might be questionable,
due to their image registration technique that
requires high number of new images and per-
forming additional reconstruction. One of the
main challenges in change detection for large-
scale reconstruction is measuring the accuracy
of the solution, where sometimes it might be
hard to define what the change really is. Solu-
tions by Schindler and Taneja might perform
well for large geometrical changes, while work
presented by Sakurada is able to detect rela-
tively small differences in the scene. Even more
important is the scalability of the solution,
that has to be taken into consideration given
the characteristics of reconstruction from large
databases. In this work image-based algorithms
will be presented, that aim for high scalability,
but also to recover underlying data as in case
of Partial Sum Minimization algorithm.
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III. Methodology

A. General process pipeline

Given the set of images Io taken at time
t0, scene is reconstructed using PMVS. In the
result of the reconstruction we obtain a file con-
taining all information regarding reconstructed
model. This file serves as an input to the sys-
tem along with a text file containing directories
of q new images from set I1 registered at time
t1. Once the system is feed with the input first
step is to register new set of cameras. This is
done by running the SfM process again with
position of old cameras fixed. This way we
obtain positions of new cameras with respect
to the scene coordinate frame. Moreover as a
side product of the process, matches between
images in sets I0 and I1 are found. At this
point, in order to perform image based change
detection, K ∈ {1...n} nearest neighbors for
each image in set I1 have to be computed.
In case where matches between images are
not known, this can be done efficiently with
use of Kd-Tree structure. However given the
matches between both sets we can determine
the nearest neighbor j ∈ I0 of image i ∈ I1,
as the image with highest number of features
corresponding to i. In the result we obtain set
Up where p = {1...K ∗ q}, of pairs of new
images with corresponding nearest neighbors.
After computation of the nearest neighbors for
new cameras we can proceed to the step of
change detection. Different algorithms applied
for this step are described in details in later
sections. The detection step produces a change
mask which then has to be projected on the
model in order to provide spatial change infor-
mation. Different mask projection techniques
are presented in the consequent section. This
general process pipeline is presented on figure
1.

B. Change mask projection

The approach of determining temporal
changes of spatial model using 2D image space,
raises the problem of projecting the change in-
formation back to 3-dimensional space. Follow-
ing subsections describe different methods used
to solve this problem in this project. First two

Fig. 1. The general change detection process pipeline.
Optional energy minimization step was marked with
gray color.

methods deal with the projection where corre-
spondence between images and the 3D model
is unknown, while the third method leverages
information about correspondence between im-
age features and 3D model points. In all cases
we assume set of 2D binary change masks Cp

where Ci is a mask obtained from the pair Ui

and i ∈ p. We define set of 2D points xp so that
point (x, y)iv ∈ xp ⇐⇒ Ci(x, y) > 0, where v
is the number of elements in Ci.

1) Projection by triangulation: Given a 2D
binary change masks Ci and camera param-
eters for the image pair Ui , we can use tri-
angulation in order to compute change points
position in 3D space. First we extract set xi1.
Next we compute homography between image
pair and project the change mask to the second
image in the pair. We extract coordinates xi2
from binary mask on second plane. This gives
us two sets of corresponding points on two
camera planes with known parameters. In the
last step we use RANSAC method in order to
find final 3D points coordinates.

2) Projection by ray shooting and voxeliza-
tion: Using the reconstructed model point
cloud, one can determine the changes by shoot-
ing outward rays from the change mask plane
onto the 3D model and find points of intersec-
tion. In case of water-tight mesh resulting from
for example Poisson Surface Reconstructien on
PMVS point cloud the change point on the
model is determined by intersection of the
ray with the mesh. In case of using surface-
less model, we use point cloud voxelization
which gives a possibility to approximate area
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of change in the model and find intersection
with voxels where it would be immpossible for
the case of point cloud. Given a binary change
mask Ci first we extract detected points xi.
The direction of the ray on which lays the
projection of the change point can be easily
determined by using the camera matrix to
back-project 2D point into 3D space. Once this
direction is known we look for the intersection
with voxel grid bounding box. When the point
of intersection and corresponding voxel is de-
termined, the fast voxel traversal algorithm [2]
is applied in order to find first occupied voxel
which is then considered as the changed space.
3) Projection using feature correspondence:

If we are given with set of 2D features and their
3D correspondences as in the case of the output
of SfM, the problem of change mask projection
can be simplified to determining which 2D
feature falls into change mask on the image
plane. Then knowing the corresponding point
in 3D model we can show exactly the parts that
have changed.

C. Algorithm 1 - image absolute difference
In image change detection domain the sim-

plest and most intuitive technique is to sub-
stract one image from another and take the
absolute value of the result to avoid negative
elements. Although the approach is prone to
errors it is still widely used. The advantage
in case of considered problem is that image
difference is computed for multiple pairs of
images representing the same scene. Therefore
increased number of data can be used to over-
come the downsides that come with this simple
technique. Having the image pair Ui and the
computed corresponding features we find the
homography between images i ∈ I0 and j ∈ I1.
Next we perform perspective transformation of
the image j in order to align it with image i
and we compute the absolute difference. We
apply inverse perspective transformation to the
resulting matrix in order to get rid of outlier
areas resulting from transformation.

D. Algorithm 2 - feature grouping
The output of this change detection algo-

rithm is composed of two group of features

for considered local part of the model. First
group consists of features that are detected and
matched in set of old images in the considered
area. Second group contains features that are
detected and matched in all new images. The
contraints for both groups are that the point
will be counted as a change only if it appears
in all images in given set.

E. Algorithm 3 - partial sum minimization
The last technique is based on work of Tae

Hyun Oh [3] on Partial Sum Minimization
approach for solving RPCA. The approach
for the detection is the same as in the case
of algorithm 1, with the difference that new
images and computed neighbors are input to
PSM solution in matlab. Once the error matrix
E is computed, we convert it into a binary
mask by setting to maximum all the values
greater than zero.

F. Energy minimization
For the purpose of energy minimization we

create an octree from the point cloud obtained
in SfM process. The data term for each voxel
is determined as follows:

Di(Li) =
{

1 background
α ∗ ci change

Where ci is number of change points in
the voxel. The edge potential between voxels
Vi(i, j) is determined in following way:

Vi,j(Li, Lj) =
{

1 if cj > 0 or ci = cj

0 otherwise

For each voxel a 26-neighborhood is used.
Then the optimization problem is solved with
use of Kolmogorov-Boykov algorithm.

IV. Results
The change detection solutions were tested

on 3 different datasets for which ROC curves
were plotted. In order to compute True Positive
Rate and False Positive Rate the the kd-tree
was used. For each point in 3D change mask
after energy minimization, we were looking for
nearest neighbor from the GT point cloud. If
the squared distance between this pair was
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Fig. 2. ROC curve for IAD technique and Shelf
dataset.

smaller than the threshold, the point was clas-
sified as true positive and false negative other-
wise. The threshold was determined by average
distance between points in the GT cloud. The
values were computed for different parameters
of K and α (section III-F). In all cases the
change mask was projected on the model with
use of point correspondence projection tech-
nique that yielded the best results. Figures 2 to
5 present ROC curves for different techniques
and datasets. Figure 6 and 7 present time
performance of developed solution. Figure 8-
11 present exemple of the solution visualization
for the KAIST campus dataset.

V. Conclusions
The main focus of this work, was the time

dimension in form of changes detection in
scenes reconstructed with SfM solutions. Three
different techniques were implemented for this
purpose including novel approach, with use
of Robust Principal Component Analysis and
results were evaluated quantitatively. The con-
sidered task was a very complex and chal-
lenging problem, due to the size of the whole
process. Multiple factors along the change de-
tection pipeline necessitate handling signifi-
cant amount of parameters and accounting for
number of possible errors in each step. This
becomes even more difficult when the goal
is a fully autonomous solution. Although the
scalability of presented implementations is rel-
atively good considering the time performance,
the accuracy of presented algorithms related to
the time dimension is in many cases far from
desired. Best performance can be noticed for

Fig. 3. ROC curves for feature grouping technique in
Hall and Shelf dataset.

Fig. 4. ROC curve for feature grouping technique in
KAIST dataset.

feature grouping algorithm. The IAD and PSM
algorithms required computing the homogra-
phy which, given specific characteristics of the
problem, failed very often producing erroneous
results. Nevertheless this work makes a an
additional contribution through open software
developed in the process of this project. It
hopefully will help future researchers to avoid
extremely time expensive implementation and
also allow to be more rapidly introduced into
the domain. The software allows to focus solely
on the step of change detection, where different
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Fig. 5. ROC curves for PSM in Hall and KAIST
dataset.

Fig. 6. Time performance for model initialization,
SIFT feature extraction from new images and match-
ing with old model.

Fig. 7. Time performance of change detection algo-
rithms for different datasets and values of parameter
K.

Fig. 8. KAIST dataset dense reconstruction.

Fig. 9. Detected change points in red color.

Fig. 10. Green points are the cloud resulting from
energy minimization.

Fig. 11. Blue points present ground truth cloud.
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approaches can be easily added and quantita-
tively evaluated.
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Abstract— Images from Positron Emission Tomography
(PET) deliver functional data such as perfusion and metabolism.
On the other hand, images from Magnetic Resonance Imaging
(MRI) provides information describing anatomical structures.
Fusing the complementary information from the two modality
is helpful in oncology. In this project, we implemented a
complete tool allowing semi-automatic MRI-PET registration
for small animal imaging in the preclinical studies. A two stage
hierarchical registration approach is proposed. First, a global
affine registration is applied. For robust and fast registration,
principal component analysis (PCA) is used to compute the
initial parameters for the global affine registration. Since, only
the low intensities in the PET volume reveal the anatomic infor-
mation on the MRI scan, we proposed a non-uniform intensity
transformation to the PET volume to enhance the contrast of
the low intensity. This helps to improve the computation of
the centroid and principal axis by increasing the contribution
of the low intensities. Then, the globally registered image is
given as input to the second stage which is a local deformable
registration (B-spline registration). Mutual information is used
as metric function for the optimization. A multi-resolution
approach is used in both stages. The registration algorithm is
supported by graphical user interface (GUI) and visualization
methods so that the user can interact easily with the process.
The performance of the registration algorithm is validated by
two medical experts on seven different datasets on abdominal
and brain areas including noisy and difficult image volumes.

I. INTRODUCTION

The use of small animal models in preclinical studies con-
stitutes an integral part of testing new pharmaceutical agents
and exploring new biological functions[11]. The mouse and
the rat are the most widely used animals in medical research
because of their small size, rapid breeding, and genetic
similarities to humans; and they host a large number of
human diseases[31]. Traditional model studies require the
animals to be sacriced, prohibiting repeated studies with
the same animal[7]. However, with the increased availability
of imaging technologies originally developed for human
medical diagnosis, it is now possible to study both anatomy
and biological processes in the mouse repeatedly and non-
invasively[7].

Each medical imaging modality has its own advantages
and limitations and acquired information is actually com-
plementary between them[11]. Consequently, multimodal
approach is used to reveal both anatomical (MR or CT)
and functional (PET, SPECT, or optical imaging) infor-
mation. Alignment of these images requires the use of
multimodal registration methods[7]. Among all combinations

of modalities, PET-CT and PET MRI are the most mature
combinations. However PET-CT has shortcoming due to
the significant radiation dose to the small animal contribute
by CT and MRI offers better contrast among soft tissues
compared to CT [20]. As a result, PET-MRI which offers
the combination of high resolution, soft tissue, anatomical
information of MRI, and high sensitivity of PET[11] is
a promising combination in preclinical research and will
certainly progress to clinical application[20]. The common
small animal biological studies involving PET and MRI
acquisitions are tumour imaging, brain imaging and cardio-
vascular imaging [8].

Numerous works has been done to register MRI-PET
images. Woods et al.[29] developed automatic MRI-PET
registration of human head of the same person by mini-
mizing the standard deviation of the PET pixel values that
correspond to each MRI pixel value. They suggested to
exclude the non-brain structures of MRI images (scalp, skull,
meninges) before applying the registration algorithm. Col-
lignon et al.[6] used the concept of information theory to de-
velop automatic multi-modality image registration for human
head images and the mutual information (MI) of gray value
pairs is proposed as new matching criteria. Pluim et al.[21]
used combined mutual and gradient information to improve
registration of multimodality. The algorithm was evaluated
for human brain MRI-PET registration task. Ardekani et
al. [2] presented an automatic algorithm for multimodality
image registration that relied on minimizing the K-means
variance criterion. Non-rigid registration methods have also
been proposed for specific objects outside the head such
as registration of abdomen, breast, lung. Mattes et al.[17]
combined a rigid body deformation with localized cubic B-
splines to capture the significant non-rigid motion in the chest
between PET and CT images, using the mutual information
as a similarity criterion. Rueckert et al. [7] used a non-rigid
registration algorithm for breast MR images. They model
the global motion with an affine transformation and describe
the local breast motion with a free-form deformation (FFD)
based on B-splines.

However, the methods reviewed above have been mostly
applied to human images and later they start to be applied to
small animal images. Vaquero et al. [27] investigated the
MRI-PET registration algorithms developed by Woods at
al.[28] and Collignon et al.[6] to register PET images to
CT or MR images of the rat skull and brain. The latter was



found to be more robust algorithm than the former method.
Hayakawa et al. [23] modified the algorithm proposed by [2]
to register PET and MR images of rat brains. Bernier et al.
[4] proposed parallel multi-resolution and PCA initialization
for MRI-PET registration of small animal bones. As many of
the previous works on small animal MRI-PET registration are
focused on the head and bones, i.e a rigid body registration,
the non-rigid registration problem remains more open and an
active area of research.

In this project, we introduce a new method to the work
of Baisa[3]. A two-level hierarchical registration is proposed
where in the first level a global affine registration is used
to bring the volumes into alignment and then a local B-
spline (elastic) registration is performed in the second level.
In PET images, only the low intensities reveal the anatomical
structure in MRI scan. Consequently, focusing on the PET
range of intensity which reveal the anatomic structure in
MRI will help to align the images perfectly. We apply a
non-linear intensity transformation to the PET volume to
enhance the contrast of the low intensity. The computation of
initial parameters using PCA and the process of finding the
optimal global affine transformation is performed using the
intensity transformed PET. Then, the original PET volume
is transformed using the final optimal global affine transfor-
mation matrix and given to the local registration as input.
Moreover, we develop a visualization and GUI support for
the registration algorithm so that the user can interact with
the registration to select volume of interest and visualize the
input/outputs files.

II. METHOD

The basic components of image registration framework
are given in figure 1. The flow-diagram of the implemented

Fig. 1: The basic components of image registration frame-
work. From[9]

hierarchical semi-automatic registration algorithm is shown
in figure 2. The details of the block in the flow-diagram are
discussed in the following sections.

A. Volume of interest (VOI) selection

Since the small animals are not cooperative like humans,
anaesthesia is used through out the acquisition session to
keep the animal in the same position, i.e the imaging session
is governed by anaesthesia and it is limited. This limited time
is enough to take PET scan of large part of body. In contrast,
as different sequences and weighting are considered during
the acquisition of MRI, it is difficult to take scan of large

Fig. 2: Flow digram of the proposed algorithm. (VOI=volume
of interest)

part of the body for each types of sequence and weighting.
Consequently, the PET volume is always larger than MRI.

As the whole body images of small animal contain many
articulated joints and the PET volume lacks spatial details, it
is difficult to initialize the registration without avoiding the
non-overlapping region. Moreover, the PCA is not useful if
the two volumes do not refer to the same body. Selecting
VOI will help to avoid unwanted objects present in the image
volumes from affecting the registration outcome.

For better output and not to miss slices during the selec-
tion of VOI, we introduce a method to compare the slice
thicknesses in both volume and add appropriate slice to the
volume with thinner slice as shown in figure 3.

Fig. 3: MRI-PET slice selection offset

Based on the visualization displayed without knowing the
slice thickness, the start slices of the MRI volume corre-
sponds to the PET slice marked in green which corresponds
to the center intensity of the MRI slices. However, the green
marked PET slice corresponds only to the center part of the
MRI slice and the correct starting slice corresponds to the
MRI slice should be the one marked with black colour.

B. Intensity transformation of PET

When registration PET image with MRI, it is important to
focus on the range of intensities which reveal the anatomic
structure in the MRI scan. Normally, only the low intensities
in the PET volume represent the full anatomical structure in
MRI scan. Increasing the dynamic range of the low intensity
will support to the PCA to compute the right centroid and
principal axis by maximizing the density of 1s’ in the
PET volume to comparable level with the density of 1s’
in the MRI volume. This can be alleviated by employing a
sigmoid function[24]. It is a non-linear mapping which maps
a specific range of intensity values into a new intensity range



by making a very smooth and continuous transition in the
borders of the range. Sigmoid function is given by:

I ′ = (Max−Min)
1

1 + e−(
I−β
α )

+Min (1)

where I is the input intensity and I ′ is the transformed
intensity, Max and Min the maximum and minimum of
the expected output image, α defines the width of the input
intensity range, and β defines the intensity around which the
range is centered[9].

(a) Before (b) After

Fig. 4: PET slice before and after intensity transformation.

C. Principal component analysis (PCA)

PCA is a technique that computes a linear transformation
to map a high dimensional space into a lower dimen-
sional space. The basis of PCA is computed by the eigen-
decomposition of the data covariance matrix [1]. The idea of
PCA initialization is derived from the theory of rigid body
where a rigid body is uniquely located by knowledge of
its center of mass (centroid) and its orientation (rotation)
with respect to its center of mass[1]. PCA produces a single
best line in such a way that the sum of the squares of the
perpendicular distances from the sample points to the line
is a minimum. The first principal component is the variable
defined by the line of best fit which indicates the greatest
amount of variation whereas the second principal component
is the variable defined by the line that is orthogonal with the
first and the center of the data set is the intersection of the
two axes[14]. We have implemented PCA to find the centroid
and orientation of image PET and MRI volumes to initialize
the translation and rotation as described by Lu and Chen[14].

D. Global Transformation model

The global transformation model describes the over-
all motion of the animal body. An affine transformation
parametrized by 12 degrees of freedom (DOF) is proposed
for the global motion. Since the two modalities have different
resolution, the rigid registration with 6 DOF is not sufficient
to overcome the global motion. For 3-D images, the affine
transformation can be written as:

TG(x, y, z) =

 θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

 x
y
z

+

 θ14
θ24
θ34


(2)

where the coefficients θ(.) parametrize the 12 DOF of the
transformation, i.e 3-DOF rotation (R), 3-DOF transforma-
tion, 3-DOF scaling (S) and 3-DOF shearing (H).

The initial rotation and translation are computed using
PCA and the initial scaling and shearing are assumed to be

identity, i.e initially there is no scaling difference between
the volumes and there is no shearing problem.

E. Local Transformation model

The scope of the affine transformation is to align the two
volumes globally. However, there is local deformation due to
breathing and uncontrolled movement in the lower abdomen
of the small animals during acquisition. A non-rigid Cubic
B-spline free-form deformation (FFD) is used for the local
registration. The motivation to choose Cubic B-splines for
the local deformable registration is that, B-splines is the
most adequate basis function to represent the deformation
with very small overlap which makes it faster and reduce
the interdependency between the parameters as demonstrated
by Kybic and Unser[12]. In addition, Cubic B-spline have
the least number of contributing factions with respect to the
other methods like polynomials, radial basis functions, and
wavelets[13].

A B-spline based FFD can be written as a 3D tensor
product of one-dimensional cubic B-spline, producing a
transformation separately for each axes. Let φ denote a
uniformly spaced grid (lattice) of nxxnyxnz control points
φi,j,k with spacing of δ where, −1 ≤ i ≤ nx− 1, −1 ≤ j ≤
ny−1 ,−1 ≤ k ≤ nz−1. Then the non-linear transformation
for each point (x, y, z) in the volume is computed as[10] :

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

βl(u)βm(v)βn(w)φi+l,j+m,k+n

(3)
Here i = xx/nxy−1, j = xy/nyy−1, k = xz/nzy−1,
denote the index of the control point lattice containing
(x, y, z), and u, v and w are relative positions of (x, y, z)
in the three dimensions, where u = x/nx − xx/nxy, v =
y
ny
− xy/nyy, w = z/nz − xz/nzy. βl, βm, βn represents

the lth,mth and nth function of the B-spline respectively. A
one-dimensional cubic B-spline is given by[7]:

β0(u) =
1

6
(−u3 + 3u2 − 3u+ 1)

β1(u) =
1

6
(3u3 − 6u2 + u)

β2(u) =
1

6
(−u3 + 3u2 + 3u+ 1)

β3(u) =
1

6
u3

(4)

F. Interpolation

Interpolation is a method of constructing new data points
within the range of a discrete set of known data points. Image
volumes are sampled at discrete grid points, P and when
the image’s grid points are transformed to align with other
image, the grid point do not coincide with the other grid
points. Hence interpolation must be applied to calculate the
intensity values at the new grid points using the information
from neighbouring pixel or voxel grid positions. Different
interpolation methods are proposed for image registration.
Among them, we applied B-spline interpolation because it is
the most effective interpolation scheme having the superior



performance than any other polynomial basis function of the
same order and is highly recommended for multi-resolution
registration strategy [22][26]. It produced an interpolated
function that is continuous through to the second derivative.
For 1-D, the equation of cubic B-spline is given by:

β3(x) =


1
6 (4− 6|x|2 + 3|x|3) if |x| ≤ 1

1
6 (2− |x|

3) if 1 < |x| ≤ 2
0 for |x| > 0;

(5)

G. Similarity metric

A normalized mutual information (NMI)[25] is used as
a similarity metric in both stages of registration. Mutual
information is a measure of the amount of information one
random variable contains about another. In the context of
image registration, image intensity is a random variable and
MI measures how much image intensity in one image tells
about image intensity in the other image and is defined
in terms of entropy[15]. Entropy is a self information of
a random variable or a measure of uncertainty of random
variable. The mutual information of image X and Y is given
by:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (6)

where H(X), H(Y ) demote the marginal entropies of X , Y
and H(X,Y ) denotes their joint entropies. Let PX(x) and
PY (y) are probability distribution of intensity values of x
and y of image X and Y, then the marginal entropies are
given as:

H(X) = −
∑
x

PX(x)log(PX(x)) (7)

and
H(Y ) = −

∑
y

PY (y)log(PY (y)) (8)

Similarly the joint entropy H(X,Y ) of a pair of random
variables (X,Y) with a joint probability density function
PXY (X,Y ) can also be defined as:

H(X,Y ) = −
∑
x,y

PXY (x, y)log(PXY (x, y)) (9)

If both images are aligned, the mutual information is max-
imized. It has been shown by Studholme et al.[25] that
mutual information is not independent of overlap between
two images. To overcome any dependency on the amount of
overlap, Studholme et al. suggested the use of normalized
mutual information (NMI) as measure of image alignment.
The NMI is given as:

NMI =
H(X) +H(Y )

H(X,Y )
(10)

In practice, direct access to the marginal and joint probability
densities is not possible and hence the densities must be
estimated from the image data. The two most efficient tech-
niques used for probability density estimation are discrete
joint histogram and Parzen windowing[9][22]. In case of
discrete joint histogram, the marginal and joint probability

densities are computing by counting the number of occur-
rence of each intensity in the images. This method does
not allow the similarity metric to be explicitly differentiated
and can only be used with non-gradient based optimization
methods. Whereas, in Parzen windowing, the marginal and
joint densities are estimated by constructing a continuous
density function by superimposing kernel functions centered
on the intensity samples obtained from the images. Parzen
windowing provides a continuous joint histogram which is
a derivative function, so that gradient-based optimization
method can be applied in the registration process[30]. In
this project, mattes mutual information which uses Parzen
windowing for estimation of the density distributions imple-
mented in ITK[9] is used.

H. Optimization

Optimization algorithms find the optimal transformation
parameters that can align volumes by minimizing the negated
mutual information. Optimization methods are categorized
into two groups as: derivative and non-derivative. Both
methods iteratively select parameters such that the similarity
metric is minimized. The strength of derivative optimization
methods is that, if the initialization is quite close to the
optimum, they converge rapidly and with high precision.
The weakness is that they converge to a local minimum
if the initialization is far from the optimum[19]. In our
case, as both global and local registrations are initialized
well, the local convergence is not problem. In addition,
using the Parzen windows to estimate the probability density
distributions allows to form a derivative continuous function.
Hence, a derivative optimization method is used. A regular
step gradient-descent, is used to optimize the mutual infor-
mation of the affine global registration [16][17]. In case of
the local registration where the B-spline transform has a
high dimension of parameter space, optimization algorithm
which handles memory-related problems should be used.
Consequently, Limited memory Broyden-Fletcher Goldfarb-
Shannon with bounds (LM-BFGS-B)[5] is used. Only a low-
rank approximation is computed instead of the entire Hessian
matrix during minimization allowing linear or super-linear
convergence rates[19].

I. Visualization and GUI

The registration algorithm is developed using Insight
Toolkit(ITK)[9]. Though, ITK provides advanced algorithms
for performing image registration and segmentation, it does
not provide support to perform image visualization, nor
does it offer any graphical user interface (GUI) framework.
Consequently, the Visualization Toolkit (VTK)[18] which
is an open-source, freely available software system for 3D
computer graphics, image processing and visualization is
integrated with ITK for visualization purpose. The GUI is
developed by integration Qt, another cross-platform applica-
tion framework that is widely used for developing application
software with a graphical user interface (GUI). The programs
are written using Visual Studio C++. The developed GUI and
visualization is given in Figure 5.



Fig. 5: MRI-PET slice selection offset

III. EXPERIMENTS AND RESULTS

The developed semi-automatic MRI-PET registration algo-
rithm is tested and validated using seven different datasets.
The experiment was carried out using processor of In-
tel(R) Core(TM) i3-2350M CPU@ 2.30GHz 2.30GHz, RAM
4.00GB(2.70 usable) running in Windows 7 32-bit.

A. Experiment dataset

The dataset used to investigate the performance of this
developed algorithm were obtained from preclinical imag-
ing laboratory at Dijon in the framework of the IMAPPI
(Integrated Magnetic resonance And Positron emission to-
mography in Preclinical Imaging ) project and consists of
brain and abdominal MRI and PET images of rat and mice.
The brain scan dataset used was deformed both globally and
locally. On the other hand, the abdominal scan datasets used
contain slightly deformed and noise volumes. All the dataset
were axial images and their detail size is given in TableI.

Subject Test Modality Dimension Voxel size(mm)
MRI T1 256x256x7 0.27x0.27x3

Abdomen test1 PET 176x176x48 0.39x0.39x0.3875
MRI T1 256x256x6 0.2x0.2x2.01

Brain test 2 PET 176x176x12 0.39x0.39x0.7749
MRI T2 256x256x7 0.12x0.12x3.0

Abdomen test 3 PET 175x175x23 0.39x0.39x0.775
MRI T1 256x256x7 0.27x0.27x3

test 4 PET 176x176x25 0.39x0.39x0.775
Abdomen MRI T1 256x256x7 0.27x0.27x3

test 5 PET 176x176x25 0.39x0.39x0.775
MRI T2 256x256x7 0.12x0.12x1.5

test 6 PET 175x175x25 0.39x0.39x0.775
MRI T1 256x256x16 0.2x0.2x1.99

Brain test 7 PET 176x176x6 0.39x0.39x0.78

TABLE I: Details of the experimental dataset used

B. Results

A sample visual registration result of brain and abdominal
are given in figure 6 and 7 respectively.

Fig. 6: Registration result of Brain MRI-PET volumes

Fig. 7: Registration result of abdominal MRI-PET volumes

C. validation

Due to the lack of ground truth and landmarks to perform
quantitative validations, the developed semi-automatic MRI-
PET registration tool is validated by two experts using the
two brain and five abdominal datasets. First, the experts set
an evaluation criteria to validate the registration algorithm in
terms of precision, accuracy, robustness, stability, reliability
of the overall registration algorithm. Both experts set a com-
mon ranking ranges from 0 to 5, where 5= perfect, 4=very
good, 3= acceptable, 2= Limited, 1= Wrong alignment and
0=completely error. Since, the registration comprises both
global and local registrations, the evaluation is performed
slice by slice. figure 8 shows the result of the validation.

The maximum score is for abdomen test where it has
the a PET volume with the minimum slice thickness of all.
As indicated in tableI, the PET slice thickness for test-1 is
0.3875 which is half of the slice thickness of other datasets.
The minimum score is for the brain test which is the most
difficult of all the other datasets. In this dataset, there is
abrupt change or deformation in the MRI scan from one
slice to the other which does not exist in the PET slices.



Fig. 8: Visual assessment by experts.

In addition, the MRI slices contains additional information
out of the brain including ear and other parts which doesn’t
exit in the PET. This all affects the performance of the
registration.

IV. DISCUSSION

The overall performance of the registration algorithm is
very good as indicated by the visual assessment of the
experts. In general, the performance of the registration
algorithm for abdomen is very promising. The mean of
the registration for the abdomens is above 4.3. The mean
processing time of the above datasets is 12sec. Moreover,
a comparison of with and without intensity transformation
is performed and both accuracy and time are improved by
25%.

To conclude, a good semi-automatic registration algorithm
is developed. The registration algorithm is supported by
dynamic and user friendly visualization and GUI support.
The performance of the regurgitation is ”Very-Good” as
evaluated by experts visually.

As a future work, we recommend to validate the algorithm
with additional dataset. In addition, the dataset used above
are all axial images and it will be good to test and validate
the algorithm for coronal images. Last but not least is to test
the algorithm for clinical data with prostate cancer.
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Abstract—Reconstruction of 3D points from a single pair of
stereo image is a much researched topic with numerous accurate
implementations when well calibrated. The reconstruction of a
scene in 3D from a recorded video has more practical usage
and is seen to be a greater challenge. Enhancement on the
estimated camera pose will lead to a higher accuracy in the
scene reconstruction. An open source visual odometry algorithm
(LIBVISO)[1] is used as the main framework to obtain an
improved estimate of the camera pose. The framework is chosen
as it is implemented for stereo setup, it is real time, has practical
accuracy, and it is open source thus providing a good skeleton
for experimentation.

In this paper, a range of descriptors and detectors are
tested on the original algorithm and analyzed to compare the
accuracy and speed. Loop closure methods are then integrated
into the original framework and optimized using the g2o open
source framework[2]. The improvements are noted using a visual
odometry benchmark, and by evaluating the performance on a
simulated and a real underwater video sequence.

I. INTRODUCTION

Video mosaicing is defined as the procedure to combine
the views of the camera at different time instances into a
common scene and often involves stitching images from the
video frames into a larger visual representation of the area.
The use of a two-camera setup, commonly known as a stereo
setup provides depth information to the captured view, and
thus, a 3D video mosaicing problem can be formulated. The
3D data is then used to obtain a metric measurement for the
movement of the camera and this is called visual odometery.
Visual odometry can be briefly defined as the use of visual
information to estimate the change of position over time. In
the paper, the approach for video mosaicing will be to use
the obtained odometry to form the 3D scene by projecting
the cloud of points from the estimated position. Therefore
accuracy of the visual odometry obtained and the resulting
reconstructed scene will be the main focus of the paper.

Video mosaicing is applied in the 2D scene for example
to create image mosaics of text documents, to create a huge
map from aerial photography or to document a coral reef area
underwater[3]. The frames of the video are stitched by using
mutual features to match the subsequent frames. Mosaicing is
performed by using the features to estimate the pose of the
image and this can be done incrementally[1] or globally[4]
after the whole sequence has been processed. Video mosaicing

in 3D is an extrusion of the 2D application mentioned, with
the added benefit of representing the surveyed area in 3D.
The significance of a proper 3D reconstruction from a video
sequence is seen in multiple fields whether above water or for
underwater uses. The dimensions or volume of an object of
interest such as a coral reef for environmental protection, an
underwater wreckage or buildings can be computed if needed
and a visualization of a seabed terrain can help in making
geological prediction for mining minerals such as diamonds
or oil. The many uses and versatility of reconstructing a 3D
scene from a stereo recorded video, provide an alternative to
the use of 3D laser scans (above water) or sonar (underwater).

Feature detection and descriptors are key elements of video
mosaicing since the camera undergoes substantial change in
motion. Introducing changes in rotation, scaling or lighting
will cause less robust feature descriptors to fail, and such mo-
tion are more common underwater compared to the movements
of a car along a road. Thus, the use of different features and
detectors are compared for both above water and underwater
sequences. Visual odometry suffers from the same drawback
as the wheel odometry of a robot which is drift in the motion
estimation. As time passes, the small errors at each time step of
the camera motion will accumulate and to correct such errors,
a graph optimization technique from detected loop closures
will be used. If the loop closure detection is a part of the front-
end algorithm, the back-end which consists of the optimization
process should optimally be able to handle possible outliers in
the loop closure detection. The work done in the thesis tries to
augment an existing visual odometry algorithm for the purpose
of obtaining a proper 3D mosaic from video.

II. RELATED WORK

Video mosaicing had been an active area of research used
to create a visualization of small to large scenes. Sato[5]
implemented a video mosaicing approach with the goal of ob-
taining high resolution mosaics of documents and photos from
a video using a hand-held camera. The approach is tailored for
a planar object and image features are tracked from a frame to
another using template matching with Harris corner features.
Marzotto[6] uses video mosaicing to perform global alignment
from the video frames to generate a super resolution mosaic
by using a graph based technique. The Kanade-Lucas-Tomasi



(KLT) tracker is used to compute the inter frame homography,
and the graph is constructed using vertices as frames and edges
to link overlapping frames. Bundle adjustment is then used to
find the best homography to minimize the total misalignment
in the mosaic by minimizing a cost function which is a
common strategy as seen in [5]. Video mosaicing is made more
challenging by trying to mosaic a larger area in an underwater
environment in 3D as done by Pizarro[7] using a single camera
with the aid of onboard navigational sensors. A local-to-global
approach is used whereby 3D submaps is obtained separately
and then registered in a global frame for bundle adjustment,
using Harris corners as features and RANSAC to estimate the
essential matrix. On the other hand, a stereo rig is used by a
group of researchers in Girona[4] and the approach uses global
alignment to minimize the error cost between correspondences
and the distance between fiducial points.

A. Visual Odometry

Different setups have been used to obtain the movement of
a camera such as the use of a monocular camera[8], a stereo
setup[1] or the use of a kinect device[9]. The odometry in the
paper by Civera[8] is the result of solving the SLAM problem
using the Extended Kalman Filter(EKF). The algorithm is
capable of performing loop closure and a rough estimate
of the camera motion can be observed however the metric
accuracy would be questionable since a single camera setup
will have less accuracy compared to the use of a stereo rig.
Geiger provided an open source visual odometry framework in
his paper which is the LIBVISO library[1]. The author uses
a combination of blob and corner detectors and descriptors
computed from the Sobel filter response of the frames and the
features are matched circularly. The method does not specify
any loop closure method but it is capable of processing all
the frames in real time and produces visual odometry with
minimal drift even for longer distances. The method used
by Geiger is further refined by Bellavia et al.[10] with their
method named Selective SLAM (SSLAM). A similar loop
chain matching method like in LIBVISO is used however the
processed frames are selectively chosen to discard frames with
similar visual content to reduce the propagation of error in
pose estimation. The resulting approach manages to produce
results with less drift especially in the reduction of rotational
error and the accumulation of error with increasing distance
is less pronounced compared to [1]. Another visual odome-
try algorithm implementation by Badino [11] shows further
improvement by using the whole history of tracked features
with minimal additional computation. An augmented feature
set is created which consist of sample mean from previously
measured features transformed to the current frame. The
optimization will minimize the usual feature correspondence
as seen in the papers [10][1] however improving it with an
additional minimization between the feature correspondence
for the current features and the augmented feature set. Badino
also performed tests using few detectors and descriptors, KLT,
SURF and a combination of Harris and FREAK, concluding
that Harris and FREAK returns the best result.

Although the use of stereo rig is the main focus, it is
interesting to briefly review the paper by Huang et al.[9]
which performs visual odometry and mapping using an RGB-
D camera. FAST feature detector is used on different Gaussian
pyramid levels and the descriptors is a simple normalized
9x9 pixel patch. Instead of using RANSAC like the previous
approach, a graph of consistent feature matches is computed
and the maximal clique in the graph is approximated and
results in reduced error. The implementation of this framework
is also available online (known as FOVIS) however instead of
using this framework, LIBVISO is chosen based on the find-
ings in the publication by Wirth [12] which compares FOVIS
with LIBVISO. Both framework returns comparable results
in term of accuracy but the authors mentioned that LIBVISO
is preferable in real underwater marine environment which is
our targeted scenario. LIBVISO is also very much suited for
sequential stereo video frames where the transition from one
frame to another follows a trajectory unlike PVMS2[13] where
the image sequence are sparse and non sequential.

B. Feature Detectors and Descriptors

The choice of feature detectors and descriptors may increase
the robustness and the accuracy of the visual odometry by
eliminating false matches in the visual odometry feature cor-
respondence problem. [1]uses features which performs well
in cases where the motion between frames is small however
the corner and blob features together with the Sobel filter
responses from the image is not invariant to changes such as
scale and rotation. A few features which are commonly used
and relevant to be tested are Harris corner detector[14], FAST
detector[15], SURF features[16], SIFT features[17], and newer
features such as ORB features[18], BRIEF[19], BRISK[20]
and FREAK[21]. These newer features are binary features
which benefit from speed up during the matching process and
a more compact memory requirement.

FREAK uses a retina inspired keypoint descriptor and is
shown[21] to be better performing compared to SURF, SIFT
and BRISK. Corner features are shown to be highly invariant
to changes in rotation but not to scale[22]. Scale invariance
is often introduced on the keypoints by extracting the feature
from multiple scale, such as performing FAST on different
levels of a Gaussian pyramid. AGAST[23] is noted to be the
detector used in both BRISK and FREAK testing by their
authors, while ORB uses FAST detector with the orientation
computed.

Attributes Harris FAST SURF SIFT ORB BRIEF BRISK FREAK

Scale inv. No No Yes Yes Partial No Yes Yes
Rotation inv. Yes Yes Yes Yes Yes No Yes Yes

Type Corner Corner Blob Blob - - - -

Table I
COMPARING DETECTOR (IN BLUE), DESCRIPTORS(IN RED) AND BOTH(IN

BLACK)



C. Loop Closure and Graph Optimization

A simple but expensive way to perform loop closure would
be to search for matches between the current frame and all
past frames in the sequence. More efficient strategies can be
used to identify loop closure based on keyframe selection
and selecting a subset of the keyframes (selected frames) to
perform matching. Huang et al.[9] uses a simple approach to
add keyframe, which is adding keyframes after a set distance
or rotation from the previous keyframe has occurred. The
possible matches are limited by taking only frames with
similar pose to the current frame and further filtered for
matching by a bag of visual words model to determine likely
candidates.

Another approach is to have new keyframes when the frames
can no longer be aligned with the previous keyframe due to
low number of features (RANSAC inliers)[24]. An entropy
approach has also been used to obtain the subset of keyframes,
the idea being that the entropy increases as the frames are
further apart[25]. For loop closure detection, a whole image
scene descriptor image has been used[26] using the BRIEF
descriptor which does not require a training stage unlike
vocabulary-based method[27] which can be used for place
recognition. The loop closures are detected by getting the
distance between the image descriptors.

The use of these methods are sometimes not wholly accurate
and there will be false positives due to incorrect loop closure
detection. The graph optimization framework should be capa-
ble of handling such outliers which can potentially distort the
resulting optimization. The g2o framework [2] is augmented
with robust methods that ensure that inconsistent loop closure
are disregarded by the algorithm. For example [28] integrated
dynamic covariance scaling as a robust function to reject out-
liers while not compromising the convergence speed in the g2o
framework. The optimization framework also offers different
robust kernel functions such as the Huber and the Cauchy
error function. Another approach for robust optimization is
the switchable constraints method by Sunderhauf et al.[29]
which works by controlling the loop closure constraints with
a switch variable. The switch variable is included as part of the
optimization problem therefore the optimization now searches
too for the optimal graph topology since some edges can be
’disabled’.

III. METHODOLOGY

In the LIBVISO framework the motion between frames are
computed following the steps mentioned in their paper[1].
Four steps are mentioned in the paper to achieve 3D recon-
struction which are feature matching, egomotion estimation,
stereo matching and 3D reconstruction. The LIBVISO frame-
work is used for feature matching and egomotion estimation
while for stereo matching and 3D reconstruction, we will
use the block matching method[30] to obtain the disparity
image which is then converted to 3D point clouds. The feature
matching method is substituted with different detectors and
descriptors for testing while a loop closure method is added
after the egomotion estimation step. Stereo matching and 3D

reconstruction is performed on the sequence of stereo image
and the point clouds are concatenated in the same coordinate
frame.

A. Feature Matching and Egomotion Estimation

Feature matching is performed in a circular way on four
images (the pair of stereo images from the previous and
current time) as in Fig. 2. A match is added when the same
point is reached after matching through a circle (P4_1 ==
P1). To reduce the number of matches, we added a ratio
between the cost of the best match and the 2nd best match
to reject point matches that do not satisfy the criteria (i.e.
bestcost

2ndbestcost < 0.8). A range of detectors are integrated to be
part of possible choices in the framework. The detectors are
readily available in the OpenCV library[31] and in our ex-
perimentation, the following detectors are used, Harris corner
detector, SURF (Speeded Up Robust Features) detector, SIFT
(Scale Invariant Feature Transform), MSER (Maximally Stable
Extremal Region), CenSurE detector, FAST detector, ORB
features (which are in fact FAST features computed in pyramid
with orientation) and the original feature detectors in the
LIBVISO framework (corners and blobs). In a few test cases,
the blob type and corner type detectors are combined, just as
in the LIBVISO framework, therefore having a combination of
Harris features (corner) and SURF features(blob). The detec-
tors are then coupled with the following descriptors, BRIEF,
ORB, FREAK, and BRISK descriptors. The descriptors can be
classified according to their length of 32 byte (ORB and the
original Sobel descriptors in LIBVISO) or 64 byte (BRIEF,
ORB, FREAK). The framework has been extended to accom-
modate 64 byte length descriptors while still maintaining the
use of the processor optimized SSE instructions. The chart in 1
shows the decomposition of the different combinations tested.

Figure 1. Augmented with OpenCV features for testing

As mentioned in [1] the matched features between the left
image in the previous (FeaturesP) and current time frame
(FeaturesC) will then be used for the motion estimation step.
FeaturesP will be projected from 2D to 3D using the camera
calibration parameters and then using 1 the 3D of FeaturesP
will be projected to the current frame in 2D.
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The rotation and translation will be estimated by minimizing
the difference between the 2D points of FeatureC and the re-
projected 2D points of FeaturesP as shown in 2. 3 points
are randomly sampled and the optimization is performed
iteratively to obtain the highest number of inliers, and finally
the estimated frame-to-frame motion parameters is computed
from the inliers.

min
R,t

N∑
i=1

(∥∥∥pit,left − πleft(Xt−1;R, t)
∥∥∥2 +

∥∥∥pit,right − πright(Xt−1;R, t)
∥∥∥2)

(2)

Figure 2. Circular matching of features

B. Augmented Framework - Loop Closure and Graph Opti-
mization

The framework is augmented with loop closure detection
and the visual odometry is optimized using the g2o library.
The method used for loop closure detection in the aug-
mented framework relies on the pre-existing detected features
to minimize recomputation of the features and descriptors,
while at the same time, reusing the matching strategy and
egomotion estimation for the selection of keyframes. When
the motion update is successfully computed between the
previous and current frame, the keyframe selection is per-
formed by matching the current frame with the previous
keyframe. If the number of inliers and the ratio defined
by number_of_inliers/number_of_matches falls below a
certain threshold, the current frame is saved into a vector
containing all the other keyframes, and the index is placed
in a circular buffer, to ensure that the memory allocated to the
frame is not cleared.

When the keyframe is saved, the neighbouring frames from
t − 1 and t − 2 will also be stored to obtain a better match
later in the loop closure. However if the current frame has
good matches with the most recent keyframe an edge can be
constructed between the two frames thus adding an additional
motion constraint even though loop closure does not occur.
Loop closure matching and detection is not performed for
all frames but only when a keyframe is selected to reduce
computational effort. After the keyframe has been added, the
loop closure detection starts by sorting and saving all previous
keyframes that satisfy a few criteria which are:
• The possible matches are filtered by the search radius.

Only keyframes within a specific radius of the newly

saved keyframe will be attempted to be matched. The
radius is adaptive and incrementally increasing as the
distance traveled by the camera increases. This is based
on the assumption that the drift increases with distance.

• The previous 10 (user specific) keyframes before the
current keyframe are not included in the search radius.
Usually loop closure happens between frames that are
captured further apart in time.

Matching is performed with the reduced set of frames and
a limit is set so that only a maximum number of frames is
considered (e.g.. 25 frames). To prevent all frames to be from
the same region, the frames are placed into multiple clusters
(e.g.. 6) and the clusters are made to be of a certain distance
apart. This is useful to increase the probability of loop closure
especially when the search radius have increased after a long
distance travel. Without the clustering, the frames selected
based on their distance are sometimes the nearby frames from
the nearest time (e.g. the previous 11th key frame and before).
The frame with the highest number of matches is used as the
best frame to perform the motion estimation. It will be costly
to perform the egomotion estimation on each of the probable
keyframes, however simply performing the circular matching
and getting the number of matches as a scoring metric is a
more efficient method. After the best keyframe is selected,
the matching is performed on the neighbours of the keyframe
from t−1 and t−2 and the highest number of matches is taken
again as the best frame. This allows the loop closure detection
to be performed on a refined scale thus matching with frames
that are closer. The motion will be estimated between the loop
closure frames and the information matrix added to the graph
for optimization.

To perform graph optimization, the projection matrix from
the motion estimation will be converted to the Vertex3D
format for the g2o optimization. The rotation matrix will be
converted to normalized quaternions and the XYZ position
is obtained directly from the translation vector. The vertices
are constructed using the concatenated poses, while the edges
between the vertices are computed from the incremental pose
obtained from the egomotion estimation between two frames.
The information matrix which is the inverse of the covariance
for the edge is constructed by dynamically changing it depend-
ing on the distance and the inlier ratio. The assumption made
is that, a higher inlier ratio, denotes a smaller uncertainty in
the edges.

Variance(x,y,z) = 0.02 + sc*0.02+(dist(x,y,z))*0.015;
rot_variance = 0.02 + 0.005*xyz + sc*0.02;

The scale is changed by the ratio of the inlier count and total
matches. Thus a lower ratio will give rise to a higher scale
and the uncertainty will increase.

sc = 5 - log(10*ratio+0.0001) - 2*ratio;

C. 3D reconstruction on ROS[32]

The augmented framework (changes to the LIBVISO li-
brary) is run on ROS using the viso2_ros wrapper and the
stereo_image_proc package is used to rectify the images. The



augmented framework will run through all the frames in the
recorded video and compute the vertices of the graph and the
edges, including loop closures. The constructed graph will be
optimized using the g2o library and the optimized pose will
be used to project the 3D point cloud in the environment. A
node pointcloud_odometry will compute the 3D points from
the rectified images and publish the point clouds together with
the associated transform read from the g2o file. The point
clouds will then be concatenated by being transformed to a
common coordinate frame and the pcl viewer will be used
for the visualization of the point clouds. The computation of
the point cloud from the stereo image will be performed by
computing the disparity using the block matching function
in Open Cv and converting the disparity to 3D points. The
process is illustrated in Fig. 3

Figure 3. Post-Optimization Visual odometry for 3D reconstruction (mosaic-
ing)

IV. RESULTS

A. Visual Odometry

The improvement or degradation in visual odometry is eval-
uated using the KITTI Vision Benchmark Suite[33]. Rotation
and translation will be evaluated as separate measures. Instead
of using the error of the end point of the trajectory, the
benchmark utilizes the average of all relative relations at a
fixed distance. Therefore the error will be calculated for every
specified distance in the trajectory, summed and averaged. The
benchmark evaluation returns the percentage of the translation
error and the rotation error (deg/m) as a function of path length
and velocity. The datasets used in the evaluation is the dataset
00 to 10 which comes with the ground truth for computing the
error metric. The table shows the combination of detectors and
descriptors used on the LIBVISO framework and the resulting
error in translation and rotation. The odometry evaluation
returns the rotation error in rad/m and shall be converted to
deg/m. The parameters used for the Open Cv features are
displayed in 1 and the results are shown in the table below. The
results for the error metric after loop closure is also shown.
The loop closure optimization is done with 30 iterations using
the Gauss-Newton method and for the robust kernel, a Cauchy

with kernel width of 0.1 to 0.5 is used.1.

Detector + Descriptor
No Loop Closure With Loop Closure

Translation
Error (%)

Rot. Error
(deg/m)

Translation
Error (%)

Rot. Error
(deg/m)

FAST+FREAK 3.1705 0.015 2.1969 0.0107
Harris + FREAK 3.1212 0.0151 2.2478 0.0113
Harris + BRISK 3.2234 0.0156 2.4268 0.0124

Harris, SURF+ BRIEF64 2.8192 0.0124 2.1311 0.0099
Harris, SURF+ FREAK 2.7190 0.0122 2.0779 0.0097

LIBVISO+ FREAK 2.4476 0.0109 1.7618 0.0081
ORB 3.1705 0.0150 2.2047 0.0108

MSER, Harris + BRIEF64 3.0754 0.0149 2.4475 0.0123
LIBVISO 2.6293 0.0117 1.8177 0.0084

SIFT + FREAK 2.9923 0.0137 2.2768 0.0111
CenSurE + BRIEF64 3.4539 0.0159 2.6705 0.0131

SURF + FREAK 2.5247 0.0104 1.8837 0.0077

Table II
COMPARISON OF VISUAL ODOMETRY ERROR AMONG DIFFERENT

DETECTORS AND DESCRIPTORS WITH AND WITHOUT LOOP CLOSURE

After sorting the best performing algorithm we can sum-
marize that the change of descriptors does indeed improve
the accuracy of the visual odometry. The use of FREAK
descriptors improves upon the accuracy in comparison to the
original sobel descriptor, ORB descriptor, BRIEF and BRISK.
In terms of feature detectors, we can summarize that the
use of LIBVISO features, and the use of SURF features for
detection is capable of providing better result compared to
using Harris corner points, MSER, SIFT, FAST or CenSurE.
The top three combination of detectors and descriptors are
listed below according to translation and rotation errors. In
the course of the experiment it should be noted that certain
features such as MSER is tried independently but due to the
lower number of features, the motion estimation tends to fail
at times. However, even though the features computed by
SURF is usually around 1000, the features are reliable enough
to compare with denser feature choices such as 3000 Harris
features or the LIBVISO features which usually amounts to
around 4000 features.
• Translation: LIBVISO+FREAK > SURF + FREAK > LIB-

VISO
• Rotation: SURF+FREAK > LIBVISO + FREAK > LIBVISO
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Figure 4. For long distance sequence 00 and sequence 08 in KITTI dataset.
Visual comparison of trajectory using MATLAB plot

Fig. 4 shows the trajectory plot of two chosen sequence
for visual odometry performance by varying the detector and
descriptor. SURF + FREAK provides the best representation

1LIBVISO in the table and figures refers to the use of the original features
(corner/blobs) and detectors (Sobel), while LIBVISO + FREAK means that
the LIBVISO features (corner/blobs) are used but FREAK is used as the
descriptor instead of the Sobel descriptors originally.



in the 2D plot and this can be seen in the resulting table where
it has the lowest rotational error. As for the translation error
although in the trajectory, SURF + FREAK looks to be the
best, we can assume that this is not reflected in the result
due to the fact that the trajectory plot is a 2D plot while the
benchmark utilizes 3D positions. Drift might be greater for
SURF + FREAK in the un-plotted axis direction.

As seen in II and Fig. 5, the loop closure detection improves
result for all combination of detector and descriptors. Note that
not all the sequence in the datasets have loop closure since
in some case, the known areas are not revisited. In the tests
done, the parameters used are uniform for all combinations
however more loop closures can be detected for some detectors
if the parameters had been tuned. Conclusively, even with loop
closure integrated, good results are obtained using the original
LIBVISO, LIBVISO + FREAK and the SURF + FREAK
combination just as in the tests without loop closure. LIBVISO
+ FREAK manages to produce the best result for translation
and SURF + FREAK continues to top the comparison in the
rotation measure.
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Figure 5. Trajectory before and after loop closure optimization for sequence
00 and sequence 02.

B. 3D Video Mosaicing and Reconstruction

In this section, the result for the process illustrated in 3
will be presented and evaluated using two datasets. The first
dataset is a short sequence from the underwater simulator
(UWSIM) and the second sequence is a more complex dataset
from the TRIDENT project. A naive metric evaluation is
used for the simulated sequence and the 3D generated mo-
saic will be evaluated visually for both dataset. In the first
dataset (Dataset1-UWSIM), the simulated underwater vehicle
is moving in a boxed trajectory 4m x 3m, from one corner
of the square to the other. The stereo camera of the vehicle
is facing downwards to the bottom of the pool which is
superimposed with a flat image mosaic, a few amphoras and
red coloured boxes. The vehicle returns to the original position
and the end of the sequence so the ideal case would be 0
shift between the position of the vehicle at frame 0 and the
last frame. The naive metric used here would be simply the
distance between the two frames. Besides, the resulting 3D
mosaic for three different configurations are shown, mainly the
best three combinations summarized in the visual odometry
benchmarking in the previous section and the resulting 3D
mosaic after optimization for loop closure.

Setup Translation error (m) Translation error (After LC) (m)
Original Features 0.0575 0.0057

LIBVISO + FREAK 0.0250 0.0036
SURF + FREAK 0.0207 0.0029

Table III
TRANSLATION ERROR BETWEEN DIFFERENT ALGORITHM SETUP WITH

AND WITHOUT LOOP CLOSURE (LC)

From the image mosaic in Fig. 6 since the sequence is
short, the drift is minimal but accumulative, therefore the
difference in the translation can be seen at the end of the
sequence. Among the three configurations, SURF+FREAK
and LIBVISO + FREAK performs comparably better than
the original setup. The reconstruction is further refined after
optimizing the graph of poses. The difference in depth can
be observed in Fig. 7 between the mosaics before and after
optimization and it can be observed that the optimized mosaic
fits the environment where the floor of the pool is flat (single
depth layer).

Figure 6. Point clouds at the start point for different setup. From left to right,
Original, Libviso + FREAK, and SURF + FREAK. The different reconstructed
layers are highlighted in red.

Figure 7. A depth representation of the whole mosaic (Dataset1-UWSIM)
before (left) and after (right) optimization.

For the second dataset (Dataset2-TRIDENT), the bag files
used for testing are obtained from a real world recording of
an underwater scene. The 3D reconstruction of the TRIDENT
sequence is shown using the depth representation by the pcl
viewer. For the reconstructed scene, when there are sharp
edges to the color transition, it can be interpreted as an
incorrect re projection of the scene since the bottom of the pool
is flat. Sharp edges denotes a strong difference in depths. The
reconstructed scenes and the point clouds of the reconstruction
after loop closure will be shown in Fig. 8.

After optimization, a comparison between the three methods
shows that a proper reconstruction is obtained using the
FREAK descriptors due to the larger number of loop closure
sections. Loop closure detection and optimization of the graph
fuses the different layers of the pool bottom mosaic to a single
coherent mosaic. However it should also be noted that the
mosaic still has inaccuracies in the re projection.

Video Link: 3D reconstruction from both dataset.

http://youtu.be/iWXjaqO41FU


Figure 8. Depth and RGB point cloud view after optimization for LIB-
VISO, LIBVISO+FREAK, SURF+FREAK from top to bottom row (Dataset2-
TRIDENT)

V. CONCLUSIONS

From the comparison of the detectors and descriptors, it
can be concluded that the FREAK descriptor provides the best
association between the frames in the video in comparison to
many others that were surveyed, namely the sobel descriptor,
ORB, BRIEF, and BRISK. The FREAK descriptor is not only
better but also requires less computational time compared to
BRISK or other time consuming descriptors such as SIFT.
On the other hand, for the choice of feature detector, the
features used in LIBVISO are actually one of the best among
all that were tested for the KITTI sequences[33]. The SURF
feature detector can be considered as another alternative to
the corner and blob detectors used in LIBVISO. Although the
SURF detector requires higher computation cost, the use of
the GPU_SURF function using a compatible graphic card is
able to greatly reduce the required time as long as the graphic
card has available computational memory and resources.

In the paper, a loop detection method is also formulated,
partly inspired by other works but with the addition of several
extra features such as clustering and searching among the
neighbours. In the KITTI benchmark, there were no notice-
able loop detection errors and this is because images in the
benchmark which are successfully paired for loop closures are
quite similar when the vehicle travels through the same road.
However for the underwater video sequence where the motion
of the robot has a greater degree of freedom, the loop closure
detection will fail when the non-robust features such as the
Sobel descriptors are used. Loop closure detections are more
reliable with an rotation invariant feature such as FREAK.
With the additional optimization afforded by the loop closure
detection, the visual odometry especially for sequences where
loop closures are evident, will have the accuracy improved

greatly both in the visual odometry and in the reconstruction.
The sequences with loop closure detection produces optimized
visual odometry which closely approximates the ground truth
as shown in 3. The 3D reconstruction after optimizing the pose
graphs are shown to be good enough in the first simulated
dataset and would have been better for the TRIDENT dataset
if the robot motion is controlled autonomously in a smoother
fashion. However, the resulting reconstruction is still good
enough to visualize the whole scene with a few inaccurate
re projections which can be corrected with post processing on
the point clouds to perform merging. Although the choice of
feature detector is less important than the choice of descriptors,
it is worth noting that the use of SURF detectors has shown
better performance when the matching radius is limited even
though the translation between frames are larger (capable of
coping with large drifts). The matching radius has to increased
for the simulated dataset when the original features are used.
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Visual Servoing on the Baxter Research Robot for Collaborative Tasks

José Luis Part

Abstract— Over the last years, the use of robotic systems in
public areas have been steadily increasing. There is a growing
desire that robots and people can work side by side without
any risks or danger and of course, without the use of safety
cages. In order for this to be possible, robots have to be
capable of coping with dynamically changing and unstructured
environments. This supposes the development of intelligent and
reactive systems capable of dealing with human-like situations.

The work presented in this dissertation aims to offer a
reliable solution for performing cooperative tasks between
humans and robots by mean of the development of a visual servo
control on a human-size humanoid robot. In order to improve
the perception capabilities of the robot, an external depth sensor
is used. The proposed method incorporates modules for human
skeleton tracking, pose detection, object pose estimation and
visual servoing. In addition, a method for calibrating the depth
sensor coherently with the way the robot perceives the world
is proposed.

I. INTRODUCTION

As technology is advancing, the separation between robots
and humans in different environments is becoming narrower.
There is a common interest from the research community
and the industry sector in getting robots to interact with
people and among themselves in a seamlessly integrated
environment. The availability of new state-of-the-art sensing
hardware is improving the quality and accuracy of the col-
lected data and the emphasis put into the design of compliant
actuators is allowing the use of robots in more places that,
until now, were exclusive for people.

The aim of this thesis is to develop a control scheme based
on visual servoing that targets the case study of a person
handing over a tool, and implement it on the Baxter Research
Robot platform. For this purpose, a position-based visual
servoing control is proposed for collaborative manipulation
tasks with the Baxter Research Robot using 3D perception.

The Baxter Research Robot has several limitations. Since
it was designed to count only with the most essential
hardware in order to keep its cost as low as possible, many
challenging tasks cannot be performed with the in-built
capabilities. In order to improve the perception capabilities,
an external sensor for 3D data acquisition was employed.

This paper is divided into 7 sections. Section II contains
a brief recollection of the related work in the field. Section
III presents the theoretical concepts referred during the rest
of the document. Section IV deals with the implementation
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(Spain), Heriot-Watt University (UK) and the University of Edinburgh (UK)
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details related to both, hardware setup and software integra-
tion. Section V presents the results obtained by the proposed
solution. Section VI concludes the work done and finally,
Section VII discusses the future work that can be done in
order to improve the proposed solution and further extend it
to other situations.

II. RELATED WORK

A lot of work has been done in the field of visual
servoing. In [13], a highly redundant robot (HRP-2) uses
visual servoing to catch a ball while walking on a pre-
planned path. In [14], position-based visual servoing is used
on the ARMAR-III humanoid robot for manipulation tasks.
In this case, the robot has a physical marker in its hands
and uses multi-sensor fusion in order to cope with inaccurate
object localization and fuzzy sensor information. In addition,
the robot counts with a database of known objects which it
uses for matching and model pose estimation. More recently,
a position-based visual servoing control was implemented
on the REEM humanoid robot [11] in order to control the
relative position of the hand with respect to a pre-grasping
location with reference to the target object. In this case,
visual markers were attached both to the robot hand and
to the object in order to compute their relative pose through
monocular vision.

III. BACKGROUND

A. Visual Servoing

Visual servoing is a technique for robot control that makes
use of visual feedback to generate the control signals that will
be used for controlling the robot.

Depending on the physical configuration of the robot,
the visual servoing systems can be classified into eye-in-
hand systems or eye-to-hand systems. The main difference
between these configurations is the location of the vision
sensor with respect to the robot manipulator. In the first case,
the sensor is mounted on the end-effector of the manipulator,
which implies that a motion of the robot will induce the same
motion on the sensor. On the contrary, an eye-to-hand system
has the characteristic that the sensor is mounted somewhere
else with respect to the manipulator and a motion of the latter
does not necessarily induce a motion on the sensor.

Another classification of the visual servoing schemes
depends on how the visual features are chosen. If the features
are directly obtained from a camera feed, i.e. image features,
the scheme is referred to as image-based visual servoing
(IBVS). On the other hand, if the features correspond to 3D
parameters estimated from the data acquired by the sensor,



the scheme is referred to as position-based visual servoing
(PBVS).

The goal of every vision-controlled system is to minimize
an error [1] that can be expressed as:

e(t) = s(m(t), a)− s∗ (1)

where m(t) represents a vector of measurements that, along
with the parameters a that characterize the acquisition sensor,
conform the current visual features, and s∗ corresponds to
the desired visual features.

A classic approach requires to find the relationship be-
tween the rate of change in the visual features and the ve-
locity of the end-effector. Such relationship can be expressed
as:

ṡ = Lsv (2)

where v = (vc;ωc) represents a vector composed by the
linear vc and angular ωc velocities of the end-effector,
and Ls represents the interaction matrix, also known as
the feature Jacobian, which relates the first-order partial
derivatives of the features with the end-effector velocities.

By combining (1) with (2), we can rewrite (2) as a
relationship between the time variation of the error and the
end-effector velocity:

ė = Lev (3)

where Le = Ls.
In addition, since the control takes place in the joint space,

(3) is normally replaced by:

ė = Jeq̇ = Le
cVn

nJn(q)q̇ (4)

where nJn(q) is the robot Jacobian expressed in the end-
effector frame and q is the vector of joint angles. Je =
Le

cVn
nJn(q) is called the task Jacobian since it involves

the robot Jacobian and the features Jacobian. cVn represents
a velocity twist matrix between the camera frame and the
end-effector frame.

Since the input to our system will be the variation of the
error ė and the control command will be the vector of joint
velocities q̇, it is interesting to invert the previous equation.
By also adding the constraint of an exponential decoupled
decrease of the error (ė = −λe), (4) can be rewritten as:

q̇ = −λĴ+
e e (5)

where Ĵ+
e is an estimation of the Moore-Penrose pseudo-

inverse of the task Jacobian Je. In general, it is practically
impossible to find the exact values of the interaction matrix
Le because they need to be computed from the measurements
which are inherently noisy. Thus, an estimation is used.

B. Joint Limits Avoidance

Considering the visual servoing task as the primary task,
many approaches have been proposed for the design of higher
order tasks that aim to make the primary task more robust
without affecting its performance, i.e. the regulation to zero
of the errors. Such tasks include but are not limited to joint
limits and kinematic singularities avoidance, obstacle and
occlusion avoidance, and keeping the visual features within
the range of view.

In particular, we are interested in avoiding joint limits,
since reaching a joint limit will produce the failure of the
primary task. Several approaches have been proposed [5-8]
for solving this issue by exploiting the redundant degrees
of freedom of the robot. The most classical solution is
based on the definition of a cost function that has to be
minimized. Such cost function is designed to be minimal at
safe configuration and maximal in the vicinity of the joint
limits.

In order for the secondary task to not affect the perfor-
mance of the primary task, a classical projection operator
onto the null-space of the primary task Jacobian is used such
that the complete task can be expressed by:

q̇ = q̇e + Peg = −λJ+
e e + (In − J+

e Je)g (6)

where e is a column vector in Rk that corresponds to the
primary task, g is a column vector in Rn that represents the
motion induced by the secondary task, Je ∈ Rk×n is the
task Jacobian defined such that ė = Jeq̇, J+

e is the Moore-
Penrose pseudo-inverse of the task Jacobian, n is the number
of degrees of freedom of the manipulator, k is the number
of components of the task function and Pe = In−J+

e Je is a
projection operator onto the null-space of the task Jacobian,
which guarantees that the motions induced by the secondary
task are compatible with the constraints imposed by the
primary task.

One of the main drawbacks of the previous approach is
that it is dependent on the redundant DoF of the robot. If
there are no redundant DoF, then the null-space of the task
Jacobian will be the empty space and no secondary task will
be realizable.

In order to overcome this limitation, a new large projection
operator was proposed in [9]. The classical projection opera-
tor is constrained so it does not perturb the regulation to zero
of the errors between the current and desired features. The
new large projection operator instead has only the constrain
that it should not perturb the regulation to zero of the norm
of the error ||e||. This new projection operator is given by:

P||e|| = In −
1

eTJeJTe e
JTe ee

TJe (7)

The main disadvantage of the large projection operator is
that P||e|| 9 Pe when e → 0. Moreover, P||e|| becomes
unstable as soon as e → 0 since the denominator in (7)
becomes zero as well.

In order to overcome this issue, a switching strategy is
proposed that switches from the large operator to the classical
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Fig. 1. Software architecture. For simplification purposes, the connexion
between OpenNI and PCL was done directly although in reality, OpenNI
broadcasts the skeleton joints transformations onto the /tf topic, which are
then picked up by the pose detection and pose estimation nodes. Also, the
calibration stage was not included in this diagram since it does not form
part of the normal program flow.

operator when a threshold for the norm of the error is
exceeded. This way, P||e|| → Pe is ensured.

The switching based projection operator is then defined
as:

Pλ = λ̄(||e||)P||e|| + (1− λ̄(||e||))Pe (8)

where λ̄(||e||) is a switching function.

IV. IMPLEMENTATION

A. Software Architecture

All the modules implemented for this work have been writ-
ten completely in C++ under Linux Ubuntu 12.04 LTS. The
libraries used are open-source with the exception of the NiTE
middleware [21], which is embedded in the functionality of
the OpenNI library [20].

The complete system is integrated within the ROS [16]
environment. The distribution adopted was Hydro.

The integration of each component is illustrated in Fig.
1. This simplified diagram shows how each library interacts
with the rest of the system. Essentially, there are two main
divisions, the 3D perception and the actual control of the
robot.

Each constitutive functionality of this application was
programmed as an individual ROS node which interacts
with other nodes in the system through ROS messages. The
description of each one of these integral parts is given in the
following sections.

B. System Calibration

The method proposed here for calibrating the system is
by mean of point clouds registration. By mean of registering
the point cloud acquired by the sensor and the robot model,
the rigid transformation between the coordinate frame of the
sensor and the world coordinate attached to the robot can be

(a) (b)

Fig. 2. Calibration results. Robot model (green), rough alignment of the
point cloud acquired by the sensor (blue) and aligned point cloud acquired
by the sensor (red).

found. The main advantage of this method is that it copes
with calibration errors, both in the vision sensor and also in
the joint position sensors.

The method used for registration is Iterative Closest Point
(ICP). Prior to apply this method, the point clouds are
roughly aligned. The results of the registration process can
be observed in Fig. 2.

C. Skeleton Tracking and Pose Detection

In order to perform the skeleton tracking, an existing ROS
package [24] was adapted. This package consists of a node
that is, in essence, a ROS wrapper for an OpenNI application
that uses the NiTE middleware to deliver the joint positions
in space of the detected skeleton. Although the orientation
of the joints are also provided, they are not used given the
unreliability inherent to the limited resolution of the sensor.

After a new skeleton has been detected in front of the
sensor, the node converts the joints information into a set of
pose transforms which are then broadcast onto the /tf topic
as shown in Fig. 3(a).

After the skeleton is available, the information of the
location in space of the joints are used to detect the pose
of the person by mean of simple heuristics that determine if
the person is facing to the front and if his hand is pointing
towards the robot. Finally, the location of the hand is used
to define a Region of Interest for the forthcoming steps as
shown in Fig. 3(b).

D. Object Pose Estimation

In order to perform object pose estimation, several meth-
ods were proposed although the results obtained are not

(a) (b)

Fig. 3. a) Skeleton frames. b) Region of interest generated around the
object after the pose of the person have been detected.
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Fig. 4. Coordinate Frames used for the Visual Servoing Task. {s∗}
corresponds to the desired pose reference frame and {s} to the current
pose reference frame of the end-effector. Note that the arrow symbolizes
that the current pose reference frame is with respect to the desired pose
reference frame.

suitable for the application. Such module should be robust
and computationally inexpensive because this application
requires real-time response. Further research should be done
in this direction.

E. Visual Servoing

1) Control Law: In order to implement the visual servoing
task, the ViSP software package [3] was used. In addition,
the MoveIt! library [18] was used for handling the robot
model and getting the Jacobian for the arm that executes the
motion.

The system was configured as an eye-to-hand system
where the eye corresponds to the Kinect sensor and the hand
is the end-effector that is used for the grasping task. Given
that all the transformations between coordinate frames are
handled by the /tf package [16], it is easy to reduce the
necessary coordinate frames to the ones corresponding to
the current and desired poses for the end-effector as shown
in Fig. 4.

In order for the trajectory of the end-effector to be a
straight line, a selection for the current and the desired
features [1] is s = (s

∗
ts, θu) and s∗ = 0, giving an

interaction matrix of the form:

Ls =

[
s∗Rs 0
0 Lθu

]
(9)

where s∗Rs is the rotation matrix between the current and
desired frames, and Lθu is the angle-axis parametrization of
the previous rotation given by:

Lθu = I3 −
θ

2
[u]× +

(
1− sincθ

sinc2 θ2

)
[u]2× (10)

where θ corresponds to the angle and u to the axis around
which the rotation is performed.

The task Jacobian can be found by combining the inter-
action matrix with the robot Jacobian in the end-effector
reference frame:

Js = Ls
sJs(q) (11)

where the twist velocity matrix is not taken into account
because it is the identity matrix.

Finally, the control law is computed as:

q̇ = −λĴ+
s e (12)

In order to preserve the integrity of the robot and to
avoid any sudden unpredicted motions, the joint velocities
are limited under a defined threshold. When a velocity is
above this threshold, all the velocities are scaled down with
respect to the highest velocity.

2) Joint Limits Avoidance: When dealing with visual
servoing, there is no implicit way to determine when a joint
is near its limit. Hence, it is necessary to include a secondary
task which goal is to keep the joints at a safe distance from
their limits without affecting the performance of the primary
task (visual servoing task).

A method for designing a secondary task for joint limits
avoidance is proposed in [10] which makes use of the large
projection operator defined in [9].

Writing the joint velocities as a composition of the ve-
locities generated by the primary task and the velocities
generated by the secondary task:

q̇ = q̇1 + q̇2 = q̇1 +
n∑
i=1

q̇i2 (13)

a suitable way for generating the vector of joint velocities
q̇i2 for avoiding the joint limit of the ith joint is:

q̇i2 = −λseciλliPλgli (14)

where gli is a vector indexing function that controls the acti-
vation and sign of the avoidance task, λli is a tuning function
that ensures the smoothness of injecting the avoidance task
into the primary task, λseci is an adaptive gain function used
to control the magnitude of the avoidance task and Pλ is a
projection operator defined by:

Pλ = λ̄(||e||)P||e|| + (1− λ̄(||e||))Pe (15)

where Pe is the classical projection operator, P||e|| is a large
projection operator and λ̄(||e||) is a switching function.

Fig. 5 shows the evolution of the tuning function where
emphasis is put into the three main regions. The first one
corresponds to the safe configuration where the secondary
task is not active, the second one to a warning zone where



Fig. 5. Tuning function (plot taken from [10]).

(a) (b)

Fig. 6. End-effector trajectory for λ = 0.5 while in safe configuration
(green) and with joint limits avoidance active (red), seen from two different
perspectives.

the secondary task is being injected progressively depending
on the distance to the joint limit, and a third one to a danger
zone where the secondary task is fully injected.

V. RESULTS
In Fig. 6, two perspectives of the trajectory realized by

the end-effector are shown. From these views, it is evident
that the end-effector does not follow a straight line. This is
due to the fact that the errors in ”y” and ”z”, shown in Fig.
7(a), do not decrease with a pure exponential evolution but
rather present some oscillations. This effect is also observed
in the evolution of the error in ”yaw” although its physical
effect is not perceived in the trajectory. Given that the
interaction matrix used for performing the visual servoing
task guarantees a decoupling between the translational and
rotational velocities, the result obtained is not as expected.
Further research should be carried out in order to determine
the reason why this is occurring.

In Fig. 7, the evolution of the errors, the joint positions and
the joint velocities are shown. In addition, the joint velocities
generated by the secondary task are displayed. In Fig. 7(b)
the joint limits are added in order to show how the secondary
task prevents the joint ”s1” to reach its limit. If the secondary
task is not added and the joint limit is reached before the
primary task has converged, the latter will fail. Hence the
need for the secondary task.

VI. CONCLUSIONS
The system developed during this thesis involves a great

deal of software and hardware integration. This supposes
also to sort out the inherent difficulties of linking different
libraries together and find the correct controllers for the
hardware.

Despite the issues found during the experiments, this
approach shows the applicabilities of a visual servo control

(a) (b)

(c) (d)

Fig. 7. Plots for λ = 0.5. a) Regulation to zero of the feature errors.
b) Joint positions with their joint limits. c) Joint velocities. d) Velocities
corresponding to the secondary task.

for robot-human interaction in unstructured environments. It
also reflects the importance of defining a secondary task for
joint limits avoidance.

In addition to the visual servo control, a method for
system calibration that relies on point cloud registration was
introduced.

VII. FURTHER WORK

During the development of this thesis, several issues arose.
As a direct consequence, much of the work that was planned
could not take place. In the following, a summary of the
further work that could be realised in order to improve and
further extend the horizons of this thesis is proposed:

• Investigate the source of the fact that the end-effector
is not performing a straight line.

• Propose a real-time method for object pose estimation.
• Use of machine learning for pose detection and object

recognition.
• Define a tertiary task for collision avoidance with the

environment.
• Use of a filtering technique like the Kalman filter for

object tracking.
• Use the panning capabilities of the Baxter Research

Robot head for increasing the range of view. Another
possibility would be to build a pan-tilt unit and place
it on top of the robot to reduce the near field distance
limitation.
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Abstract—Diabetic retinopathy (DR) and age related macular
degeneration (ARMD) are among the major causes of visual
impairment worldwide. DR is mainly characterized by red
spots, namely microaneurysms and bright lesions, specifically
exudates whereas ARMD is mainly identified by tiny yellow
or white deposits called drusen. Since exudates might be the
only manifestation of the early diabetic retinopathy, there is an
increase demand for automatic retinopathy diagnosis. Exudates
and drusen may share similar appearances, thus discriminating
between them is of interest to enhance screening performance.
In this research, we investigative the role of bag of words
approach in the automatic diagnosis of retinopathy diabetes.
We proposed to use a single based and multiple based methods
for the construction of the visual dictionary by combining the
histogram of word occurrences from each dictionary and building
a single histogram. The introduced approach is evaluated for
automatic diagnosis of normal and abnormal color fundus images
with bright lesions. This approach has been implemented on
430 fundus images, including six publicly available datasets, in
addition to one local dataset. The mean accuracies reported
are 97.2% and 99.77% for a single based and multiple based
dictionaries respectively.

I. INTRODUCTION

According to the world health organization (WHO) diabetes
mellitus (DM) is a lifelong disorder which takes place either
when the pancreas doesn’t produce sufficient insulin (type
1 diabetes) or when the body cannot effectively benefit the
insulin it produces (type 2 diabetes). Insulin is a hormone
produced in the pancreas by beta cells that regulates the level
of blood sugar. Hyperglycemia, or increased blood sugar level
causes serious damage to body’s system, including diabetic
retinopathy. The most important reasons of diabetes are in-
creasing age, overweight, and sedentary lifestyle. During the
first two decades of disease, approximately all patients with
type 1 diabetes and more than 60% of patients with type 2
diabetes have retinopathy [1]. The prevalence of diabetes is
estimated to increase from 2.8% to 4.4% in the time span
of 2000 − 2030. The total number of people is projected to
increase from 171 million in 2000 to 360 million in 2030 [2].
Diabetic patients can prevent severe visual loss by attending
regular diabetic eye screening programs and receiving optimal
treatments [3]. Diabetic retinopathy (DR) and age related
macular degeneration (ARMD) are among the leading causes
of visual impairment worldwide. DR occurs most frequently
in adult aged (20 − 74) years, and it is characterized by the
presence of red lesions (microaneurysms) and bright lesions
(exudates) which appear as small white or yellowish white
deposits with sharp margins and variable shapes located in

the outer layer of the retina, their detection is essential for
diabetic retinopathy screening systems. ARMD usually affects
people over 50 years of age. It is caused by a damage to
the macula, the small sensitive area of the retina that gives
central vision (seeing fine details and colors), and categorized
by drusen, tiny yellow or white deposits in a retina layer called
Bruch’s membrane. The Severity of ARMD can be categorized
into three classes: early, intermediate, and advanced. In some
patients bright lesions such as retinal exudates can be the only
manifestations of early diabetic retinopathy. Thus, computer
aided detection (CAD) systems have been proposed in order
to detect exudates. However, these bright lesions must be iden-
tified from drusen because they share common characteristics
[4]. This represents a challenge for readers or CAD based
screening systems designed for DR diagnosis. Consequently,
developing a CAD system for reading and analyzing retinal
images decreases observational unintentional failure and the
false negative rates of ophthalmologists interpreting these
images. The aim of this research work is to design a system
that will be able to identify normal, drusen, and exudates in
color retinal images using the bag of words approach (BOW),
because there is a few approaches in the literature designed
for this purpose.

II. RELATED WORK

In literature, a wide variety of CAD systems to detect
retinal features and lesions involve three main steps. The first
step is the preprocessing in order to compensate for great
variability between and within retinal images. Green channel
is considered the most preferable choice, because it provides
a maximum contrast between different retinal lesions and
structures. The second step is to extract candidate lesions,
in some approaches feature selection may be performed in
order to remove redundant features. The last step is to classify
candidate lesions into normal or abnormal. Grinsven et al.
[5] have proposed to use the BOW approach to retrieve
and classify images with bright lesions, namely drusen and
exudates. However, this approach needs a prior knowledge
about the location of the optic disk and macula. Pires et al. [6]
have also used the BOW in order to identify images with bright
lesions such as hard exudates, cotton wool spots, and drusen,
in addition to images with red lesions like hemorrhages and
microaneurysms. Nevertheless, the proposed strategy requires
manual annotation of unhealthy regions. Deepak et al. [7] have
developed a strategy for bright lesion detection using a visual
saliency based framework. This method relies on accurate



detection of drusen and exudates which is considered as a
challenge to any CAD system. We present a novel approach
by adapting a single based and multiple based dictionaries for
identifying normal images and abnormal images with bright
lesions.

III. PROPOSED METHOD

The proposed method is based on the bag of words
(BOW) approach to automatically discriminate between nor-
mal, drusen, and exudates in color retinal fundus images.
In this approach, the images are preprocessed. Subsequently,
SURF as well as HOG and LBP features are extracted from
local regions of retinal images. Then, a visual codebook is
constructed by adapting a K-means clustering algorithm. The
cluster’s centers are considered as visual words within the
codebook. Each individual feature in the image is quantized
to the nearest word in the codebook, and an entire image
is substituted by a global histogram counting the number of
occurrences of each word in the codebook. The size of the
resultant histogram is the same as the number of words in the
codebook and also the number of clusters obtained from the
clustering algorithm. The Final histogram representation is fed
into a linear kernel SVM for classification.

A. Preprocessing

The main purpose of the preprocessing step is to reduce
the inter and intra patient variability. According to the paper
introduced by Cree et al. [8] the background-less fundus
image has normally distributed colors. Thus, the image can
be represented by the scalar mean µ and standard deviation
σ throughout the entire image. If these two parameters are
calculated for a reference image, it is possible to equalize
the colors of the new image to the reference one in a more
effective manner than simple histogram equalization [9]. In
this work, the mean µ and std σ are empirically chosen
for all datasets instead of computing them from a reference
image. Furthermore, the preprocessing is applied only to the
green channel rather than the three planes of the RGB color
space. All images are resized to a height of 512 pixels, while
maintaining the aspect ratio because of their large sizes. The
description of the process for a single color plane is explained
as follows:

µref = 0.5
σref = 0.1
Iout = Iin −medianFilter(Iin)
µout = mean(Iout) (1)
σout = std(Iout)
I1
out = (Iout − µout)÷ σout
I2
out = (I1

out × σref ) + µref

The background image is estimated by a median filter,
whose size is approximately 1

30 the height of the fundus image.
Iin is the image to be equalized, Iout is the background-
less image, and I2

out is the equalized image. Fig. 1 shows

an example for normal image equalization as well as drusen
image equalization. Although the two images (Fig. 1 (a) and
(b)) have different ethic backgrounds and quality level, the
resultant (Fig. 1 (c) and (d)) images have very similar colors.

(a) (b)

(c) (d)
Fig. 1 (a) Normal image, (b) drusen image, (c) equalized normal
image, and (d) equalized drusen image.

B. Feature Extraction

In this approach, SURF, HOG, and LBP features are ex-
tracted from the three channels of the RGB color space.
Typically, The dimension of the SURF descriptors per image
are 64 × number of interest points. Two strategies are adapted
such as ordinary SURF and dense SURF (DSURF). In the first,
SURF descriptors are extracted from all RGB color channels,
then they are horizontally concatenated to get a feature matrix
of a size 64 × total number of interest points extracted
from the three channels. In the second, SURF descriptors are
extracted from a dense grid uniformly distributed throughout
the image i.e. SURF descriptors are computed on 16 × 16
pixel patches (non overlapping) with a spacing of 16 pixels.
As opposite to ordinary SURF, for each patch we get a feature
vector of a dimension 64, then for each image channel we get a
feature matrix of a size 64 × number of patches. Finally, each
image constitutes a feature matrix of a size 192 × number
of patches by vertically concatenating each feature matrix.
The implementation of SURF is done using mat-lab built in
function. The HOG descriptors are obtained as similar to [10],
due to its lower dimension and discriminative power. Each
image channel is divided into fixed number of blocks with a
size of 32 × 32 pixels, then each block is subdivided into
4 cells (each cell is 16 × 16 pixels), as a result each block
contributes to a feature histogram of a dimension 31. For each
channel, the histograms are vertically concatenated forming a
feature matrix of a size 31 × number of blocks. In total, the
three channels will constitute a feature matrix of a size 93
× number of blocks. The null descriptors originating from
the black area surrounding the fundus image are not are not
taken into account. The LBP descriptors are extracted from
local patches of a size 32 × 32 pixels similar to the HOG.
However, for each patch LBP features are computed using a 3



Fig. 2 Multiple based dictionary example. The set of features
represent a single image in the training dataset.

× 3 moving window centered at each pixel within the patch.
The uniform local binary patterns are selected because of its
lower dimension and reducing the number of codes inflicted
by high frequency noise. The size of the feature matrix per
image is 58 × number of patches, so in total we get a feature
matrix of a size 174 × number of patches. The HOG and LBP
are implemented using the VLFeat open source library [11].

C. Codebook Generation

The visual dictionary is generated using two different cri-
teria such as; a single based criterion and a multiple based
criterion. In the former, a single dictionary Di is independently
constructed from a a pool of features, i.e. DSURF, SURF,
HOG, or LBP using K-means clustering algorithm. Then,
each image feature is quantized to its nearest visual word
in every dictionary Di. These visual words are combined
into individual histograms hi for each dictionary and the
system performance is assessed accordingly. In the latter,
similar steps are followed. However, the individual histograms
are concatenated into a single histogram based on [12] i.e.
h = [h1, h2, . . . , hN ]. Fig.2 shows an example of the multiple
based dictionary.

D. Classification

The classification’s problem has been carried out using
LIBSVM [13]. The data is separated into training and test-
ing sets, where each example in the training set contains a
class label and a unique histogram counting the number of
occurrences of each visual word. Based on the training data,
the objective of the SVM is to produce a model which is able
to estimate the target values of the test data given only the test
data histograms. Assume a training set of instance label pairs
(xi, yi), i = 1, 2, . . . , l where xi ∈ Rn and y ∈ {1,−1}l such
that y = +1 for positive samples and y = −1 for negative
samples, the SVM requires solution of the following lagrange
optimization problem:

min w,b,ξ
1
2w

Tw + C
l∑
i=1

ξi

subject to yi (wTφ(x) + b) ≥ 1− ξi (2)

The training vectors xi are mapped into a higher dimensional
space by a kernel function φ(x). The SVM finds a linear
hyperplane which maximizes the margin ( 1

2w
Tw) in this

higher dimensional space. C > 0 is the penalty parameter
of the error term. This parameter is referred to as bestc
which should be tuned carefully during the training phase
since it significantly affects the classifier performance. There
are different kernel functions available i.e. linear, polynomial,
radial basis function, and sigmoid. However, in our case we
consider the linear one since it provides us with the best
classification results. The linear kernel function is defined as
K(xi, xj) = xTi xj .

IV. DATASET

In this research, we have used 430 images from six publicly
available datasets as follows: STARE1, DRIVE2, DRIDB3,
HEI-MED4, MESSIDOR5, and HRF6, in addition to one
private dataset obtained from the Oak Ridge National Lab-
oratory, USA (ORNL). For the MESSIDOR dataset, images
are taken at three different clinical sites. The distribution of
these datasets is described as shown in Table. I.

We have employed 81 normal images, 85 drusen images,
and 264 exudate images obtained from (ORNL, HRF, DRIDB,
and DRIVE), (ORNL and STARE), and (ORNL, HEI-MED,
and MESSIDOR) respectively. The images are divided into
two sets; Set A and Set B. Set A contains 220 images acquired
from ORNL, HEI-MED, HRF, DRIVE, DRIDB, and only
one clinical site of MESSIDOR named MES1 whereas Set
B constitutes 210 images obtained from ORNL, HEI-MED,
HRF, DRIVE, DRIDB, and two clinical sites of MESSIDOR
named MES1 and MES1. The idea is to use Set A as a
training set, then measure the system performance based on
Set B and vice-versa. In this way, we can assess how well the
system behaves when the test set contains different images
than the ones included in the training set. This is usually
called cross dataset testing. That means the proposed system
(selected features, dictionary: single or multiple, and number
of visual words) should be discriminating enough to classify
the date present in the Set A based on Set B, and also the data
present in Set B based on Set A. The system performance is
assessed using the accuracy measurement which is calculated
as follows:

Accuracy = Total # of correctly classified images
Total # of images

% (3)

1see (http://www.ces.clemson.edu/~ahoover/stare/)
2see (http://www.isi.uu.nl/Research/Databases/DRIVE/)
3see (http://www.fer.unizg.hr/ipg/resources/image_database)
4see (http://vibot.u-bourgogne.fr/luca/heimed.php)
5kindly provided by the Messidor program partners (see http://messidor.

crihan.fr)
6see (http://www5.cs.fau.de/research/data/fundus-images/)

http://www.ces.clemson.edu/~ahoover/stare/
http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.fer.unizg.hr/ipg/resources/image_database
http://vibot.u-bourgogne.fr/luca/heimed.php
http://messidor.crihan.fr
http://messidor.crihan.fr
http://www5.cs.fau.de/research/data/fundus-images/


Table. I Data distribution of Set A and Set B. MES1: MESSIDOR
site 1, MES2: MESSIDOR site 2, and MES3: MESSIDOR site 3.

SETA

Normal Drusen Exudates
ORNL 18 30 10

HEI-MED . . . . . . 13
STARE . . . 12 . . .

HRF 7 . . . . . .
DRIDB 5 . . . . . .
DRIVE 10 . . . . . .
MSE1 . . . . . . 115
MSE2 . . . . . . . . .
MSE3 . . . . . . . . .

# of images 40 42 138

SETB

Normal Drusen Exudates
ORNL 18 31 10

HEI-MED . . . . . . 13
STARE . . . 12 . . .

HRF 8 . . . . . .
DRIDB 5 . . . . . .
DRIVE 10 . . . . . .
MSE1 . . . . . . . . .
MSE2 . . . . . . 63
MSE3 . . . . . . 40

# of images 41 43 126

V. RESULTS AND DISCUSSION

The classifier’s parameter i.e. the value of C which is
refered to as bestc is computed by carrying out a class classifi-
cation with 10 fold cross validation. Since K-means clustering
algorithm (hard assignment) is employed, different values of
K are used such as K = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
in order to achieve satisfactory classification results. Two
experiments are performed. The first experiment is to use Set
B as a training set and Set A as a test set, while the second
experiment is to use Set A as a training set and Set B as a
test set.

A. Experiment 1

Regarding the single based dictionary, the highest accu-
racy 98.63% is obtained using DSURF descriptors at K=70,
subsequently HOG, SURF, and LBP achieve accuracies of
97.27% at K=100, 85.91% at K=90, and 91.36% at K=80
respectively. Neither SURF nor LBP descriptors provide sat-
isfactory results as expected. On the contrary, HOG gives
approximately similar results to DSURF 97.27% at K=100.
Since there is no preprocessing step to remove the optic
disk, it might be confusing for the SURF or LBP descriptors
to discriminate between normal and exudate images as the
intensity characteristics of the optic disk is very similar to the
exudate lesions. On the other hand, multiple based dictionary
approach overcomes the single based dictionary. At K=100,
an accuracy of 99.54% is obtained. In fact for all values of
K, multiple based dictionary approach achieves higher results
than the single based one, except at K=70 DSURF descriptors
result 98.63% is slightly better than multiple based 97.72%.
Fig. 3 shows the resultant accuracy for all descriptors versus
different values of visual words.

Fig. 3 Accuracy Vs. visual words K for a single and multiple based
dictionary (test Set A Vs. Set B) . All: multiple based dictionary
approach, DSURF, HOG, and LBP descriptors.

B. Experiment 2

With respect to the single based dictionary, the HOG de-
scriptors achieve the highest accuracy 97.14% at K=100, after
that DSURF, SURF, and HOG achieve accuracies of 90.95%
at K=50, 85.23% at K=80, and 84.76% at K=70 respectively.
SURF and LBP descriptors attain relatively similar results
as before. We can notice that the DSURF descriptors don’t
attain similar performances in both experiments owing to the
sharp decrease in accuracy from 98.63% to 90.95%. However,
the HOG descriptors achieve satisfactory results with the
two experiments which implies the discriminative power of
these descriptors. Once more, the multiple based dictionary
approach overcome the single based dictionary as at K=100 a
100% accuracy is achieved. Furthermore, for all visual words,
it achieve higher results than the single based method as shown
in Fig. 4. So far, we can conclude that the multiple based
approach achieves significant results in both conditions, which
indicates the importance of integrating several descriptors in
the task of diabetic retinopathy diagnosis. As we discussed
in section IV the proposed approach should be able to dis-
criminate the data present in Set A based on Set B and vice-
versa, the multiple based approach managed to accomplish this
task with satisfying results such as 99.54%, 100% for the first
and second experiment respectively and a mean accuracy of
99.77%.

VI. CONCLUSION AND FUTURE WORK

In this work, a bag of words approach was employed in
order to discriminate between normal fundus images and ab-
normal fundus images with bright lesions, specifically drusen
and exudates. We have proposed to use a single based and
multiple based dictionaries. In the first, a single dictionary is
constructed from DSURF, SURF, HOG, or LBP descriptors,
after that a histogram of word occurrences is generated for
each image and the system performance is assessed accord-
ingly. In the second, the image gets a histogram from each
dictionary which are horizontally concatenated to form a single



Fig. 4 Accuracy Vs. visual words K for a single and multiple based
dictionary (test Set B Vs. Set A). All: multiple based dictionary
approach, DSURF, HOG, and LBP descriptors.

histogram, where each feature gets N entries in the histogram,
one from each dictionary. The two schemes are evaluated on
different datasets. We achieved a mean accuracy of 97.2% with
respect to the single based dictionary, while our best accuracy
is obtained using the multiple based dictionary with a mean
accuracy of 99.77% which reflects the discriminative power
of this approach. To conclude, the bag of words approach can
play a significant role in the classification of normal fundus
images and abnormal fundus images with bright lesions, also it
helps physicians in the early diagnosis of diabetic retinopathy
as exudates might be the only sign of diabetic retinopathy.
In the future, we would increase the size of the datasets and
perform more experiments. Introduce a preprocessing step to
localize and segment the optic disk, because of the confusion
between normal and exudates images, add color features to
SURF, HOG, and LBP descriptors, in addition to extending the
proposed approach to deal with more challenging spot lesions,
namely microaneurysms.
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Fast vision-based relocalization for MAVs

Quim Sànchez

Abstract— Visual odometry techniques are becoming increas-
ingly popular in robotic vehicles as a means to provide naviga-
tion information. This is further relevant in the context of Micro
Aerial Vehicles (MAVs) where the payload constrains impose
strong limitations on the choice of navigation sensors. Modern
Visual Odometry algorithms, although quite sophisticated, are
prone to failures when the tracking is lost due to image blur
or sudden large changes in the image content. The loss of the
tracking requires finding the location of the vehicle with respect
to a previously built map (kidnapped robot problem). In this
work we study and propose some relocalization solutions for
Visual Odometry algorithms. This work is intended to work
with SVO (Semi-direct Visual Odometry) but the proposed
framework can be used with other methods. The relocalization
method from PTAM is used as a base line and new alternatives
based on space geometry and machine learning are proposed.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) are about to play a major
role in tasks like search and rescue, environment monitoring,
security surveillance, inspection and goods delivery
(Amazon). However, for such operations, navigating based
on GPS information only is not sufficient. Fully autonomous
operation in cities or other dense environments requires
MAVs to fly at low altitudes where GPS signals are often
shadowed or indoors, and to actively explore unknown
environments while avoiding collisions and creating maps.
Precisely autonomous operations requires MAVs to rely on
alternative localization systems. For minimal weight, power
consumption and budget a single camera can be used for
this propose.

Real-time monocular Visual Odometry (VO) algorithms
can be used to estimate the 6 DoF pose of a camera
relative to its surroundings. This is attractive for many
applications such as mobile robotics (and not only aerial)
and Augmented Reality (AR) because cameras are small and
self-contained and therefore easy to attach to autonomous
robots or AR displays. Further, they are cheap, and are now
often pre-integrated into mobile computing devices such as
PDAs, phones and laptops.

SVO (Semi-direct Visual Odometry) [4] is a very fast VO
algorithm able to run at more than 300 frames per second on
a consumer laptop. It builds a map based on keyframes and
salient points. Most monocular VO are feature-based where
scale and rotation invariant descriptors (SIFT, SURF. . . )
are extracted and matched in order to recover the motion
from frame to frame while finally refining the pose with
reprojection error minimization with the map. SVO uses
a different approach by using direct methods. Instead of

matching descriptors, it uses intensity gradients to minimize
the error between patches around detected salient points
to estimate the frame to frame transformation. Finally, it
uses Bundle Adjustment to align with the map and avoid or
minimize drift.

The main problem with most existing monocular VO
implementations (including SVO) is a lack of robustness.
Rapid camera motions, occlusion, and motion blur
(phenomena which are common in all but the most
constrained experimental settings) can often cause the
tracking to fail. While this is inconvenient with any tracking
system, tracking failure is particularly problematic for VO
systems: not only is the camera pose lost, but the estimated
map could become corrupted as well.

This problem is accentuated during a fast agile maneuver
(e.g., a flip) and so a good relocalization is important when
these are intended to be performed.

II. RELATED WORK

A. Place Recognition

Klein and Murray present in [7] the relocalization method
used in PTAM [6]. PTAM is a VO algorithm based on
keyframes that are used during the relocalization. The
relocalization method consists of two steps. First, given
the current frame, the most similar keyframe is retrieved,
and its know pose is used as a baseline. As a measure of
similarity the cross correlation, being the difference between
subsampled, blurred and zero-mean images is used. The
small blurry images are stored every time there is a new
keyframe and the small blurry image of a new frame is
computed during the relocalization to be compared with the
keyframes.

Other methods can be used for image retrieval, for
example using bag of words [14]. Nistér and Stewenius
[11] propose to use a tree structure to store words in order
to handle much larger vocabulary or have a much faster
retrieval. Every node of the tree would have k child nodes
which are the clustering results of k-means. The tree is
build by recursive k-means. This structure is expensive to
build because k-means is very resource consuming. During
the online process, new words can be appended to the final
leaves.

Özuysal et al. [12] proposes a simplified random forest
classifier which relates image patches to objects. It is



simplified because instead of using a tree structure, they
use a linear structure applying all the binary tests to the
patch. The result of the tests is a binary descriptor, the list
of binary tests is called Fern. Every object is trained with
multiple random warps of the known view to introduce
information from possible different views of the object. In
the end every object can be represented with many binary
descriptors and every descriptor should output a probability
distribution of possible objects represented. Evaluating
multiple Ferns and joining the produced distributions, the
final classification is achieved.

B. Pose Estimation

Geometric methods are typically used to find the transfor-
mation from the found keyframe using the classic pipeline
of salient points detection, feature extraction and matching.
The five-point algorithm can then be used to find the scaled
6 DoF transformation or the full 6 DoF with the three-point
algorithm if depth is known [5].

During the second step of the relocalization, the
transformation from the retrieved frame to the query frame
must be calculated. This transformation will be finally
appended to the know keyframe pose. In PTAM, an image
alignment algorithm, Efficient Second-Order Minimization
method (ESM) [2], is employed. ESM is a Gauss-Newton
gradient descent algorithm, which can be used with different
image warp functions. It is similar and based on the Lucas-
Kanade [1] algorithm but using Second-order functions.
Therefore, it results in a faster convergence.

C. Joint Place and Pose estimation

One approach to solve the relocalization problem was
proposed by Williams [15]. In their implementation, they
use Random Forest classifiers to characterize a salient object
in space. To do so, the classifier needs to be trained with
as many as possible representations of the object (multiple
views). Therefore, the first time an object is found, multiple
warps of the patch are used to initialize its presence in the
classifier. On later encounters with the object, the classifier
is incrementally trained with additional data. During the
relocalization phase salient points are classified using the
trained classifier and the three-point algorithm is used
to recover the 6 DoF position. This method is memory
expensive and requires a GPU to generate the patch warps.

Shotton et al. [13] also propose a method to solve the place
recognition and pose estimation problem simultaneously
using random forests. RGB-D data is used to train the
classifier. In this case, all the information is encoded in the
classifier so no previous data storing or computing (salient
point detection, descriptor extraction, etc...) is needed. The
classifier is trained to an individual RGB-D pixel, and an
RGB-D pixel query will output a probability distribution
over the position in R3. This can be applied to all pixels
of a frame or to a sparse subset selection of them. Ideally,

the camera pose can be inferred from only three pixels, but
as the output of the classifier can be very noisy, a second
step is applied. From the output from many pixels an
energy function is minimized using preemptive RANSAC in
order to find a pose that agrees with most of the distributions.

To train this method, a very complete dataset of RGB-D
images with 6 DoF poses from the environment associated
to them is needed. That makes it difficult to be used with
SLAM problems where the map get populated incrementally.
An online training method should be developed.

III. APPROACH

We propose two different approaches to address the re-
localization proble. First, a local approache is based on the
PTAM implementation, where two steps are performed. The
first step has been named Place Finder and the second Real
Pose Recognition. Multiple methods will be proposed to
solve the second step. Then, on the other side, a global
approach will be proposed. In this case machine learning
methods (ferns) will be used to recognize points in space.

A. PTAM method

PTAM [6] is a VO algorithm based on keyframes and so
the relocalization method proposed is based on keyframes as
well. Every keyframe is associated with a camera pose that
will be used to relocalize. During the relocalization there are
two steps involved. We called the first step Place Finder and
the second Real Pose Finder.

1) Place Finder: During this step, the algorithm tries to
find the keyframe image most similar to the last acquired
image. The pose associated with the most similar keyframe
is used as an initial rough estimation of the current pose.
The similarity score should be invariant to small view
point changes because the new acquired image will, most
probably, never be taken from the same pose as any of the
keyframes. Also it should be fast to compute.

The used similarity score is the Cross Correlation between
images meaning the sum of the squared error between two
zero-mean images as in 1. To make to computation faster
both images are resized become 40× 30. Then, to make the
images more resistant to view point changes it is blurred
with a 3 × 3 Gaussian kernel with σ = 2.5. The resulting
image is a resized, blurred and zero-mean image called
small-blurry-image.

dCC =
∑
x,y

[(I(x, y)− Ī)− (G(x, y)− Ḡ)]2 (1)

2) ESM Real Pose Finder: The second step of the PTAM
relocalization algorithm found, in order to refine the pose
of the most similar keyframe to explain the current pose of
the camera. During this step, in the implementation from
PTAM, only rotations are corrected. An image alignment
through optimization algorithm (ESM [9]) is used to find



the SE(2) transformation between the two, followed by a
minimization to find a transformation in the world frame.

The Extended Second order Minimization algorithm
(ESM) [9] is based on the algorithm proposed by Lucas and
Kanade [1] in 1981. The goal of both algorithms is to align
one template image T to a different input image I through
a parametrised warping function.

With this goal an error function is defined on which
the Gauss-Newton or Levenberg-Marquardt schemes can be
applied. The error is the squared difference between the
template image and the warped input image

e =
∑
x

[I(W (x; p))− T (x)]2 (2)

The warping function is going to be in SE(2), that is,
translation and rotation of the image plane. The algorithm
assumes that a current estimate of p exists and iteratively
tries improves it by increments ∆p. On every iteration
equation 3 is solved on ∆p and then it is used to update p
as in eq. 4.

min
∆p

∑
x

[I(W (x; p+∆p))− T (x)]2 (3)

p← p+∆p (4)

The solution that minimizes eq. 3 on ∆p can be found in
a least squares sense. The equation needs to be derived and
then set it equal to zero.

The ESM algorithm used in PTAM is very similar to
the derived above with the difference that while the Lucas-
Kanade takes the gradient from the input image, ESM used
both the gradient of the input image and the gradient of the
template image and averages them.

∇I =
1

2
[∇It +∇Iq] (5)

In Figure 1 the error of the overlapped images is
visualized. It can be seen that translation and rotation are
well corrected but there still is a misalignment caused
mostly by a change on scale which is not taken into account
during the alignment.

3) Alternative Real Pose Finder: During the mapping
of an area, the VO algorithm finds landmarks in the world
frame which are associated with detected featured points
in keyframes (i.e. every featured point in an image is
related to a 3D position in the world frame). Given a new
image, some extracted featured points can be related to a
keyframe using descriptor-matching which at the same time
are related to world positions. From this information the
full 6 DoF translation SE(3) can be computed using the
prospective three-point algorithm (P3P).

Fig. 1: SE(2) transformation error visualization

Fig. 2: From camera frame vectors f (or image pixels if
the camera calibration is available) and fix points p the
transformation between the two coordinate frames can be
computed using the P3P algorithm. Image taken from [8]

First, descriptors from every featured point are extracted.
Second, a brute force KNN matching is performed from
all the extracted descriptors from on image and all the
descriptors of the second image. The first, and second most
similar descriptor are retrieved. Then, only good matches
are kept, that is, using the matching technique described by
Lowe [10], only matches with a descriptor ratio between the
first and the second closest match of 0.8 or less are kept.

Finally, the three-point algorithm is fed with the pixel
positions from the query image and the landmarks from
the other. Because there are still outliers after the described
simple filtering, this process is run in RANSAC [3]
framework.

Figures 3 is an example of the described above.

Fig. 3: Accepted matches using SIFT



IV. USING FERNS

As said previously with the three-point algorithm it is
possible to recover the 6 DoF of the camera pose from the
relation from pixel coordinates and points in space. In this
case machine learning techniques are used to model this
relationship. In the classifier scheme, an object in space is
a class and multiple views seen from the camera should all
be classified as this class.

A fern [12] is a descriptor made from a set of binary
tests such as in equation 6. When used as a classifier,
every possible evaluation of a fern will contain a posterior
probability distribution for every class.

fj =

{
1, if I(dj , 1) < I(dj , 2)
0, otherwise (6)

One fern is usually not descriptive enough to correctly
classify. In [12] it is claimed that with 50 ferns and
S = 11 a problem with 200 different classes is
tractable. Regarding storage requirements, it would
involve 50 × 211 × 200 = 20480000 elements to be stored
in memory. If these are stored as float then 78 MB are
needed, which is tractable.

V. RESULTS

The descrived methods have been tested in a desktop
scene covering an area of 7x3 meters. The path taken to
acquire training and testing data covering the mentioned
area can be seen in 4. The dataset contains 84 frames for
training and 69 for testing.
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Fig. 4: In green, the path used for training. In blue, the path
used for testing

A. Multi Relocalizer
1) Extended Second-order Minimization Real Pose

Finder: The performance of ESM Real Pose Finder is not
great in this dataset as seen in 6 although it was able to
correctly relocalize in other datasets.
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Fig. 5: Translation error histogram using CC Place Finder
and ESM Real Pose Finder

2) Three-point Real Pose Finder: On the other side, the
Three-point Real Pose Finder works very well as seen in 6.
It can correctly retrieving the pose of 42 of the 69 frames.
This method is very dependent on the results of the Place
Finder, and on this dataset, the cross correlation method
was not very effective. Better results on it would help iprove
the results of this method and the ESM method.
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Fig. 6: Translation error histogram using CC and P3P, with
the mean marked as a red line

B. Ferns
Finally, as an alternative to the PTAM relocalization

method, it was proposed to use machine learning techniques,



more concretely ferns. In [12] it is shown that ferns can
be used to distinguish up to around 200 different classes.
We applied the method to this dataset where there are
1730 classes. In figure 7 it can be seen that almost 50 of
the 69 frames where correctly relocalized. Which is more
than using Multi Relocalizer with the three-point Real Pose
Finder. The classifier was trained with 100 ferns of 12 tests
each.

It should be noticed that not all points need to be well
classified, as long as more than 3 points are correctly
identified then the posterior RANSAC will find and use the
once that agree.

The three-point with CC method and this one, can
correctly relocalize the same number of frames. Probably
there is one part of the dataset that is more ambiguous and
difficult to recognize and both algorithms struggle with it.
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Fig. 7: Translation error histogram using ferns with 12 tests,
with the mean marked as a red line

VI. EXECUTION TIME

In figure 8 the mean execution time of relocalization is
shown. There, it can be seen that the ESM and the P3P
methods are the faster while the method using ferns classifier
is slower and is sensitive to the number of classes. Also,
while ESM and P3P use optimized third party libraries, the
ferns based classifier has been integrally implemented by
us, maybe not achieving the best performance. The used
training time for the classifier can be seen in figure 9.

VII. CONCLUSIONS

This work has addressed an important part was missing
in SVO, a good relocalization method which should recover
the 6 DoF pose from only a map and a new frame.
Different methods have been studied and implemented.
First, as a starting point, the method from PTAM has been
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Fig. 9: ferns classifier training time

implemented which is based on image alignment.

Then, an alternative method based on the previous has
been proposed. This method is based on space geometry
and on the descriptor extraction and matching framework
and uses the three-point algorithm to find the camera pose
by relating some world points and pixel coordinates. This
method produces very accurate results when matches are
found between images and in general is a great improvement
over the base line, being more robust and accurate.

Finally a new approach is proposed. The central idea
is to use machine learning techniques to characterise the
appearance of some known points in space, to later be
able to retrieve their position from the pixels of an image.
Ferns are very similar to Random Forests but simpler
and easier to implement, while being able to encode the
same of information. A classifier based on ferns have been
implemented and the same time as integrated in a relocalizer.

This method has been found to give good results even
in larger areas where more than 1700 classes need to be
classified even though a simplified version of the training
was used.
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Abstract— For many disciplines in natural sciences like
biology, chemistry or medicine, the invention of optical mi-
croscopy in the late 1800’s provided groundbreaking insight into
biomedical mechanisms that were not observable before with
the unaided eye. However, the diffraction limit of the microscope
gives a natural constraint on the image resolution since objects
which are smaller than the wavelength of the illuminating light
– such as proteins or ions – cannot be recognised in classical
microscopy.

Recently, different techniques have been developed to partly
overcome this restriction using fluorescent molecules as mark-
ers. Like this, it is possible to monitor a vast diversity of
intracellular processes on a molecular level which are of interest
for biomedical research.

Since these developments in superresolution microscopy are
quite recent, suitable data analysis techniques are still to be
advanced. This document aims to deploy the potential of
the so-called Hypothesised filter for Independent Stochastic
Populations (HISP) for multi-object estimation in a biomedical
context by extending its framework to a novel joint object state
and sensor drift estimator.

I. INTRODUCTION

During the past decade, super-resolution microscopy has
evolved extensively due to its impact on biomedical research.
Novel techniques were developed to overcome the diffraction
barrier of optical microscopes, either by true sub-wavelength
imaging using passive illumination like near-field scanning
optical microscopy (NSOM, [1]), Spatially Modulated Illu-
mination (SMI, [2]) and 4Pi microscopy ([3]), or by so-called
functional methods, for example PALM (PhotoActivated Lo-
calization Microscopy, [4]) and STORM (STochastic Optical
Reconstruction Microscopy, [5]). The latter two techniques
are based on the idea of active illumination by labeling the
molecules of interest with a fluorescent marker and sensing
the light that these emit after excitation.

Functional super-resolution imaging techniques in partic-
ular have great potential to advance the research of cell-
related diseases such as diabetes or cancer since they can
be performed on living cells. However, since these methods
are quite recent, suitable data analysis techniques have to
be developed which can cope with the following imaging
artifacts inherent to super-resolution microscopy:

1) Low SNR
In order to capture phenomena which last only for
nanoseconds, the frame rate has to be as high as
possible. However, the amount of photons illuminating
the sensor decrease for higher frame rates such that the
molecules lose contrast against the background noise.

2) Bleaching
After excitation through an external light source, the
molecules begin to fluoresce. Over time, the intensity
of photon emission decreases which again affects the
visibility of the structures of interest.

3) Drift
Due to the small size of the monitored objects being
only a few nanometers wide, even the smallest move-
ments of the microscope induced motor vibrations or
thermal expansion could have a visible effect on the
acquired images. Modern microscopes are equipped
with a drift corrector already but they depend on the
incorporation of reliable beads which is not always
easily provided.

The first two issues can be solved on the image preprocess-
ing level using suitable denoising and image enhancement
techniques that will be described below. The correction of
sensor drift, however, is usually performed separately from
the actual task. Many image registration methods have been
developed in the past many of which heavily rely on the
extraction of reliable feature points [6]. In some cases,
however, the moving objects are the only possible features
and stable markers are not always available. For that reason,
it is desirable to integrate the estimation of the sensor drift
in the multi-object estimation process.

Previous research proved that it is possible to use particle
filtering to estimate the non-linear motion of the sensor and
formulate the multi-object estimation as a dependent process.
In [7], a Simultaneous Localisation and Mapping (SLAM)
technique is used to jointly estimate both the trajectory of the
robotic vehicle and the motion of its surroundings. Another
important task is joint object tracking and camera calibration
[8] which is based on the same idea. Moreover, [9] resp. [10]
extend this concept to introduce a first joint molecule and
sensor motion estimator for biomedical applications, using
the Probability Hypothesis Density (PHD) filter.

The aim of this document is to formulate an alternative to
the method of [10] and to show the potential of simultaneous
estimation techniques for a diversity of different applications.
The new approach will incorporate the Hypothesised filter
for Independent Stochastic Populations (HISP) which was
formulated by Houssineau, Del Moral and Clark in 2013.

The introduction of the HISP filter gives a whole new per-
spective on the task of multi-object target tracking. In [11],
a novel framework for treating multi-object estimation is



introduced which involves the concept of distinguishabil-
ity of objects which has not been considered in previ-
ous approaches like Multi-Hypothesis Tracking (MHT) or
PHD filtering. Since first experiments have proved superior
performance to the PHD filter especially in cases of low
detection rates [12], it is desirable to explore its potential
for calibration purposes. Thus, a novel joint multi-object and
sensor drift estimator will be introduced on the following,
extending the formulation of the general HISP filter.

II. IMAGE PRE-PROCESSING

In [13], different image enhancement techniques for flu-
orescence microscopy imaging are presented and compared.
One of the more lightweight solutions in terms of com-
putational effort is a method based on the so called à
trous wavelet decomposition. Similar to the Difference-of-
Gaussians method, the input image is convolved with a filter1

several times and the differences between the outputs are
computed.

In particular, let us define the one-dimensional kernel
H =

[ 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16

]
and denote the grayscale input image by

I = {I(i, j)|i∈ {1 . . .m}∧ j ∈ {1 . . .n}} ∈Rm×n. By sequen-
tial row- and column-wise convolution with H, a sequence
{Ik}k∈{1...K} is obtained where K denotes the number of
applied convolution operations. Calculating the differences
Wk = Ik−1−Ik where Wk(i, j) = Ik−1(i, j) − Ik(i, j) for
i∈ {1 . . .m} and j ∈ {1 . . .n}, we find the à trous wavelet de-
composition

I = IK +
K

∑
k=1

Wk. (1)

Each of the layers Wk contains features of different sizes,
so the image noise can easily be filtered out by thresholding
each of the layers before reconstructing the image via (1),
replacing Wk by the thresholded images Ŵk.

Fig. 1a shows the performance of the algorithm on the
example of an input image which was acquired using the
STORM technique. The resulting image is almost free of
noise and shows only the relevant structures in the image.
Since the focus of this method is on the size of the structures
rather than the absolute intensities, possible bleaching effects
are removed automatically.

III. A PHD/HISP CALIBRATION METHOD

In the following, a filter for the estimation of the sensor
drift is superimposed onto the PHD/HISP filtering tech-
niques. We choose a Sequential Monte Carlo approach for
the estimation of the drift since the underlying models are
not necessarily linear. The PHD based calibration has been
described in [10], the details are omitted here. Instead, a
novel sensor drift estimator will be introduced based on the
HISP technique. Thus, let us introduce some useful notation.

1Note that the word filter is ambiguous here. In the field of image
processing and thus in the current context, filters are masks that introduce
a certain effect like smoothing or sharpening on an image when they are
convolved. Another class of filters are the Bayesian filters which are used
for probabilistic target tracking.

(a)

(b)

Fig. 1: Output of the à trous wavelet method on an example
image acquired using STORM. Fig. 1a shows the noisy input
image and Fig. 1b demonstrates the respective performance
of the filter.

Let Ξt denote the sensor state space and assume a fixed
number of N particles of the form {(ξ n,wn)}n∈[1...N] where
ξ n

t represents the estimated state at time t and wn the corre-
sponding weight. Moreover, write pΞ

t ∈P(Ξt) for the sensor
state probability measure, where P(Ξt) is the collection
of all probability measures on the state space. The set of
possible sensor states at time t is denoted by St .

Each particle can either be combined with a PHD or an
HISP filter for the underlying object tracking, this paper
focuses on the latter.

Denote the finite set of proper observations zt at time t
by Zt , and write Zs

t = Zt ∪φ ′s for the set of all observations
with φ ′s being the empty observation. Define the set Y s

t =
{yt = (z0, . . . ,zt)} to be the set of all possible sequences
z0, . . . ,zt of measurements, where each zt ′ ∈ Zt ′ was observed
at time t ′. We call the sequences yt the observation paths



up to time t. Furthermore, define ys
t ∈ Y s

t to be the obser-
vation path where nothing has been observed up to time t,
i.e. ys

t = (φ ′s, . . . ,φ
′
s). We call an object with observation path

ys := ys
t indistinguishable. Thus, the set of proper observation

paths is denoted by Yt = Y s
t \{ys

t }. Based on this, set p(y)t to
be the probability density of the observation path y at time t.

Let Mt−1,t(·) be the Markov transition kernel from time
t−1 to time t, and define the likelihood function gt(·, ·),
where gt(z,y) determines how likely the measurement z
belongs to observation path y. Moreover, let Ψgt (z,·) the
function that performs Bayes’ rule on the pdf p(y)t given the
likelihood gt(z, ·).

Finally, we introduce a function w(y,z, n̄,ξ ) that basically
describes how the assignment of z to y affects the total
likelihood, i.e. w determines how well the remaining paths
y′ and observations z′ fit if the pair (y,z) would be removed.

The estimation of the posterior density p(y)t+1(·) in the
formulation of the classical HISP filter will be exchanged
by the joint probability

p(y)t (·,ξ ) = p(y)t (·|ξ )pΞ
t (ξ ) (2)

for a given sensor state ξ ∈Ξt at time t. The resulting sensor
drift estimator recursion is defined by the following three
steps:

A. Initialisation

Since the first time step can be regarded as a reference
frame, the sensor states of all particles will be initialised
on the origin without loss of generality. Furthermore, no
observations have been made in the past, so all HISP filters
are initialised by setting the only existing observation path to
the empty one y0 =()∈Y s

0 for all particles; the corresponding
law is the initial distribution p(y0)

0 .

B. Prediction

In the prediction, the particle filter is propagated by
sampling from the previous states according to the state
transition model of the system, i.e. ξ n

t ∼ MΞ
t−1(ξ |ξ n

t−1) for
all n ∈ {1, . . . ,N}. Since the movement of the sensor and
the target movements are independent, the prediction of the
dependent HISP filters can be performed independently by

p(y)t+1( f ) = p̂(y)t (Mt,t+1( f )) (3)

for any test function f on the observation space and a suitable
Markov kernel Mt,t+1 which models the transition from time
t to time t +1.

C. Update

The update of the particle filter is performed using Impor-
tance Sampling with Rejection Correction (see [8]), which
will be discussed in the following subsection. After that, the
HISP filters are updated in dependence on the resampled
sensor states.

1) Resampling: In particle filtering, a crucial element is to
resample the particles according to their respective weights;
in the present case, the likelihood function of the individual
HISP filters provides a suitable weighting via

ŵn = L(Zs
t ;Y n

t ,ξ
n
t ),

Here, L(Zs
t ;Y n

t ,ξn) denotes the likelihood of the set Zs
t

dependent the hypotheses Y n
t carried by the nth particle with

state ξn. A possible specific formulation will be defined later
on (cf. (12)).

While the prediction is done by sampling from the old
particles according to the underlying motion model under the
assumption equal weighting, the resampling in the update is
performed according to the importance of each particle given
by their respective likelihood. In other words, particles with
high weights wn have higher probability to create offspring
than the low-weighted estimations. Hence, we can write the
particle distribution for the resampling as a weighted sum of
Dirac functions

α =
N

∑
n=1

wnδξn ,

where δξn equals ∞ at ξn and 0 everywhere else. However,
it is not recommended to resample from a Dirac function
since such a system can diverge quite quickly. In contrast,
the distribution is made continuous by convolution with a
Gaussian kernel which will be called regularisation kernel in
the following2. In particular, let d be the dimension of the
state space Ξ and define Kh to be a Gaussian rescaled by 1

hd

with zero mean and the initial particle covariance given by
the sensor motion model, d denoting the dimension of the
state space. Thus, the resampling distribution becomes

π(ξ ) :=
N

∑
n=1

wnKh(ξ −ξn).

The usage of a regularisation kernel spreads the new
particles in the proximity of the respective particle instead
of just reproducing it which helps to keep up the diversity
of the particle set.

Still, if the weights of the particles are very different from
each other, a single resampling from π could still lead to
a loss of diversity by only generating new samples from
the components with high weights. In [14], a progressive
resampling process is proposed which iteratively ”flattens”
the distribution by potentiation with a factor cl < 1 and
resampling therefrom; the series (cl) slowly converges to
1 over a certain number L of iterations until the original
density is regained in the Lth step. This method effects in a
less aggressive selection of suitable particle positions.

Furthermore, rejection correction is used to prevent being
stuck in local maxima, inspired by the approach of Markov
Chain Monte Carlo sampling [14]. Thus, a newly sampled

2In fact, other symmetric probability density functions like the Epanech-
nikov kernel can be used, see [14].



particle ξ̂ is rejected and set to its previous state ξ with prob-
ability

min

{
1,k

L(Zs
t ;Y s

t , ξ̂ )

L(Zs
t ;Y s

t ,ξ )

}
for a positive constant k which is a tuning parameter of the
algorithm.

2) The Update of the Daughter Process: In the cor-
rection, the sensor estimator is dependent on the multi-
object estimator since the measurements are only observed
indirectly through the daughter process (see [7]). Thus, let
us reformulate the results of [11] resp. [12] involving the
sensor state estimate. The following notation will help us to
recall the data association theorem which was first stated in
[11] and which will be used for the final update.

Assume that the state of y is in a subset By of the state
space Es,t . Furthermore, let Ŷ = {y1, . . . ,ynas} ⊆ Yt−1 resp.
Ẑ = {z1, . . . ,znas} ⊆ Zt be such that their cardinalities nas
are equal, i.e. nas = |Ŷ | = |Ẑ|. Let us describe the set of
possible matches between Ŷ and Ẑ by the set S (Ŷ , Ẑ) =
{(yi,zπ(i)) ∈ Ŷ × Ẑ|π ∈ Snas} where Snas is the symmetric
group of sets with cardinality nas. Furthermore, let us define
four sets representing the valid associations (as), false alarms
(fa), missed detections (md) resp. the remaining cases (r) as
follows:

Fas(Ŷ , Ẑ) =
⋃

ν∈S (Ŷ ,Ẑ)

×
y∈Ŷ

(By×ν(y))

 , (4)

Ffa(Ẑ) =×
z∈Ẑ

(Es,t × z), (5)

Fmd(Ŷ ) =×
y∈Ŷ

(By×φ
′
s), (6)

Fr(n) = (Es,t ×φ
′
s)

n, n > 0 (7)

where × denotes the Cartesian product. Theorem III.1 gives
a formulation for the data association between the set of
hypotheses Yt−1 and the observation set Zt at time step t.

Theorem III.1 (Data association, [11]). The measurable
set which describes the problem of the association of the
measurement Zt and the set of hypotheses Yt−1 at time t can
be described by the map

F�(Yt−1,Zt , n̄) =
⋃

Ŷ⊆Yt−1,Ẑ⊆Zt
|Ŷ |=|Ẑ|

Fas (Ŷ , Ẑ)×Ffa(Ẑc)

×Fmd(Ŷ c)×Fr(n̄−|Ẑc|),

where Ŷ c and Ẑc denote the complements of the set Ŷ resp.
Ẑ in Yt−1 resp. Zt .

F�(Yt−1,Zt , n̄) describes all possible associations with the
resulting false alarms and missed detections for different
choices of Ŷ resp. Ẑ, where n̄ denotes the number of indis-
tinguishable individuals. Choosing an appropriate measure
p� for each part, it is possible to measure the associated
probability. This result will be used in the following.

Theorem III.2 (HISP filter update in a calibration process).
Let n̄ denote the number of indistinguishable objects and
assume a likelihood function gt(·|·). The association measure
of a fixed z ∈ Zt with any y ∈ Yt−1 dependent on the sensor
state ξ is given by

p(y,z)t,z = ∑
ξ∈St

η̂(y,z, n̄,ξ )

∑ξ ′∈St ∑y′∈Y s
t−1

η(y′,z, n̄,ξ ′)
Ψĝt (z,·)

(
p(y)t (·|ξ )

)
(8)

where η̂(y,z, n̄,ξ ) resp. η(y,z, n̄,ξ ) are defined as

η̂(y,z, n̄,ξ ) = p(y)t (ĝt(z, ·)|ξ )pΞ
t (ξ )w(y,z, n̄,ξ ).

η(y,z, n̄,ξ ) = p(y)t (gt(z, ·)|ξ )pΞ
t (ξ )w(y,z, n̄,ξ ),

and Ψĝt (z,·)

(
p(y)t (·|ξ )

)
is the so-called Boltzmann-Gibbs

transformation which performs the update on the underlying
filters. Furthermore, the function ĝt(z, ·) = 1Xt gt(z, ·) dis-
cards false alarms. Analogously to (8), define the association
measure between a given y ∈ Yt−1 and any z ∈ Zt via

p(y,z)t,y = ∑
ξ∈St

η(y,z, n̄,ξ )

∑ξ ′∈St ∑z′∈Zs
t
η(y,z′, n̄,ξ ′)

Ψgt (z,·)

(
p(y)t (·|ξ )

)
. (9)

The expressions w(y,z, n̄,ξ ) describe the joint probability
of all hypotheses and measurements w.r.t. particle ξ without
the pair (y,z), where

w(y,z, n̄,ξ ) = p(·,ξ )� (F�(Yt−1\y,Zt\z, n̄)),
w(ys,z, n̄,ξ ) = p(·,ξ )� (F�(Yt−1,Zt\z, n̄−1)),

w(y,φ ′s, n̄,ξ ) = p(·,ξ )� (F�(Yt−1\y,Zt , n̄)).

With (8)/ (9) and indicator function δφs , the updated law
is calculated via one of the following equations:

p̂(y,z)t =
(

1− p(y,z)t,z (1)
)

δφs + p(y,z)t,z (y ∈ Y s
t−1,z ∈ Zt) (10)

=
(

1− p(y,z)t,y (1)
)

δφs + p(y,z)t,y (y ∈ Yt−1,z ∈ Zs
t ).(11)

Proof. The equality in (8) can be shown by writing down
the definition of the Boltzmann-Gibbs transformation as in
[11] and insert the joint probability p(y)t (·|ξ )pΞ

t (ξ ):

Ψĝt (z,·)

(
p(y)t (·|ξ )pΞ

t (ξ )
)
(dx) =

ĝt(z,x) p(y)t (dx|ξ ) pΞ
t (ξ )∫

p(y)t (ĝt(z,dx)|ξ ) pΞ
t (ξ )

=
ĝt(z,x) p(y)t (dx|ξ )∫

p(y)t (ĝt(z,dx)|ξ )
= Ψĝt (z,·)

(
p(y)t (·|ξ )

)
(dx).

Equation (9) follows analogously. For the proof of the
general HISP update and details on the involved functions,
we refer to [12].

Note that the update of the HISP as described in III.2
is a rescaled version of the original HISP update since the
additional term in the Bayes rule vanishes. As a consequence



of the theorem, we choose the likelihood of a measurement
set Zs

t given the particle ξ to be

L(Zs
t ;Y s

t ,ξ ) = ∑
ξ ′∈St

∑
y′∈Y s

t−1

η(y′,z, n̄,ξ ′)

= ∑
ξ ′∈St

∑
z′∈Zs

t

η(y,z′, n̄,ξ ′)
(12)

which comes directly from the denominator in the HISP
calibration update (8) resp. (9). Note that the second equality
in (12) holds since the set S (Ŷ , Ẑ) described above can be
written in each of the following ways:

S (Ŷ , Ẑ) =
⋃

yi∈Ŷ

{(yi,z j)|z j ∈ Ẑ}=
⋃

z j∈Ẑ

{(yi,z j)|yi ∈ Ŷ}.

We also have to include the dependency on the sensor
state in the definition of the values w(y,z, n̄,ξ ) since these
joint probabilities are also affected by the newly introduced
sensor state.

Theorem III.3. Let p(y,z,ξ )t = p(y)t (g(z, ·)|ξ )pΞ
t (ξ ). Then

w(y,z, n̄,ξ ) = Cas(y,z,ξ ) C f a(z,ξ ) Cmd(z,ξ ) Cr(z,ξ )

where the sets C� are defined as

Cas(y,z,ξ ) = ∑
(Ŷ ,Ẑ)∈At (y,z)

 ∑
ν∈S (Ŷ ,Ẑ)

∏
ȳ∈Ŷ

p(ȳ,ν(ȳ),ξ )t p(ys,φ
′
s ,ξ )

t

p(ȳ,φ
′
s ,ξ )

t p(ys,ν(ȳ),ξ )
t

 ,
C f a(z,ξ ) = ∏

z∈Zt\z

p(ys,z,ξ )
t

p(ys,φ ′s ,ξ )
t

,

Cmd(y,ξ ) = ∏
ȳ∈Yt\y

pt(ŷ,φ ′s,ξ ),

Cr(n̄,ξ ) = (p(ys,φ
′
s ,n̄)

t )n̄.

and At(y,z) is the set of admissible sets of the form

At(y,z) =
{
(Ŷ , Ẑ) | Ŷ ⊆ Yt−1\y, Ẑ ⊆ Zt−1\z, |Ŷ |= |Ẑ|

}
.

Proof. Evaluate the projection of p� on Fas, Ff a, Fmd and Fr
separately:

p�(Fas(Ŷ , Ẑ)) = ∑
ν∈S (Ŷ ,Ẑ)

∏
y∈Ŷ

p(y,ν(y),ξ )� (By×ν(y)),

p�(Ffa(Ẑ)) = ∏
z∈Ẑ

p(ys,z,ξ )
� (Es,t × z),

p�(Fmd(Ŷ )) = ∏
y∈Ŷ

p(y,φ
′
s ,ξ )� (By×φ

′
s),

p�(Fr(n̄)) = p(ys,φ
′
s ,ξ )� ((Es,t ×φ

′
s)

n̄−|Ẑc|)

= p(ys,φ
′
s ,ξ )� (Es,t ×φ

′
s)

n̄−|Ẑc|.

The result is obtained via factorisation of the above.

IV. EXPERIMENTS

In order to evaluate the performance of the proposed
approach, it will be contrasted against the PHD based cali-
bration introduced in [10].

Two scenarios are simulated to highlight different aspects
of the calibration. The drift which will be estimated is set

(a) The first scenario involving three targets
with constant velocity whose initial value is
Gaussian with σ = 1.

(b) The second scenario showing three static
targets having small white noise with σ = 0.1.

Fig. 2: Examples of the two test scenarios for the algorithm
evaluation, estimating a linear drift with constant velocity
(0,1) over 100 frames. The ground truth is shown in green,
whereas the simulated measurements are plotted in red. The
blue marks indicate the total background clutter.

to have a constant velocity of (0,1) throughout all runs,
where 1000 particles are used. For the sake of computational
complexity, the number of simulated molecules which are
present in each frame is set to 3. In both cases, we generate
100 square images of size 512px × 512px, and independent
and identically distributed (i.i.d.) background noise is intro-
duced whose cardinality is Poisson with mean λ = 3. The
probability of detection is set to 0.9.

To cope with the randomness of the particle filter, the
results are averaged over 20 Monte Carlo runs.

A. First Simulation

The first scenario assumes a linear movement on the three
objects on in random, but fixed directions up to a small white
noise. Their initial positions are set to random, i.i.d. positions
in the field of view. An example of the total plot of one
Monte Carlo run is shown in Fig. 2a, showing the true
positions over all frames in green and the simulated, drifting
measurements in red.



(a) The drift estimation error in the first scenario over time.

(b) The drift estimation error in the second scenario over time.

Fig. 3: Error plot showing the Root Mean Square Error
(RMSE) of the drift position vector over time, averaged over
20 Monte Carlo runs. The crosses mark the PHD filter re-
sults, the circles stand for the HISP calibration performance.

In this simulation, the system will be supported by initial-
ising the velocity vector to the true state (0,1). Like this, it
is possible to determine to which extent the movement of the
targets affects the drift estimation. Resampling is performed
with rate c = 0.8.

The Root Mean Square Error (RMSE) of the estimated
sensor drift over time gives a useful visualisation of the
filter’s behaviour. Fig. 3a illustrates that gradually, the un-
certainty in the movement of the targets results in growing
uncertainty in the drift estimation, yet the error is still
reasonably low. However, it can be noted that the HISP
filter calibration (marked with ◦) shows an overall better
performance, arriving at a mean RMSE value of under 0.1,
whereas the PHD calibration error (marked with ×) rises to
an average value around 0.2.

B. Second Simulation

In the second case, the three targets are initialised as
static objects on random, i.i.d. positions with a small white
noise (cf. Fig. 2b). The measurement and motion models
for the PHD/HISP filtering are intialised accordingly to the
parametrisation of the simulated data, and the resampling
rate c is set to 0.2.

In contrast to the first case, the particle positions are
initialised at zero position with random velocity, i.e. now,
the filter has to estimate the sensor drift without prior
knowledge about its true value. Consequently, we set the
initial uncertainty of the particle position to 1.1 and the
standard deviation of the velocity to 0.1 such that the particle
filter has the possibility to explore the state space.

If we plot the RMSE between drift estimate and ground
truth against time again (Fig. 3b), it can be seen that the
HISP filter outperforms the PHD approach by a factor 2 : 3.

V. CONCLUSION

A novel sensor calibration method has been derived based
on the Hypothesised filter for Independent Stochastic Popu-
lations (HISP). First experiments showed that it outperforms
the existing PHD filter approach already for simple scenarios
with high detection rate; even better performance can be
expected in scenarios with low detection probability since
the classic HISP filter was previously proven to handle low
detection rates better than the PHD filter. Thus, the HISP
calibration could be of invaluable importance for the analysis
of super-resolution images in biomedical applications since
it makes the usage of reliable markers obsolete.
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Semi-supervised Learning for Medical Image Segmentation

Viktor Stefanovski

Abstract— Semi-supervised learning represents novel ma-
chine learning concept incorporating supervised and unsuper-
vised learning procedures. In this paper image segmentation
model based on semi-supervised learning with the help of
decision forest is presented. The model incorporates supervised
learning and furthermore semi-supervised learning procedures
that can be used for medical image analysis. Through variation
of numerous synthetic data as well as real data scans the validity
and importance of the developed model is demonstrated.

I. INTRODUCTION

The art of Image Segmentation consists in successful
separation of given image into separate regions of interest
or even more specifically separate segments containing same
or at least similar features. It represent important part of the
Computer Vision science and it serves as analytical tool of
spatial content of pictures.
One of the hottest topics as of late in the field of machine
learning is the semi-supervised method of learning. With its
help a set of previously unlabelled and even unseen data can
be segmented to a high level of certainty with the help of
previously labelled data.
Starting from the idea of self-learning which appeared in
1965, going through supervised learning we come to semi-
supervised learning as a popular approach in most recent
times. What this basically represents is a combination of
the supervised and unsupervised learning, or using unlabeled
data (or in some cases previously unseen data) as well as
labelled data with the goal of improving the accuracy of the
learning procedure. Semi-supervised learning is based upon
the following necessary assumptions:
• Smoothness assumption - the label function is smoother

in high-density regions as opposed to low-density re-
gions

• Cluster assumption - points of same cluster are very
likely to be in same class, and

• Manifold assumption - high-dimensional data lies on a
low-dimensional manifold

Semi-supervised methods have transductive nature, which
means that they have the task of assigning class labels to
already available unlabelled data points. On the other side
of the spectrum is the inductive principle, characteristic of
the supervised methods, where previously unseen test data
is labelled with the corresponding class.
Majority of applications of the semi-supervised learning
come from the Medical Image Analysis branch, such as [11],
[12], [13], [16] and [7]. Nevertheless, the semi-supervised
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EH6 5NP Edinburgh, Scotland, UK Vstefanovski@tmvse.com

approach finds broad occupancy in other branches like
biology - [3] and [14], video segmentation [2], activity
recognition [1] and text classification [15]. It can even be
used in conjunction with boosting technique, as stated in [9].
Although semi-supervised learning’s classes of algorithms
may not be explicitly derived from all of the previously
mentioned assumptions, in general they implement one if
not more of them. So according to the specific assumption
behind them, algorithms are separated into the following
three classes:
• Generative Models
• Low-Density Separation, and
• Graph-Based Methods

Alternatively, in most recent times the co-training technique
has made its way into the semi-supervised learning world.
The idea of co-training lies behind the consideration of two
or even multiple views of objects to be classified, which
in reality can be considered to represent a special case of
Bayesian inference using conditional priors.[8]
This paper is organized as follows: Section II gives the
problem description and methods used in performing the
semi-supervised segmentation. The implementation of the
methods used is explained in details in Chapter III. Section
IV presents the results of the supervised and semi-supervised
segmentation experiments for both the synthetic and real data
and gives their evaluation. In section V the obtained results
are discussed and lastly in Section VI conclusions are drawn
and future work is formulated.

II. METHODOLOGY

A. Decision (Random) Forest

Randomly trained forests (or Random Forest) on high
level is two-phase process, consisting of: ”off-line” phase
- training and ”on-line” phase - testing.

1) Training phase: Essentially, the training phase is taking
care of finding the type and parameters that given a training
set optimize a chosen objective function at each node j -
maximizing the information gain by searching over a discrete
set Sj of possible parameter settings Θ:

Θj = argmaxI (Sj ,Θ) (1)

The formula used above, and all of the remaining formulas
in this paper originate from Criminisi’s book.[5]
Here we are still considering a fully supervised decision so
the Information Gain has the following structure:

I (Sj ,Θ) = H
(
S̃j

)
−

∑
i∈[L,R]

∣∣∣S̃i
j

∣∣∣∣∣∣S̃j

∣∣∣H
(
S̃i
j

)
(2)



where the entropy of the subset S̃ ∈ S∩L of training points
is: H(S̃) =

∑
c p(c) log p(c)

2) Test Phase: Tree testing, or the ”on-line” phase’s task
is to label (segment) the data (input test images). This process
lasts until the point has reached a leaf node. Here, in the leaf
nodes, are contained the classifiers also known as predictors
or estimators which associate output with the input v.
The output can be hard or soft probabilistic output.

B. Semi-Supervised Segmentation Forest

In the name of the algorithm there is the notion of semi-
supervised, referring to semi-supervised learning - subdisci-
pline of machine learning. This implies the learning method
used when training the segmentation forest. More precisely,
semi-supervised learning, same as supervised learning, is
twofold process, consisting of training phase and test phase.
Firstly, during the training phase classifier is trained, and then
used during the test phase for assigning class labels to the
different tissues (organs, air, bones etc.) which are present
in the test images.
During training every tree is trained independently to each
other. For the purpose of training a feature vector repre-
senting the feature space and feature vector representing the
Ground Truth labels are extracted from the input (training)
images. By feature space is implied either the composition
of intensity values of either each individual pixel/voxel only
or the composition of every pixel/voxel together with their
immediate, or further neighbours.
During the test phase, the extracted classifier (model) is
used in conjunction with the feature vector obtained from
the test images to assign the corresponding class statistics
(histograms). The results comprise of hard probabilistic
histogram-based probability vectors which determine the
label to be assigned, as well as soft probability clouds.
In order for the result to be meaningful, the training labels
should be of discrete, categorized type, so that the output
result classes can be of the same type.
The main ingredient making the process semi-supervised is
encompassing information for both the labelled and unla-
belled pixels/voxels in the images. What this means is that
both information from unlabelled and labelled samples are
used for the optimization of a training objective function.
Effectively, this implies that the training phase will be
achieved by optimizing parameters in each node of the forest.
The function used represents decision evaluation function
whose purpose is maximizing a mixed information gain. By
mixed information gain we refer to the following:

I (Sj ,Θ) = IU (Sj ,Θ) + αIS(Sj ,Θ) (3)

where IU is the unsupervised term depending on all the un-
labelled data used, and IS is the supervised term depending
naturally on all the labelled data used. α is the factor that is
used to weight the two terms.
IS is given in equation (2), whereas IU is defined via the

differential entropy of a multivariate Gaussian density:

IU (Sj ,Θ) = log|Λ(Sj)|
∑

i∈[L,R]

[Si
j ]

[Sj ]
log|Λ(Si

j))| (4)

where Λ is the determinant of the corresponding covariance
matrices S.
All of this information is used for training and correspond-
ingly testing weak learners. There are multiple types of weak
learners such as: Conic section learner, distance learner, 2D
linear decision learner etc. but in the current implementation
only the decision stump weak learner is used. It looks along
a random subset of dimensions of the presented data, and
based on a certain criterion selects threshold that maximize
the previously described Information Gain in class labels.
The tree training procedure is where the class statistics. i.e.
where the propagation of data takes place while training
weak classifiers at each node. This class statistics actually
represent the leaf distribution in the tree and are represented
by accordingly normalized histograms.
The class labeling employs the Maximum Posterior Probabil-
ity approach and not the Likelihood approach. This is done
by incorporating equal priors to each class which discourages
overwhelming the learners from a dominant class in an
image.
On the top level of the algorithm we can find the dis-
crimination of the leafs which contain only unlabelled data,
effectively called unlabelled leafs or both labelled and un-
labelled data, referred to as mixed leafs. And accordingly,
when performing the semi-supervised learning procedure, the
respective label propagation.

C. Label Propagation

Using only a certain partition of labelled data underlines
the need of this so-called label propagation function which
has the task of propagating the annotated labels to the avail-
able un-annotated samples. Most effective way of performing
this propagation procedure is by minimizing a geodesic
distance function which actually employs minimization of
the generic geodesic distance formula by finding the shortest
geodesic path. More elaborate explanation of this geodesic
function minimization is given in [5].
Alternatively, there exists a very useful approximation which
is implemented in the developed algorithm. It stats that if
leafs belonging to same cluster can be associated with the
same Gaussian, then the label propagation can be imple-
mented throughout this approximation stating that we can act
upon each leaf cluster, as opposed to each individual point.
Algorithm 1 shows short outline of the performed tasks.

The local distances d(-,-) are defined by the symmetric
squared Mahalanobis distance formula:

d(si, sj) =
1

2
(dij

T Λ−1l(vi)
dij + dij

T Λ−1l(vj)
dij) (5)

where dij = si − sj and Λl(vi) the covariance associated
with the training data at the leaf reached by the point vi in
the lth tree.



Data: Label Propagation Algorithm
Result: Assigns labels to unlabelled leafs
initialization;
while All the trees have been trained do

for Every tree do
for Every leaf do

Find unlabelled leafs;
Find mixed leafs;
Calculate local distance between unlabelled
and mixed leafs;
for Every unlabelled leaf do

Assign nearest mixed leaf class label to
all points

end
end

end
end

Algorithm 1: Label Propagation Algorithm

D. Synthetic Data

Initially, synthetic three-class problem was developed. The
objective of this was facilitating the process of understanding
and grasping the concepts used when working with decision
forest (also known as random forest). The idea behind
this is starting with simple environment and then gradually
moving towards more sophisticated and complex problems,
by constantly upgrading the algorithms.

E. Real Data

There could be up to hundreds or even thousands of
virtual slices in one CT volume. To simplify the experiment,
we reduced the problem to two dimensions by selecting a
single slice from each CT volume. Selection of the ground
truth slices was made by an anatomist at Toshiba, where
using the specific company tools secondary captures with
meaningful information were selected and extracted across
dozen datasets.
Consequently, these secondary captures were used for man-
ually labeling Ground Truth of the organs that were visible
across each individual image. The end product was Ground
Truth containing 5 classes. Those classes are respectively:
Left Kidney, Right Kidney, Aorta, Vertebra and Background.
The background encompasses the rest of the organs and other
entities in the bounds of the scanned body as well as the area
outside the body.
First step in this dicom image transformation is transform-
ing the pixel intensities in the raw images to their HU
(Hounsfield Units) value by using the dicom tags RescaleS-
lope and RescaleIntercept. Effectively this is done by the
following formula:

Im(HU) = inIm∗ReSlope(inIm)+ReInter(inIm) (6)

Ultimately, because of the size of the input images (512x512)
we choose to rescale (downscale) them by a factor of 4 to
reduce training and test time. The actual (final) rescaling

factor used represents the ration between the values of the
PixelSpacing tag and the downscaling factor used.

III. IMPLEMENTATION

All the code was developed under the Matlab R2014a
platform. During initial familiarization with the concept of
decision forests, open source implementation of the fully
supervised decision forest was discovered.1. Semi-supervised
segmentation encourages labelled training data separation as
well as high-density regions separation. Practically this is
done by maximizing a mixed Information Gain. By mixed
Information Gain is implied that there is unsupervised term
which is defined in congruence with the weighted by the
parameter alpha supervised term. This equation is given
by the formula in (3) where effectively the unsupervised
Information Gain (4) has the value of the difference between
the logarithm of the determinant of the covariance matrix of
the descriptor and the logarithms of the determinants of the
covariance matrices in the right and left children nodes, all
normalized by the n-th root of the dimension of the size of
the descriptor in terms of number of features.

A. Label Propagation

Practically, this is implemented by going through all the
trees in the forest and all of their leafs and finding the
pseudo-inverse covariance matrices while getting rid of the
first dimension of the covariance matrices which indicates
the number of unlabelled/mixed leafs. In [6] we can find
the detailed explanation of the geodesic distance transform
algorithm.

IV. RESULTS

Key questions to be answered by evaluating the results of
this section are: How does semi-supervised results compare
to supervised results and are they viable option in performing
the segmentation of medical images? What are the optimal
forest parameters values to be used for training the forest
models, and why have they been chosen? How does the
number of supervised (labelled) samples, and additionally
how does the number of unsupervised (unlabelled) samples
affect the segmentation process?

A. Synthetic Data Supervised Results

In Fig. 1 we can observe the test results of supervised
segmentation using optimized forest parameters. The result
obtained for the supervised segmentation is mean error of
0.21%.

B. Synthetic Data Semi-Supervised Results

The result error rate for the semi-supervised segmentation
is very close to the error rate for the supervised experiments
making it theoretically viable option for segmenting large
datasets which do not have to be densely labelled.
In the next table - (Tab. I) we can observe the results of semi-
supervised segmentation on synthetic data when only half
labelled samples are taken into consideration while using 100



Fig. 1: Supervised segmentation test phase. Ground Truths
(left), test images(center) and result(right)

TABLE I: Different percent of labelled data used for
Semi-supervised segmentation

Semi-supervised learning using various percentage of labeled samples
Labelled samples Propagation t Train t Test t Mean Error

100% N/A 69 sec 13 sec 0.035%
80% 216 sec 82 sec 14 sec 0.045%
50% 1477 sec 93 sec 14 sec 0.06%
25% 4066 sec 91 sec 13 sec 0.08%
5% 8122 sec 91 sec 13 sec 0.135%
1% 5951 sec 91 sec 14 sec 0.39%
0% N/A 0.4 sec 1 sec 100%

trees and the process of label propagation. The 100% is the
supervised case. Further along, when decreasing the percent
of sampled data used the label propagation time increases
as well as the error rate. The training and test time on the
other hand remain practically the same. Nevertheless we can
see that for 1 percent data (only a handful of pixels) still
the error rate is considerably inside the limits of reasonable
error. In the 0 % case there will be 100% error because
if there is no labelled data then there are no samples. In
the following figures - (Fig. 2 and Fig. 3) we can see
the results when taking only 10 percent of labelled data.
When introducing the notion of semi supervised learning

and consequentially the mixed information gain one of the
most important parameters is the α parameter (3.4). The
appropriate tuning of this parameter is important for result
smoothing. Having said that we should bear in mind that the
above-mentioned point made that results from the synthetic
data experiments are very robust. But still taking non-random
or non-constant value for α is better alternative than not
doing so. After a long series of experiments the following
graph (shown on Fig. 4) describing alpha experiments was
used for creating the appropriate alpha weighting function.

1available at https://github.com/karpathy/Random-Forest-Matlab

Fig. 2: Semi-supervised segmentation training phase.
Samples used (left), Ground Truth (center left) test images

(center right) and results (right)

Fig. 3: Semi-supervised segmentation test phase. Ground
Truth (left) test images (center) and results (right)

Fig. 4: Experimental results from the alpha tuning
procedure

C. Real Data Supervised Results

For the real data experiments we are working in 2D
environment, where given a image slice of the abdominal
area the objective is segmentation of the kidneys, vertebra
and aorta, which are visually distinguishable. Leave-one-out
experiments are performed by taking all the images of the
dataset except one for training and the remaining image for



testing. Note that all the images used in this section will have
the same structure when it comes to arrangement of the sub-
figures. For the training phase the 4 consequent images when
going from left to right are: labelled samples used, Ground
Truth, test images and results. For test phase there are only
3 sub-images: Ground Truths in the left, test images in the
center and results in the right hand side.
In Fig. 5 we can observe the training and test phases when
considering fully supervised segmentation, meaning 100%
of points used are labelled. The result of the supervised

Fig. 5: Train results (top) and training results (bottom) of
the supervised segmentation on real data

segmentation on the test image in the figure above is mean
error of 2.53%.

D. Real Data Semi-Supervised Results

We can talk of performing semi-supervised segmentation
when only a percent of labelled data has been used for seg-
menting the images of interest. In the following experiments,
if not stated otherwise, 80% of labelled samples have been
used. Ideally, only very small percent should be used, e.g.
5% or even 1% of labelled data and ultimately this points
should be no more than a dozen, i.e. handful of samples

manually set by a radiologist or a surgeon.
There are multiple parameters whose role is pivotal in the
best functioning of the semi-supervised learning algorithm
designed for segmentation of the Computed Tomography
(CT) images. These parameters and respectively their op-
timized values used across the following experiments are:
• alpha - 3000 - could be simply over-fitting but clearly

alpha need to have value of a forth rank number
• tree depth - 15 was chosen. The deeper the trees the

better the results are but also the depth underlines
considerably longer training time.

• number of splits - 2000 which means effectively that 40
features from the feature vector are considered, and

• window size - 7x7 window was considered. Gives better
result than when considering larger windows

After all of these parameters have been optimized there is
only one more parameter to be examined which is the most
important. That is the number of trees that the algorithm
needs to produce as good as possible results. In Fig. 6 we
can see the results when using different number of trees for
training. One of the main points of using the semi-supervised

Fig. 6: Test results when using different number of trees T
= number of trees

approach of learning for segmentation of medical images
is the effect of result improvement when increasing the
number of labelled (supervised) samples. On the following
figure (Fig. 7) we can observe the described effect. Starting
from 10% and going through 50% and 90% and arriving to
100% which is the supervised case the error rate constantly
improves. Results obtained from semi-supervised learning
are comparative with high reliability to results produced by
supervised learning, and represent more viable option for
segmentation because semi-supervised segmentation can be
performed on sparse Ground Truth images.
Another important property of using the semi supervised
approach is the effect produced by varying the number
of unlabelled (unsupervised) samples while using a small
percent of supervised (labelled) data. The inspiration to



Fig. 7: Labelled data percent VS Segmentation Error

explore this option comes also from Criminisi’s book [5],
although there are no experiments directed towards proving
this in the book.
In theory, by introducing new points (previously unseen),
which is equivalent to unsupervised or unlabelled points the
results should get better. In practice, this is not the case in
statistical sense because of the sampling procedure which
will be elaborated in broader manner when evaluating the
results, but on the other hand the visual effect of the process
of introducing unlabelled points provides the desired proof
of the improvement in segmentation.
Fig. 8 contains the results of the experiment of this sort.
Namely, only 10% of labelled pixels are used and from
the remaining unlabelled pixels a varying portion from
0% to 100% is used. If this percent is less that 100 the
unused unlabelled pixels are removed from the descriptor.
By looking at the curve it is clear that the error fluctuates.

Fig. 8: Unlabelled data percent VS Segmentation Error

Ideally it should be a steady slope of error decrease. This
is due to the randomness in sampling. For example, when

taking 10% and 40% they sample different portions of the
pixels, meaning the 40% do not contain the 10% sampled
in the previous experiment plus other 30% but new 40% of
pixels, most of which are probably not correlated with the
previously sampled 10%. As proof of this is the sudden dip
in the segmentation error rate when 90% of unlabelled points
are used. But main evidence that using unlabelled points
rather than not using them at all is obvious when looking
at the terminal cases: 0% and 100% outputs.
Figures 9 and 10 contain the test results for the terminal
cases: Although the error rate of the 0% case is smaller the

Fig. 9: Test result with 0% unlabelled points when 10% are
labelled

Fig. 10: Test result with 100% unlabelled points when 10%
are labelled

result is far worse. Clearly by looking at the two images we
can conclude that in the latter (100%) case all the organs
are better segmented, i.e. more pixels corresponding to them
are segmented. The organ contours are almost connected.
Reasons for the greater error rate in the 100% case is the



power of the cheat feature which forces greater number of
the pixels of the vertebra to be segmented as pixels of the
corresponding kidneys, as well as the increased phantom
pixels segmentation. Phantom pixels refers to the pixels atop
the left kidney (right in the image) belonging to another
organ, probably the small bowel. The results obtained in
the latter image can be more easily solved by introducing
more sophisticated geometrical-based features or some post-
processing techniques, such as morphological technique e.g.
hole filling (dilation).

V. DISCUSSION

With the help of the machine learning concepts,
segmentation of real data has been achieved. By doing this
proofs are given that not only the supervised or labelled
data plays a role in the segmentation process but that the
unsupervised or unlabelled data is also responsible for
improvements when performing the segmentation task.
Semi-supervised segmentation can produce results
comparable to fully supervised segmentation, while
requiring sparsely annotated Ground Truth and considerably
longer time, primarily because of performing label
propagation. When increasing the amount of labelled data
points used the confidence of the results increases. Same
goes when increasing the number of unlabelled data points.
This corroborates with other research on the same topic.
Variations of the forest parameters affects results, both in
terms of accuracy and time. There is always reciprocity
between the accuracy and time aspects. Increase in accuracy
underlines increase in time of execution, and vice versa.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

The study presented in this paper was set up to explore the
semi-supervised segmentation, as opposed to the supervised
or self-learning techniques from which the notation of semi-
supervised learning originated. After doing literature review
on the existing approaches a suitable semi-supervised learn-
ing algorithm was selected - semi-supervised segmentation
forest.
Difficulties in pinpointing appropriate slices and their ex-
traction from CT datasets are one of the main limitations to
obtaining more credible results. According to the justified
anticipation synthetically created data is highly robust in
term of results underlining majority of presented output to
be based on real data. Here, it should be noted that big
pixel intensity range and similar values additionally impede
segmentation outputs. Optimization of forest parameters is
instrumental in refining resultant figures.

B. Future Work

By accomplishing this study an evaluative perspective has
been offered in increasingly important field in the Medical
Image Analysis area. This has every ingredient needed to
mature into reliable segmentation procedure on a larger scale,
segmenting full 3D data scans instead of the 2D extracted

slices. Concerning the aforementioned results improvements
a post-processing techniques, such as morphological tech-
niques can be used for enhancing the obtained results.
On a deeper level, improvements for semi-supervised learn-
ing may be achieved by optimizing of the existing weak
learners such as the 2D linear learner, conic section learner
or the distance learner. Another aspect where improvement
can be tangible is the propagation of labels. Here instead of
the implemented approximation, the actual minimization of
the Geodesic distance function taking into consideration the
shortest Geodesic path should be incorporated.
The noisy results of optimization of the forest parameters
such as the tree number and the effect of increase of
unlabelled data used when fixed number of sampled data
is considered can be taken care of by refining the sampling
procedure, or more specifically by taking seeds and growing
trees additively taking percentages iteratively by preserving
the previously sampled data across experiments. Finally,
testing the whole procedure on larger training set would be
ideal for obtaining more reliable results.
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Abstract— Current approaches to solve deformable 3D recon-
struction from monocular views can be classified into template-
free that explore the use of a set of images containing distinctive
deformations to model at the same time both the 3D position of
the object and camera motion, and template-based techniques
that depend on a supporting image with a known 3D model
(so called template) to carry out the reconstruction from an
additional image. Both of the aforesaid methods suffer from
limitations inherent to their nature. Moreover, by using an
object database it is possible to mitigate some of the drawbacks
of both template-free and template-based methods. In this paper
we explore the possibility of dynamically expand a database
with a collaborative model that allows user interaction. In other
hand we use feature-based object detection and explore a color-
based approach to bootstrap the performance and alleviate the
computational burden of the matching process.

I. INTRODUCTION

Monocular non-rigid 3D reconstruction has been exten-
sively studied in the recent years [6], [7], [25]. Despite this
fact, it still lies behind rigid 3D reconstruction, an area where
several techniques have already reached a maturity that make
them robust and reliable. Well-developed techniques such
as Structure-from-Motion (SfM), Shape-from-Shading (SfS),
Shape-from-Focus (SfF), and other Shape-from-X techniques
are already available in commercial and scientific domains.
It is now possible to make 3D reconstruction of a rigid object
using a mobile phone [27].

Current approaches to solve deformable 3D reconstruction
from monocular views can be classified into template-free
[10], [30] that explore the use of a set of images containing
distinctive deformations to model at the same time both the
3D position of the object and camera motion, and template-
based techniques that depend on a supporting image with
a known 3D model (so called template) to carry out the
reconstruction from an additional image.

The mentioned earlier methods suffer from limitations
inherent to their nature. Moreover, it has been prove that
by using an object database it is possible to mitigate some
of the drawbacks of both template-free and template-based
methods [2].

We propose to complement the idea presented in the paper
“Deformable 3D Reconstruction with an Object Database”
[2], where a framework for object recognition and 3D
reconstruction was proposed.

The main objectives for this project are: the implementa-
tion of a module that allows the template creation at runtime,
a collaborative model where templates can be fetched from

the internet, and finally to enhance the object detection by
exploring the color distribution of the objects in the database.

With functionalities such as the addition and retrieval of
new image templates, the database dynamically expands.
This expansion cannot be controlled and naturally, at a
certain point the database could become massive. Using a
wide baseline image matching approach when a database is
considerably large is not feasible for a real-time application.
Several problems can be encountered in such a model, being
one of the most critical the computational resources needed
to perform matching against a high number of images.
Hence, a set of solutions to reduce the computational burden
of performing this operation are needed.

We propose to address this issue by creating a color
signature for each template in the database. This signature
is a Probability Density Function (PDF) modelled by a
Gaussian Mixture Model (GMM). The GMM’s are later used
to evaluate pixels in the images from a video stream to obtain
a probability map. The map is processed taking image blocks
of different sizes to compute a score τ that is later evaluated
against a threshold t. We conclude that the object is present
in the image region if τ > t.

In the later stages our object detection method relies on
detecting and matching salient features between the images,
using a light weight descriptor. We propose to speed up the
matching process by reducing the search area to particular
image locations where the objects were probably found with
the aforementioned color based detector. The matches are
then refined using a modified version of RANSAC [28]
adequate to work with deformable models. The set of inliers
is then used to estimate a Radial Basis Function (RBF)
image warp by solving a linear system for the Thin-Plate
Spline (TPS). Finally, given the estimated warps we perform
deformable 3D reconstruction for the detected objects and
display the 3D model embedded in the original image.

The rest of this document is structured as follows. §II
provides an overview of the background. §III covers the
design of the implemented system. In §IV the outputs of this
project are presented and a discussion about the system and
its drawbacks is stated. In §V a summary of contributions
is presented while comparing the original objectives and the
actual status of the project. In this section future work is
proposed.



II. BACKGROUND

Template-free 3D deformable reconstruction methods infer
the 3D model of a deformable object from a sequence of
2D projections across time in a sequence of images. The
principal requirement for this methods is to have feature
tracks with sufficient baseline between the images. These
methods make use of spatio-temporal smoothness priors to
limit the problem.

The first approach was proposed by Bregler [10], whose
influential work is being followed in multiple publications
such as [11] that takes the assumption that some of the
features are deforming throughout the sequences while others
remain rigid. In [21] an incremental approach is proposed to
estimate deformable models. The trajectory space approach
is used in [1] where the evolving 3D structure is represented
in a trajectory space by means of a linear combination of
basis trajectories. In [19] is proposed a Bayesian Finite El-
ement Method (FEM) modelling of deformations integrated
within an Extended Kalman Filter (EKF) framework.

Template-based deformable 3D reconstruction methods
require one single image, since they rely on a prior template
where the 3D shape of the object at rest is known. These
methods have two main steps: (i) registration of the input
image to the template and (ii) 3D deformable reconstruc-
tion from reprojection and deformation constraints. Some
works [22], [24] proposed convex formulations considering
inextensible deformation constraints maximizing the surfaces
depth. In [7] analytical solutions for the isometric and
conformal deformation cases were proposed. They showed
that template-based isometric surface reconstruction from a
single view registered to a template, generally has a single
solution for both developable and non-developable surfaces.

In [2] an new concept is introduced, performing de-
formable 3D reconstruction from monocular view in a novel
approach. Using object detection and multiple templates the
authors are able to reconstruct different objects from a single
image. This proposal breaks with the main limitations of
both template-free and template-based methods: there is no
need to have multiple images encoding the deformation of
the object as required in template-free methods and multiple
objects can be reconstructed at the same time contrary to the
template based methods.

The key process is the object recognition framework
that allows the selection of the right templates to obtain
deformable 3D reconstruction using Shape from Template
(SfT). Multiple templates are stored in a database that is
built offline. It contains not only appearance descriptors as
traditionally encoded recognition databases, but also specific
data about the material properties in order to ease deformable
3D reconstruction.

III. METHODOLOGY
We keep a simplified version of the system proposed in

[2], contrary to this work we do not use a hierarchical three
vocabulary tree, but instead we simply perform wide-baseline
image matching. The new model is distributed in three main
blocks with specific tasks. The first module is in charge of

loading the database, computing descriptors and generating
the GMM’s used in the object detection stage. In the second
module the object detection takes place, in addition the
3D reconstruction by means of SfT is conducted and the
display of the 2D and 3D representations of the object is
presented. In the last module the interactive template creation
and addition of new objects to the database is executed. To
provide an overview about how these blocks are connected
a state machine diagram of the system is presented in figure
1. In this diagram the four transitions between components
that can be can be executed are:

• The initialization module, linked directly to the recog-
nition mode.

• From recognition mode to template creation mode.
• From template creation mode to recognition mode.
• The exit signal that can be called from both recognition

and creation modules modes.

Fig. 1: State machine of the system: four principal transitions
connect the three modules of the system.

A. Initialization

In the initialization module all the images in the database
are loaded with their respective 3D meshes. For each image
in the database we detect and extract features using A-KAZE
[4] and the centres for the warp estimation are computed. The
camera is initialized and calibrated.

Parametric models of the probability density function of
each image are extracted. These PDF’s are represented by
GMM’s with K clusters, characterized by their means µi and
covariance matrices Σi, and weights φi:

p(θ) =
K∑
i=1

φiN (µi,Σi) (1)

Where N is a normal Gaussian probability density function.
We set the covariance matrices to be diagonal Σ = σ2I ,

assuming independence between the image color compo-
nents, which is not exactly the case but allows us to avoid
a costly matrix inversion with a small loss in accuracy.
The GMM’s are obtained using the expectation-maximization
algorithm EM as described in [9].

As a final step important variables such as the parameters
for the object detection, outlier rejection and 3D reconstruc-
tion are set. A 3D rendering context is initialized.



B. Object detection and 3D reconstruction
In the application workflow a sequential process is estab-

lished, working in such a way that the immediate next step
is performed only if the current stage has been successfully
accomplished. Otherwise the further steps are not executed.

1) Color based object detection: The GMM’s obtained in
section III-A are used to evaluate patches from the query
image, using a sliding window approach, a common tech-
nique in object detection [12], [14], [31] that exhaustively
scans the image at multiple locations and scales. Our sliding
window process works with different window sizes within
the range of 30 to 80% of the total image size, and a fixed
step equivalent to 10%.

First we evaluate the GMM model for all pixels in the
image obtaining a probability map. Then the sliding window
process takes place. We analyse each subimage window,
first converting the image patch w in a row-vector Rw,
then sorting it in ascending order. Let n the length of Rw,
z = round(0.7×n) and τ = Rw(z) If the probability value
τ is greater than certain threshold t we use all the values
that are greater than τ to compute a probability score:
PRw

= Rw(z) +Rw(z + 1) · · ·+Rw(n).
If τ < t the patch has a score of zero. The probability

score PRw serve as measurement of how likely is the object
to be present in the image, we store the coordinates and the
window size of all the evaluated windows.

2) Feature based object detection: In the second stage
of the object detection a wide-baseline feature matching
approach is used. As mentioned before, in the initialization
process features are detected and extracted from all the
images in the database. At runtime we obtain descriptors
from the query image that we proceed to match with the
descriptors from each of the images in the database.

Since the matching method follows the Brute Force and
the nearest neighbour distance ratio matching strategy, the
process requires a big amount of computational resources.
In addition the complexity of this process increases as the
database grows. Moreover, taking advantage of the previ-
ously computed probability scores we can reduce the search
area and try to match descriptors only in certain regions
of interest. In some cases we could discard images in the
database that do not contain the object.

If the probability of the object being in the image is greater
than a threshold Tc we proceed to match the descriptors,
otherwise we abort the process and check for the next object
in the database. The number of matches is then analysed,
and the outlier rejection algorithm is performed only if
the number of putative matches nMatches is greater than a
threshold Tm. It is worth mentioning that without a proper
matching refinement the warp cannot be correctly estimated
dor correctly interpolated. Due to this we must avoid outliers
in order to generate a good warp. A variant of the RANSAC
method [28] that aims to fit a 2D affine subspace onto an
observation set is used. This is due to the fact that the
projection of the first-3 principal components of the correct
matches falls in a 2D affine hyperplane relative to the thick
error of the outliers.

An additional step to enable the opportunity of reconstruct-
ing multiple instances of the same object is to do not mark
the correspondent template as already found, but remove the
keypoints that have been successfully identified as an object.

3) 3D reconstruction and rendering: Following the same
fashion, the 3D reconstruction process is attempted only if
the number of inliers is beyond a threshold Ti. First is needed
to find an image warp. This is achieved using two sets of
true matches inliersT and inliersQ. The warp encodes the
particular deformation of an object in the image [7]

We proceed to interpolate the mesh points and find the
mesh point derivatives δx, δxx, δy , δyy and δxy . These
derivatives are later used to find the solutions φ to the PDE’s
in SfT. The solutions provided are the 3D point coordinates
of the object.

The next step is to render the obtained 3D model. We
obtain the surface normals and the model is displayed using
the OpenGL library in a 3D drawing context while a 2D
projection of the grid is drawn in the 2D query image. The
flow diagram that summarizes the pipeline of this component
of the software application can be observed in figure ??. The
obtained model can be used to perform augmented reality.
Moreover, in our case we simply embed the resultant 3D
model over the original image.

C. Interactive template creation

The application provides a simple user interface that is
designed in such a way that by pressing a key the user
can change the mode, going from the Recognition mode to
the Template creation mode, see figure 1. This allows the
interaction with the application to create new templates.

The user must flatten the object and position it in an
horizontal direction, ten by using the cursor selects four
points correspondent to the object’s corners.

The corner points are needed to find the homography that
maps the template into a rectangular image with known size.
A perspective transformation is then applied and the template
is rectified. A 3D mesh is created by placing a regular grid
with a size equivalent to 10 % of the image size. Since the
object is being flattened the depth coordinate is fixed to a
constant value.

The result is displayed and the user is asked if the template
should be saved or discarded. In case the user agrees to
save the template, the image and its corresponding 2D-3D
template are stored in the disk.

1) Online database construction: Once the new template
is created and saved the user can add it to the database on
the fly. Being able to obtain the 3D reconstruction of the new
object right after the creation, without completely stopping
the application. This step is one of the main differences with
the original system where the database was built offline.

To add the template to the database online, the same set of
actions that have been done in the initialization process must
be performed, for example, obtain the corresponding GMM,
find the image keypoints, extract descriptors and finally load
in memory both the image and mesh.



2) Collaborative data model: We propose to have collab-
oration among application users. When a new template is
created the user can upload it to a server where it will be
stored and will remain available to other users. Similarly the
application provides the option for connection to the server
and download templates from other users.

IV. RESULTS

The implementation of the application is written in c++,
using the OpenCV, OpenGL and OMP libraries. The appli-
cation runs under Linux in a laptop computer with a core i5
2.3 GHz processor and 4 Gb of RAM memory.

A. Application performance

Two databases are used in our experiments, both initially
comprises 3 different objects. We used typical objects made
of paper (developable surfaces). The images in the database
have a resolution of 640 x 480 pixels. In this experiment the
computational times of each step of the pipeline are mea-
sured. First we measure the performance using the dataset
shown in figure 2, then the same process is repeated with the
second dataset in figure 3. To obtain significant data each
measurement have been repeated 50 times and the results
displayed in tables I and II are the average times.

The time employed in each step can vary depending on
several factors such as the number of descriptors detected in
the query image and the number of objects in the database.
Thus, a highly textured object will increase the computational
costs but will lead to a more accurate reconstruction. In
addition, the size of the object in the image change according
to the depth, having an object of bigger size in the image will
generate a bigger number of descriptors. Due to this more
(or less) features need to be matched. What directly modifies
the time invested time for the matching and further stages.

Fig. 2: Object dataset 1: templates used in experiments
whose results are shown in table I. In this image the 3D
representation of the templates in a flat position is displayed.
The images are arranged to show at the same time both the
3D mesh gird and a portion of the texture mapping.

B. Outlier rejection

As mentioned in III-B we use a RANSAC variant that
considers deformable surfaces to detect and prune spurious
correspondences. The input of the algorithm is a set of
matches obtained between the target image and the 2D
parameterization of the 3D template. The output is a set
of true matches, inliers. For some images the output of the
algorithm is presented in figure 4.

Process 1 Object 2 Objects 3 Objects

Undistortion 0.00043 0.00043 0.00043
AKAZE Query 73.04191 84.97628 85.91019
Matching 152.4091 218.52901 234.46101
RANSAC 7.94681 6.96366 5.82059
TPS Warp 0.14787 0.77599 0.45229
TPS Warp Derivatives 5.49202 0.34131 0.49661
Deformable 3D 0.02006 0.03936 0.05811
Normals 0.00808 0.01521 0.02302

Total 239.07 311.64 327.22

AKAZE Template * 379.501

TABLE I: Average computational time required to perform
the entire reconstruction pipeline different numbers of ob-
jects present in the image. Using a database consisting of 3
templates at resolution of 640 x 480 pixels. Time expressed
in milliseconds.

Fig. 3: Object dataset 2: templates used in experiments whose
results are shown in table II. Images from this dataset differ
from the first dataset in the amount of texture present.

(a)

(b)

(c)

Fig. 4: Results of the outlier rejection method for image
matching in deformable surfaces. A set of matches is com-
puted between the target image and the template image
using a modified version of RANSAC adapted to work with
deformable surface models. The algorithm returns a) 137
true matches from a set of 175 correspondences b) 190
true matches from a set of 270 correspondences c) 255 true
matches from a set of 285 correspondences. Blue lines depict
true matches and red represent spurious matches.

C. 3D Reconstruction
Deformable 3D reconstruction of a template from a

monocular view is achieved using a 3D template and a



Process 1 Object 2 Objects 3 Objects

Undistortion 0.00043 0.00043 0.00043
AKAZE Query 93.41091 120.78618 185.14019
Matching 198.2921 310.19501 438.10461
RANSAC 12.94168 11.39666 12.04759
TPS Warp 0.94709 1.07599 1.45349
TPS Warp Derivatives 1.49202 0.34131 0.49661
Deformable 3D 0.03001 0.05932 0.07824
Normals 0.01208 0.01821 0.02502

Total 307.13 443.87 637.35

AKAZE Template * 645.202

TABLE II: Average computational time required to perform
the entire reconstruction pipeline different numbers of ob-
jects present in the image. Using a database consisting of 3
templates at a resolution of 640 x 480 pixels. Time expressed
in milliseconds.

2D representation of this template. Once a set of clean-up
matches is computed an image warp is estimated and then
used in the reconstruction by SfT. The reconstruction of a
developable object surface is exemplified in figure 5.

(a) (b)

(c) (d)

Fig. 5: 3D Reconstruction from a monocular view. The
reconstructed object belong to the dataset presented in 2.
a) texture mapping, b) texture + 3D mesh grid, c) 3D mesh
grid. d) 2D Original image + 2D grid representation.

D. Online template creation
One of the modules created for this project allows the

online creation of new templates for the database, the outline
of the creation process described in Section III is illustrated
in figure 6, where the steps required to add a new template
to the database are presented:

• Flattening of an object of know size
• Acquisition of an image
• Selection of the 4 corners of the object

E. Color based object detection
We have tried to implement a color-based object detection,

this step has as principal task to alleviate the computational

(a) (b)

(c) (d)

Fig. 6: Online template creation example a) image of a flatten
object, b) final point selection, d) rectified image with a
set of overlapped mesh points, e) 3D mesh with its texture
mapping.

burden of matching one image with all other images from
the database. Hence, detecting objects position in a fast way
will reduce significantly the resources needed to match the
images since the sear area decreases and thus the number of
features to match become smaller.

However, the implementation of the color based object
detection did not perform as expected in terms of com-
putational speed gain. In fact the performance decreased
drastically from having 2-3 frames per second to spend
several seconds to process a single frame. This is due mainly
to the computational load generated in the evaluation step,
where a series of matrix multiplications and exponentiations
are needed to obtain the predicted value. In addition, the
number of Gaussians used to model the PDF has a strong
impact in this process. Despite the fact that the performance
was not improved with the implementation of color based
detection the algorithm shows potential to correctly detect
objects. Some result are shown in figure 7 where an example
of a positive detection is presented. In §V we provide
some alternatives to improve the detection performance and
suggest future work in this particular topic.

V. CONCLUSIONS

In this section the summary of the project outputs is
presented.

A. Summary of contributions

In this project the principal goals were set in §I, the
following list summarises the outputs:

1) We implemented an online template creation module,
contrary to the original system our software application
allows the creation of new templates without stopping
the application. The database dynamically expands
once a template is created. Allowing to directly per-
form 3D reconstruction from recent templates.

2) Collaborative data sharing, promoting the collaboration
among users the system can share templates, connect
to internet and fetch content. The system can acquire
new templates from internet.



(a) (b)

(c) (d)

Fig. 7: Color based detector using GMM’s. The template
evaluated corresponds to the third object in the database.
Detections are shown as white bounding boxes. a) original
image, b) probability of being template 1, c) probability of
being template 2, d) probability of being template 3. We can
observe a false positive detection in the left top corner of
b), true negative detection in c) and multiple true positive
detections in d).

3) Creating a color-based object detector. Currently work-
ing to improve the detection time and solve related
issues.

B. Future work

1) Color-based detector: In §IV the status of the color
based detection and its limitations are presented. We propose
some ideas to improve performance of the detector in order
to achieve real-time detection.

First by changing the colorspace to a more ”human” like
colorspace such L*a*b* will allow to separate the luminance
channel. This will create a direct impact in the algorithm
since it will make it robust to illumination changes and at
the same time will help to reduce the dimensionality of the
data.

Second, pre-computing probability Look Up Tables (LUT)
when a new template is created is a sensible thing to do, since
scanning an image with a LUT for a single channel image
at a resolution of 2560 X 1600 pixels takes on average 17
milliseconds, which will represent a great advantage against
the current implementation. A last possible action to speed
up the process is to quantise the color distribution in bins,
this will reduce even more the data dimensionality with a
certain trade of between speed and accuracy.

Another important point is the automatic selection of the
threshold value τ , which could be obtained by evaluating the
same image that has been used for create the GMM model
then test different values and analyse the behaviour of the
evaluation. A cross validation steep will be thus needed. And
at last, the output from the detector is not refined, multiple
windows overlap. A stop criteria must be set in order to stop
the detector if the object is already found in a large window
avoiding to spend time in redundant information.

2) General aspects: The application uses currently the
GUI capabilities from the opencv library, enough for a pro-

totype. Moreover a further refinement (or re-implementation)
of the GUI is definitely needed to make the application more
user-friendly and intuitive. A possible option is to use Qt GUI
creator.

In §III it is mentioned that the user can create new tem-
plates, but, if the object cannot be flattened, has a unknown
size or is not a developable surface then our basic template
creation module fails to deal with the creation process.
Thus, another technique must be employed for the template
creation. We propose to use a Structure from Motion SfM
module and to integrate it in the application.
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ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.

[13] Rui Pimentel de Figueiredo, Plinio Moreno, Alexandre Bernardino,
and Jos Santos-Victor. Multi-object detection and pose estimation in
3d point clouds: A fast grid-based bayesian filter. In ICRA, pages
4250–4255. IEEE, 2013.

[14] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and
Deva Ramanan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(9):1627–1645, 2010.

[15] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.



[16] Chris Harris and Mike Stephens. A combined corner and edge detector.
In In Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

[17] David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–110, 2004.

[18] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 27(10):1615–1630, 2005.

[19] J. M. M. Montiel, B. Calvo, and A. Agudo. Finite element based
sequential bayesian non-rigid structure from motion. 2013 IEEE
Conference on Computer Vision and Pattern Recognition, 0:1418–
1425, 2012.

[20] David Nister and Henrik Stewenius. Scalable recognition with a
vocabulary tree. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume
2, CVPR ’06, pages 2161–2168, Washington, DC, USA, 2006. IEEE
Computer Society.

[21] Marco Paladini, Adrien Bartoli, and Lourdes Agapito. Sequential
non-rigid structure-from-motion with the 3d-implicit low-rank shape
model. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,
editors, Computer Vision – ECCV 2010, volume 6312 of Lecture Notes
in Computer Science, pages 15–28. Springer, 2010.

[22] Mathieu Perriollat, Richard I. Hartley, and Adrien Bartoli. Monocular
template-based reconstruction of inextensible surfaces. In Mark
Everingham, Chris J. Needham, and Roberto Fraile, editors, BMVC.
British Machine Vision Association, 2008.

[23] Daniel Pizarro and Adrien Bartoli. Feature-based deformable surface
detection with self-occlusion reasoning. International Journal of
Computer Vision, 97(1):54–70, 2012.

[24] Mathieu Salzmann and Pascal Fua. Reconstructing sharply folding
surfaces: A convex formulation. In CVPR, pages 1054–1061. IEEE,
2009.

[25] Appu Shaji, Aydin Varol, Lorenzo Torresani, and Pascal Fua. Simul-
taneous point matching and 3d deformable surface reconstruction. In
CVPR, pages 1221–1228. IEEE, 2010.

[26] Bastian Steder, Giorgio Grisetti, Mark Van Loock, and Wolfram
Burgard. Robust on-line model-based object detection from range
images. In Proceedings of the 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS’09, pages 4739–4744,
Piscataway, NJ, USA, 2009. IEEE Press.

[27] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys. Live metric 3D reconstruction on mobile phones. In
IEEE International Conference on Computer Vision (ICCV), Sydney,
Australia, December 2013.

[28] Quoc-Huy Tran, Tat-Jun Chin, Gustavo Carneiro, Michael S. Brown,
and David Suter. In defence of ransac for outlier rejection in
deformable registration. In Andrew W. Fitzgibbon, Svetlana Lazebnik,
Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, ECCV (4),
volume 7575 of Lecture Notes in Computer Science, pages 274–287.
Springer, 2012.

[29] Hideaki Uchiyama, Inria Rennes Bretagne-atlantique, Eric Marchand,
Universit De Rennes, and Inria Rennes Bretagne-atlantique. Toward
augmenting everything: Detecting and tracking geometrical features
on planar objects. In in ”IEEE Int. Symp. on Mixed and Augmented
Reality, ISMAR11, pages 17–25, 2011.

[30] Jing Xiao and Takeo Kanade. Uncalibrated perspective reconstruction
of deformable structures. In Tenth IEEE International Conference on
Computer Vision (ICCV ’05), volume 2, pages 1075 – 1082, October
2005.

[31] Junge Zhang, Kaiqi Huang, Yinan Yu, and Tieniu Tan. Boosted local
structured hog-lbp for object localization. In CVPR, pages 1393–1400.
IEEE, 2011.


	22.Elawady.pdf
	INTRODUCTION
	Coral Threats
	Coral Transplantation

	RELATED WORK
	Coral Classification
	Convolutional Neural Networks

	METHODOLOGY
	Preprocessing
	Hybrid Patching
	Zero Component Analysis Whitening
	Weber Local Descriptor
	Phase Congruency

	Network Architecture
	Kernel weights & bias initialization
	Convolution layer
	Down-sampling layer
	Activation function
	Learning rate


	RESULTS
	Datasets
	Network parameters
	Experimental Results

	CONCLUSIONS AND FUTURE WORKS
	References

	26.Lee.pdf
	I Introduction
	II Related Work
	II-A Visual Odometry
	II-B Feature Detectors and Descriptors
	II-C Loop Closure and Graph Optimization

	III Methodology
	III-A Feature Matching and Egomotion Estimation
	III-B Augmented Framework - Loop Closure and Graph Optimization
	III-C 3D reconstruction on ROSquigley2009ros 

	IV Results
	IV-A Visual Odometry
	IV-B 3D Video Mosaicing and Reconstruction

	V Conclusions
	References

	28.Sadek.pdf
	INTRODUCTION
	Related Work
	Proposed Method
	Preprocessing
	Feature Extraction
	Codebook Generation
	Classification

	Dataset
	Results and Discussion
	Experiment 1
	Experiment 2

	Conclusion and Future Work
	References




