
Real time single image dehazing & soil removal for advanced driving
assistance systems using convolutional neural networks

Wajahat Akhtar*, Sebastian Carreno and Serio Roa-Ovalle

Abstract— Removal of atmospheric haze and soil from single
images captured via monocular cameras is very challenging
and computational ill pose phenomena in digital and Advanced
Driving Assistance Imaging Systems. Such models are not ap-
plicable to run on a reasonable automotive embedded platform
due to the deepness in the network. The challenge is to re- duce
the number of layers while achieving the same performance
in order to make it embedded friendly. In this paper, we
propose a new Convolutional Neural Network (CNN) based
model, which inspires EVD-Net j-level fusion and AOD-Net for
real-time single image dehazing and soil removal for Nvidia
Jetson embedded platforms. The CNN model is designed based
on a reformulated atmospheric scattering model for haze by
Koschmieder [1] and dirt removal by Eigen, Krishnan and
Fergus [2], called Haze and Soil Removal Convolutional Neural
Networks (HSRCNNs-Net). There exist different haze removal
techniques in the literature among them AOD-Net, CANDY,
DehazeNet, and MSCNN. This is a the first fully end-to-end
model for real-time single image haze and soil removal for image
enhancement for ADAS. The model is trained and tested using
our own dataset created during the research for both haze and
soil removal. Furthermore, a pre-trained Faster R-CNN model
was used to verify the performance difference between hazy and
soil images as compared to clean images. Finally, we witnessed
a great improvement especially in object detection and image
quality. Its design and performance makes it applicable to
different scenario including ADAS, medical imaging, night
imaging and underwater imaging. The lightweight mobile CNN
allows easy cascading with other neural networks. The model
was tested and evaluated using different public datasets such
as RESIDE.

I. INTRODUCTION

Advanced safety automobiles (ASAs) geared up with
vision-based advanced driver assistance systems (ADAS)
cameras have become rapidly greater prevalent in the au-
tomobile industry 1. The development of such sophisticated
driving force has helped the driving experience to transform
altogether. In the last few decades, we have witnessed a huge
transition in ADAS sector from automobile mobility to e-
mobility.

Advanced Driver Assistance Systems (ADAS) is a rising
upcoming technology to improve road safety, autonomous
driving, driver comfort and to reduce energy consumptions.2
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Fig. 1: Proposed model for haze (Top left) : Input real hazy
image, (Top right) : generated dehazed image.
Proposed model for soil (bottom left) : Input real image
captured with soil camera and (bottom right) : generated
clean image.

The ADAS uses single and multiple monocular cameras
for autonomous parking, surround view system, edge-based
lane and pedestrians detection. Object such as automobiles
tracking, traffic sign detection and recognition are among the
image processing applications of ADAS to ensure reliability.
However, the detection and recognition qualities are strongly
affected by frequent haze such as aerosols in the atmosphere
[3] and Soil on camera lens e.g dust, sand, silt and clay
[4]. Therefore, haze and soil removal have become a notable
problem in ADAS for Autonomous cars. The presence of
haze in the atmosphere due to the poor weather conditions
have allowed the images acquired by cameras to suffer from
poor quality and scene visibility. The light scattered by
haze and soil can deteriorate not only the aesthetic beauty
of the scene but also occludes important salient features
in the images which significantly reduces the performance
of the algorithm used in ADAS which need to ensure the
reliability in different object detection algorithms. People in
past have proposed different methods for haze removal, most
recently with the advancement in deep learning computer
vision has become an attractive field of research in ADAS,
achieving the best state-of-the-art results especially in object
classification and recognition. A common problem that exist
between all the previous methods was the computational cost
which made them unsuitable for ADAS. In this paper, we
proposed a method to perform not only real time single
image haze removal using CNN but also soil removal for
embedded platforms. We designed a CNN based model for



both haze and soil removal using two different mathematical
formulations.

II. RESEARCH CONTEXT

Haze is traditionally an atmospheric phenomenon in
which images captured under bad conditions dust, smoke,
and other dry particulates obscure the clarity of the sky 3

whereas soil is a black or dark brown material typically
consisting of a mixture of organic remains, clay, and rock
particles 4 that normally occur on the cameras installed in
ADAS and surveillance outdoor vision system(SOVs).

The first mathematical model for the formation of haze
was formulated by [1] and later reformulated [5] 2, which
is widely used by almost all the method proposed in the
literature, shown as follows:

I(x) = J(x)t(x)+α(1− t(x)) (1)

clean image generation module.

J(x) = K(x)I(x)−K(x)+b (2)

The model incorporates two parts 1 and 3: the attenuation
of transmitted light t(x) in 1, which is the scene transmission
map, and the haze absorption β 2, which is the scattering
coefficient of the atmosphere which represents the ability of
a unit volume of atmosphere to scatter light in all directions
[6].I(x) is the observed hazy image, J(x) is the actual scene
irradiance, α is the ambient or atmospheric light formed by
the scattering of the environmental illumination and linked
to the quantity of light illuminating the scene. x denotes
an individual pixel location in the image. Whereas the
reformulated model K(x) is the integration of both α and
t(x) with variable b used as constant bias. As stated earlier,
the scene transmission, is a function of depth and is given
by:

t(x) = e−βd(x) (3)

Here, d(x) is the depth of the scene point corresponding
to the pixel location x

Whereas, for soil removal we follow the mathematical
model initially presented by [4] as shown in 4 for soil lens
artifact and later reformulated by [2] as shown in Equation
5 :

I(x) = I0(x).a(x)+ c.b(x) (4)

Above here, I0 is the clean image, al pha(x) as the atten-
uation map(camera dependent). c(x) represents aggregate of
Outside Illumination and is scene dependent. Whereas b(x)
is the scattering Map and is also camera dependent.

I′ = pαD+ I(1−α) (5)

3The definition for haze is explained here
https://en.wikipedia.org/wiki/Haze

4The definition for soil is explained here
https://en.wikipedia.org/wiki/Soil

I represents the original clean image, I′ as generated a
noisy image. α is a transparency mask the same size as the
image, and D is the additive component of the soil, also the
same size as the image. p is a random perturbation vector
in RGB space, and the factors pαD are multiplied together
element-wise as discussed in [2].

Deep Convolutional Neural Networks (DCNN) have
shown record-shattering performances in a variety of com-
puter vision problems. Recently CNNs have been used for
image dehazing and soil removal to produce better quality
and clean images. However, there were many major issue
and problems. When considering supervised methods there
was a lack of sufficiently and correctly labeled data. Once
the modeled are trained they were not portable to embedded
platform. Whereas in this paper we try to overcome most
of the aforementioned drawbacks by designing a method
to generate clean images, with better quality and real time
implementation for embedded platforms. We also have de-
veloped a technique to create a real dataset for both haze
and soil.

A. Traditional Methodologies

In general, there exist three kinds of methodologies in
literature for haze removal : Multiple Images [6]–[9] Single
Image [10]–[17] and using Deep learning [5], [18]–[21].
Deep Learning for solving ill posed image dehazing is quite
recent(2016) whereas for soil removal there first work was
done back in 2013 by [2].

Earlier methods such [6], [8] used multiple images under
different weather conditions and degree of polarization to
perform haze removal. While other [22] approaches resorted
to estimate atmospheric scattering model parameters with
the empirical Dark Channel Prior. [17] provided a method
to enhance the local contrast of the images based on the
study that haze free images have higher contrast to non-hazy
images. However [10], [23] presented a method to remove
haze from images captured from moving vehicle camera.
Recently this problem was addressed by [5], [18]–[21] using
deep learning.

There exist a common problem among these methods,
firstly the all are computational expensive except(AOD-Net).
Secondly among all the methods in literature very few could
design models to be used for dynamic scenarios specially in
ADAS. According to the study by [24] and [25] none of these
methods could produce high quality images except [18]. Due
to their limitations and limited practical applicability these
methods are not been used in ADAS. We try to solve most
of the above problems by presenting a novel end-to-end deep
learning model to generate haze and soil free images.

1) Contribution: The main contribution in this paper are
summarized as follows:

1. HSRCNN-Net is a first real time single image haze
and soil removal CNN architecture, which directly generates
clean haze and soil free image with better quality, estimating
attenuation and scattering parameters jointly. Whereas most
of the method use multiple images with significant large
computational cost.



Fig. 2: The proposed architecture of HSRCNN-Net. HSRCNN-Net is constructed by 5 convolutional layers, 1 concatenation
layer and Relu activation functions to estimate the transmission maps.

(a) Conv1 (b) Conv2 (c) Conv3 (d) Conv4 (e) Conv5

Fig. 3: Layer visualization of Proposed HSRCNN (left-right) : ”conv1”-”conv5” layers and their kernels.

2. A unique setup with two monocular cameras is designed
to record real time soil and non-soil images. The setup
acquires real images with label dataset for training our soil
model. It solves the problem of labeling the data captured
from soil lens. As upto date there exist no single labeled
public dataset for both synthetic and real images.

3. A novel technique was also established to generate
synthetic dataset using real soil on cameras lens. Different
soil samples were created and images were acquired using
the samples. The soil was extracted from the images and
then used as a mask for creating synthetic datasets.

4. All the available dataset in literature only use homoge-
neous haze to generate hazy images which is less realistic.
Whereas, we created a method to generate synthetic dataset
which contain homogeneous and non-homogeneous haze for
training HSRCNN. The images are divided into patches
and haze is generated using different hyper parameter for
each patch as compared to state-of-the-art methods, where
synthetic dataset were created using homogeneous haze only.

III. MODEL ARCHITECTURE

In this work, we formulate the constrained problem of Real
time single image dehazing and soil removal for ADAS for
generating a high quality haze and soil free image from a
degraded hazy and soil carrying input image. We propose a
novel end-to-end convolutional neural network (CNN) called
HSRCNN-Net. We use two different mathematical equations
each for haze and soil with architecture comprises of same
deep convolutional neural network (CNN) module, by esti-
mating transmission map and global atmospheric light. The
CNN architecture is designed based on the inspiration from j-
level fusion of EVD-Net [26] and AOD-Net [5]. To generate
clean image J(x) it estimates K(x) from input image I(x)
, followed by a clean image generation module that utilizes
K(x) as its input-adaptive parameters to estimate clean image

J(x) [5] as shown in 2. Whereas for soil we use mathematical
expression as given in 5. The estimation of K is significant
for our model HSRCNN-Net as it estimates both haze and
depth levels as shown in figure 2. Our model follows solely
a standard CNN model as in [19]. Each convolutional layer
applies a kernel composed of w ∗ h ∗ d coefficients, with w
defining the width, h as the height and d as the depth of the
hidden convolutional layers. The depth of the layers depend
on the number of activation maps in the layers. Each layer is
followed by an activation function to introduce nonlinearity
as discussed in [27] [19]. The first layer called conv1 takes
an input single RGB image of size = h ∗w and d, stride of
size = 1 with kernel size = 1 results in 3 different activation
maps, followed by layer ”relu1” to introduce nonlinearity.
The second layer takes conv1 as its input, with stride and
pad size = 1 and kernel size = 3 generating 3 activation
maps, followed by a ”relu2” layer. Similarly ”conv3” and
”conv4” layers were created with kernel size = 5, and 7.
Inspired from [21], which concatenates the coarse-scale
network features we create layer 5 of of HSRCNN-Net,
which concatenates ”conv1”,”conv2”,”conv3” and ”conv4”
called ”concat1” generating three channel R-G-B output,
followed by a last convolutional layer ”conv5” of kernel
size = 9. The output of the layer ”conv5” i.e ′K(x)′ is the
estimated transmission map with global atmospheric light.
Which is the then used as a prior to generate a clean image
in both and soil removal cases using 2 and 5 as could be
seen in figure 2 with layer visualization of each kernel in
each layer as shown in Figure 3.

A. Dataset creation and Training

Training for both haze and soil model was performed using
Deep learning framework caffe [28].

Haze model : As there exist no benchmark datasets for
haze and its corresponding non-hazy images except [29]



TABLE I: Average full and no reference evaluation results of dehazing on Synthetic Objective Testing Set (SOTS).

Metrics DCP GRM CAP NLD DehazeNet MSCNN AOD HSRCNN-Net
PSNR 16.62 18.86 19.05 17.29 21.14 17.57 19.06 22.24
SSIM 0.8179 0.8553 0.8364 0.7489 0.8472 0.8102 0.8504 0.862
Time 1.62 83.6 0.95 9.89 2.51 2.60 0.65 0.28

TABLE II: Average subjective score, with full and no reference evaluation results of dehazing on Hybrid Subjective Testing
Set (HSTS).

Metrics DCP GRM CAP NLD DehazeNet MSCNN AOD HSRCNN-Net
PSNR 14.84 18.54 21.53 18.92 24.48 18.64 20.55 23.24
SSIM 0.7609 0.8184 0.8726 0.7411 0.9153 0.8168 0.8973 0.892
Time 1.62 83.6 0.95 9.89 2.51 2.60 0.65 0.28

(a) Foggy image (b) Clean image (c) Foggy image (d) Clean image

(e) Foggy image (f) Clean image (g) Foggy image (h) Clean image

Fig. 4: Experimental results of HSRCNN haze removal on public datasets.

which only uses homogeneous haze. Therefore we decided
to create a dataset which contains both homogeneous and
non homogeneous haze with different levels. The nature of
haze was inspected after studying natural images, as haze
was non-homogeneous in nature and its concentration is not
constant over the image space(the fog might be denser over
a body of water due to its vaporisation). A Synthetic dataset
of fifty thousand training and twenty thousand validation
non overlapping hazy images was generated using our Au-
tomotive and region segmented SUN2012 dataset of cleaned
images. Synthetic haze was added to each segmented region
as been explained in [5]. The training data was converted into
hdf 5 format as explained in 5. Weights are initialized using
Gaussian random variables with Relu neuron as stated in [27]
and [19] it performed effective then BRelu. The base learning
rate was set to baselr : 0.000001 with lrpolicy : ”step” .
The model is trained with a batch size of hundred taking
five hundred iteration to complete one epoch, In total the
model converged in less then ten epoch (i.e five hundred

5http://machinelearninguru.com/deep learning/data preparation/hdf5/hdf5.html

total iterations) using Stochastic Gradient Descent ”SGD”.

Soil model : Similar to haze, there exist no benchmark or
public datasets for images with and without soil on camera
lens. To create a dataset with ground truth a novel simple
technique is designed to extract soil from images taken from
monocular cameras. Different soil samples are created and
the soil is extracted, to create a labeled dataset with and
without soil from real images. A dataset of thirty thousand
labeled images for training and ten thousand non overlap-
ping soil images for testing are generated, as explained in
Section 3.1 of [2]. The training data is first converted into
hd f 5 format as presented in 5. Weights are initialized using
Gaussian random variables with Relu neuron as for haze. The
base learning rate, learning policy, step size and batch size is
set accordingly. The model is trained using Tesla P100-PCIE
and tested real time on Nvidia Jetson TK1 pro.

5http://machinelearninguru.com/deep learning/data preparation
/hdf5/hdf5.html



(a) Soil image (b) Clean image (c) Soil image (d) Clean image

(e) Soil image (f) Clean image (g) Soil image (h) Clean image

Fig. 5: Experimental results of HSRCNN soil removal on public datasets.

Fig. 6: HSRCNN haze removal performance evaluation using FastRCNN, (left-right) : Input hazy image, generated clean
image by HSRCNN, FastRCNN applied on hazy input with recognition rate of 0.96, 0.34 and 0.43, FastRCNN applied to
generated clean image with better recognition rate such as 0.96, 0.51, 0.45, 0.33, and 0.63.

Fig. 7: HSRCNN soil removal performance evaluation using FastRCNN, (left-right) : Input real image captured with soil
lens, generated clean image by HSRCNN, FastRCNN applied on soil input results in a recognition rate of 0.299, FastRCNN
applied to clean image results with a recognition rate of 0.670.

IV. EXPERIMENTAL RESULTS

In this section we compared our proposed model with
several state-of-the-art methods using CNNs. As discussed,
two different datasets are generated one for soil and one for
haze. To evaluate our algorithm for haze removal we use syn-
thesized benchmark dataset caleed RESIDE [29]. To conduct
a fair test we compute PSNR and SSIM [29]. SSIM computes
errors beyond pixel level and reflects human perception. The
qualitative results achieved for haze removal are shown in
4 whereas, for soil removal in 4 . Table I and II depicts
that our model produces promising results both in terms of
peak signal to noise ratio (PSNR) and structural similarity
index(SSIM).. To performed some further experiments we
used public single images for soil and haze as shown in
figure 1 and Figure 5. Lastly, Fast-RCNN is applied to further

compare and verify the performance of HSRCNN on haze
images from RESIDE. It is found that, the performance
of the image tested significantly improved its quality for
both haze and soil as shown in Figure in 6. To check the
robustness of the model, different test images are taken at
varying lighting scenarios. To compare HSRCNN-net the
model was also tested with various methods, such as Fast
Visibility Restoration (FVR) [30], Dark Channel Prior (DCP)
[31], Boundary Constraint and Contextual Regularization
(BCCR) [32], Color Attenuation Prior (CAP) [33], Non-local
Image Dehazing (NLD) [34], Dehaze-Net [19], Multi-Scale
Convolutional Neural Networks (MSCNN) [21] and All in
One Dehazing network (AOD) [5] .



V. CONCLUSIONS AND FUTURE WORK

The paper proposes two main components: an optimized
network design to estimate the transmission map, and a
mathematical model each for haze and soil to generate single
clean image. Initially, we aimed to explore atmospheric
haze removal techniques under different weather conditions
using CNNs. Nevertheless, we decided to further pursue this
promising approach for real-time single image soil removal,
by building our own proof of concept.

1) HSRCNN-Net is the first real-time single image haze
and soil removal CNN architecture, Whereas most of
the method use multiple images with significant large
computational cost.

2) The speed achieved during testing of our proposed
model is marked as 0.28 sec, which outperforms the
best score [5] in the literature.

3) A unique setup with two monocular cameras was
designed to record real time soil and non-soil images.

4) A new technique for soil extraction is established to
generate synthetic dataset using real soil on cameras
lens.

5) A realistic was applied to generate homogeneous and
non-homogeneous haze.

6) The model is evaluated and compared with state-of-
the-art methods using public and our own automotive
dataset, as shown in Figure 7. Moreover our network
is tested on different real and synthetic datasets with
different lighting conditions to prove the robustness.
Lastly the model is tested with FastRCNN to check
the recognition performance of the network.

7) A few sample input and output images are presented
in Figure 5, 6 and 4 to show the impact of our network
layers, HSRCNN. As seen, it is clearly visible by
human eye as well as the quality of the images are
enhanced with better SSIM and peak signal to noise
ratio. Our quantitative results are shown in Table I, II.

HSRCNN contains optimized model architecture, fast
speed and reduce number of layers, a unique model suitable
for embedded platforms. The light weight structure allows
it to be used in different fields e.g medical imaging and
robotics. In future we aim to design a new model called
joint HSRCNN to jointly remove haze and soil from single
image with one mathematical formation.
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Abstract—In the following master thesis will be studied the
feasibility of using deep learning approaches to evaluates cellular
load within lungs endomicroscopics images through semantic
segmentation. Indeed, while Endomicroscopic (OEM) imaging
allows real-time imaging of the lung at its distal end, it generates
large and hard to interpret dataset leading to laborious and
subjective interpretations. To assess the OEM analysis automa-
tion feasibility, a labelled dataset is constructed and two state-of-
the-art Convolutional Neural Network (CNN) architectures are
trained (relying on data augmentation) several times using dif-
ferent training parameters, data pre-processing and architecture
modifications. Therefore in this thesis we will firstly, study, using
the U-Net architecture, the influence of input downscaling on
the network performances. Secondly, investigate the loss function
importance by comparing the well known weighed softmax loss
with the generalized Dice loss (to our knowledge, a first in
multi-class segmentation). Thirdly, explore our second network
(ENet) architecture and design choices. Fourthly, evaluate the
repeatability of our dataset annotations and use it to show
the close-to-human performances of the different algorithms
developed as well as the feasibility and success of our objective.

I. INTRODUCTION

Lungs diseases have been a growing concern in the med-
ical field. Indeed, in direct contact with exterior pathogens,
lungs present an acute sensibility to bacterial infection. To
characterise such infection, the current methods rely on the
succession of slow detection procedures, biopsies and lab
culture growth. Presenting inconfort and risk for the patient
(hence limiting measurement repetition and therefore a simple
monitoring of the condition evolution), these methods must be
improved to allow, not only a more systematics uses of lungs
analysis, but also the repeatability of lungs diagnostic in time
to permit the following of lungs pathologies evolution. In this
optics, Proteus aim to develop a quick in vivo, in situ approach
to lung analysis through the uses of optical Endomicroscopics
imaging, a novel technique allowing to image the lungs down
to the alveolar ducts and sacs (see Figure 1). Endomicroscopy
is a recent method combining the advantages of microscopy
and endoscopy. In fact, this method allow the acquisition of
histopathologic like (i.e high resolution) images through a real

time, in vivo,in situ and minimally invasive method. To achieve
this feast, a fibre bundle endomicroscope is inserted, through
the endoscope working channel, within the patient lungs. Com-
pounded of tens of thousands fibres jointed with a proximal
illumination units (Laser or LED), endomicroscope produces
an honeycomb like images (due to the fibres bundle) of the
naturally fluorescent (collagen, elastin and cells are fluorescent
at some wavelength such as 500nm) lungs structures as well
as theirs surrounding. By its thinness, the endomicroscope
allows the exploration of the lungs alveolar ducts and sacs,
in real time and in high resolution. Due to those advantages,
endomicroscopy should see itself being largely adopted and
developed (such as in [16], [3]) in the upcoming years to create
new ways of diagnosing.

Fig. 1: Lungs endomicroscopics system. Adapted from [1].

For example, the aim of this paper, the automatic evaluation
of lung cellularity within endomicroscopics images, could be
an useful tool to assist the clinician diagnostic. In fact, in
[31], lungs of smoker and non smokers are compared through
endomicrocopics images and show a significant correlation
(> 0.7) between the smoking frequency and the number of
macrophages (a type of white blood cell trapping microbes
and foreign particles) and, in [24], link between cellular load
and pathologies have been noticeably studied and proven for
acute cellular rejection.
Few studies were carried on the problems of cellular load



estimation. In [23] the automatic assessment of pulmonary
nodule malignancy was investigated through local binary
pattern and sift descriptor. Meanwhile in methods such as
[22], [21] pattern matching have been explored to asses the
lungs bacterial load (and cellular load in [21]). In this study,
we decided to approach the evaluation of cellularity as a
segmentation problem. Indeed, the segmentation of cells would
allow clinicians to access patients lungs cellular load through
the percentages of cell pixels in each frame. Moreover, the
segmentation of cells could allow the development of further
approaches by being embedded as the first step of a more
complex tasks (i.e cell numbering, cell size evaluation, etc..).
If no semantic segmentation algorithm have been applied
to OEM images (to our knowledge), several publications
tackled this task in other medical modalities. In [20], an
heavily symmetric architecture, using skip connections and
trained with a weighed loss function (to compensate class
imbalance), segment images of neuronal structures in electron
microscopic stacks. Inspired by this work, [14] developed
a symmetric architecture, and, training it with a Dice loss
function (for a Dice score improvement of 0.13 over the same
architecture trained with a weighed softmax loss), to segment
3D MRI images. Meanwhile, ensemble of networks [10], [30]
are employed to join networks predictions in intraoperative
CLE (Confocal laser endomicroscopy) images and coloscopie
videos respectively. Due to the novelty of endomicroscopic
imaging and the originality of our objective, no dataset of cells
segmented endomicroscopics images are available. A manually
annotated (by a clinical investigator with substantial prior
experience in pulmonary OEM images) dataset of segmented
endomicroscopic images is thus gathered before seeing its
annotation repeatability assessed for future reference.

II. METHODOLOGIES

(a) Frame suit-
able for analysis

(b) Out of focus
frame

(c) Motion
blurred frame

Fig. 2: Different kind of recording noise.

Caused by the limited depth of field of endomicroscopic
imaging (creating blurry to noise only images), and the motion
artifacts introduced by the moving imaged tissues and the
probe, a significant part (up to 25%) of the captured images
are not suitable for analysis (see Figure 2). The problem
was successfully investigated and addressed (with an over-
all sensitivity up to 93% and an overall specificity up to
98.6%) in several publications [17], [15], [2]. Considering
the uninformative frames problem solved, we built a dataset
of 378 informative (i.e without artifacts, blurriness, etc..)
OEM frames, captured on 8 different patients, and splitted

such as the validation test and the testing test, while being
representative of the lungs variety, do not share any patients
with the training set (see Table I, II, III).

A. Data labelling

Normalized by frame to compensate irregular dynamic
ranges (consequence of the images being reconstructed
by joining several optic fibres with different transmission
coefficient), each frame is labelled manually (the cell pixels
are selected),using Matlab 2017b, by an annotator with
substantial prior experience in pulmonary OEM images .
To mitigate annotation errors, the measured images border
are eroded with a disk shaped element of size 10 (hence
compensating for the difficulties of following borders),
and the cell designated pixel are morphologically opened
with a disk element of size 5 (removing small mislabelled
cells pixels). For our purpose (i.e quantifying cells in
endomicroscopic images), the subsequent binary annotated
frames are transformed into three distinct semantic regions
(see Figure 3):
-Cells
-Measured background (elastin and air)
-Padding

(a) Before ero-
sion

(b) After erosion

Fig. 3: An endomicroscopic images and its eroded counterpart.
Cells pixel: white , Measured background: grey, Padding:
black.

While considering the padding as a distinct region doesn’t
have any physical meaning, this trick allow us to easily use
the endomicroscopic round shaped images with any popular
CNN architecture and without the loss of information that
image cropping would have induced. Moreover, the padding
constance (all the value are zeros) as well as the experiment
described in Appendix A lead us to believe in the innocuity
of this practice.

B. Data augmentation

It is usual to artificially enlarge a dataset by applying label-
preserving transformations. While it cannot replace a wide
dataset, data augmentation reduce over-fitting by promoting
networks generalisation capabilities. Based on the assumption
that the measured endomicroscopic images will always be
centered in the network input frame, we applied the following
data augmentation techniques.



(a) Original
frame

(b) Elasticly de-
formed frame

Fig. 4: Example of elastic deformation.

1) Elastic deformations: Operating, the lungs contract and
dilate elasticly. Those elastic deformations stretch the observed
image in several directions simultaneously. To simulate this
effect and augment realisticly our dataset, we applied elastic
deformation to our dataset in a similar fashion as in [26], [12],
[20].

Training: Each patient dataset are expanded to reach 100
frames by randomly selecting images and applying elastic
deformation to them.

Testing and Validating: Each frames of each patient undergo
elastic deformation (thus doubling the number of frames per
patient).

2) Rotations and mirroring: As Neural Networks aren’t
intrinsically rotation invariant [7], [6] we applied the following
transformations on our previously elasticly augmented dataset:

Training and Testing: Every frames is mirrored along the x
axis and added to the augmented dataset (doubling the size of
the augmented dataset). Then the augmented dataset is rotated
by increment of 45 degrees (multiplying the size of the dataset
by a factor of 8)

Validation: Due to time restriction, the validation set was
solely augmented by a mirroring along the x axis followed by
a single rotation of 90 degrees of the mirrored frames. Those
two consecutive transformations, applied at once, are meant
to create a single output image as different as possible from
the input image.

The following Tables (I, II, III) describe the numbers of
frames used from each patient, for each dataset, before and
after data augmentation.

Training dataset
Patient ID Number of frames Number of frames after elastic deformation Number of frames after rotation and mirroring

90 60 100 1600
106 100 100 1600
172 80 100 1600
191 50 100 1600

Total 290 400 64000

TABLE I: Training dataset images origins and numbers before
and after data augmentation.

Validation dataset
Patient ID Number of frames Number of frames after elastic deformation Number of frames after rotation and mirroring

63 11 22 44
96 10 20 40

118 10 20 40
124 10 20 40

Total 41 82 164

TABLE II: Validation dataset images origins and numbers
before and after data augmentation.

Testing dataset
Patient ID Number of frames Number of frames after elastic deformation Number of frames after rotation and mirroring

63 20 40 640
96 5 10 160

118 10 20 320
124 6 12 192

Total 41 82 1312

TABLE III: Testing dataset images origins and numbers before
and after data augmentation.

C. Training

We decided to use the U-Net network [20], for its
performance and its design adapted to small training dataset,
and the ENet network [18] (applied on medical images in
[32]) for its reasonable dataset size exigency (in the 103

order), its speed [34], and its efficiency [5].
Although many ways of experimenting with CNN exist
(i.e changing the number of layers, the number of kernels
per layer, the kernels size, the loss functions, etc ...).
We, as one of the first papers applying deep learning on
endomicroscopics images, decided to explore less networks
architecture modification (i.e changing the number of layers,
the kernels size, etc ..) and more the influence of what
we believe to be more transferable and application driven
knowledges. Indeed, while we do experiment with transfer
learning (where the result depends greatly on the dataset
on which the network was firstly trained on), we mostly
investigated the trade off between speed (ENet) and accuracy
(U-Net), the importance of the loss function (and therefore
the task the network actually solve), the influence of different
feature sizes, and the networks behaviours. Nevertheless, we
experimented with simple modification of ENet in order to
simplify its training so that later research might employ it
more easily.
All the experiments are carried using the Caffe framework
[11] and the adadelta [33] (for the ease of use brought by its
single parameter) update rules. As it is too time-consuming
to evaluate the loss function over the full dataset, two
commons subsampling solutions were considered, grouping
images in batches and increasing the network output size
(as the error is evaluated at each pixel we can consider
each pixel as a sample). To maximize the use of our GPU
(a GEFORCE 740M) we, as in [20], privileged the use of
wider outputs rather than batches. We settled, in all our
experiments, on an U-Net output size of 100x100 pixels (our
GPU biggest supported output) and an 96x96 pixels output
for ENet (the closest to 100x100 we could considering the
ENet architecture). Each image is splitted in non overlapping
output titles before being used in training.

1) Training parameters experiments:
a) Input downsampling: Neighbourhood pixels are

highly correlated within themselves. This semantic redundancy
leads us to believe than downscalling (within boundaries) the
network inputs will have an effect close to increasing the
output size during training (hence leading to a better dataset
approximating). Moreover, due to its pixels correlation, the
downscalled images will present a better signal to noise ratio.



We will test the influence of downscalling by comparing
the U-Net architecture trained with no downscalling, and
downscalling factors of 2, 4 and 6. The images and theirs
corresponding groundtruths are downscalled and concatenated
(to avoid patches consisting mostly of padding) before being
fed into the network in 286x286 pixels patches (with U-Net,
an input of 286x286 pixels leads to an output of 100x100
pixels).

b) Loss function: In a neural network the loss function,
or cost function, defines the metrics which will be improved
upon (by adjusting the network weight). As our dataset classes
are imbalanced (see Figure 5), we chose loss functions for
which the class imbalance can be incorporated as a parameter.
Indeed, in non-class weighted metrics, class imbalance usually
detriments the less represented classes as they contribute very
little to the overall metrics. The weighted cross entropy loss
and the general Dice loss are therefore investigated as they
both propose solutions to the well known class imbalance
problem and are the extensions of well known formula.

Fig. 5: Quantity of pixels belonging to the background class
and the cell class.

c) Weighted Cross entropy loss: Noticeably used in [20],
the weighted cross entropy loss is an extension of the widely
used cross entropy loss [13], [4], [29] and can be expressed
as :

E = −
∑
label,l

wl
∑

voxels,i

glilog(
exp(xli)∑

voxels,j exp(xlj)
) (1)

where :
wl is the class l weight such as

∑
l wl = 1

xli is the network score at pixel i for the label l
and gli is the groundtruth at pixel i for the label l

This formula evaluate the weighted (to counteract class
imbalance bias) difference between the true probability dis-
tribution (the ground-truth distribution) and the network’s
inferred probability distribution.

d) Generalized Dice loss: Firstly introduced in [14], the
Dice loss function is shown leading to better results than the
weighed softmax loss. However, the introduced Dice loss is

only suitable for binary classification. It is defined as :

DL = 1− 2

∑
voxels,i pigi∑

voxels,i p
2
i +

∑
voxels,i g

2
i

(2)

Where :
-pi is the network inferred foreground probability at pixel i
-gi is the groundtruth foreground probability at pixel i

Approaches has been made to extend this metrics to multi-
class segmentation. For example, in [25] they multiply the
Dice score of each class by a weight (several weight definitions
are investigated) before averaging the weighted Dice to com-
pute an overall score. Nevertheless the lack of mathematical
justification in the weighting scheme incorporation make us
believe that a more robust solution exists. To address this
issue we, in a similar fashion as [28], adapted the formulation
developed in [8] to allow the use of the Dice loss in multi-
class segmentation problems. We define the Generalized Dice
loss as :

GDLv = 1− 2

∑
labels,l αl

∑
voxels,i pligli∑

labels,l αl(
∑
voxels,i p

2
li +

∑
voxels,i g

2
li)

(3)

From the different proposition presented in [8], we chose
the class weighting factor αlg as the inverse of each class
surface so that each class impact equally the overall metric.
Therefore : αl = 1∑

voxels,i gli
.

As demonstrated in Appendix B, the derivative can be
defined as :

∂GDLv

∂plk
= 2αl

2plk
∑

l αl

∑
i pligli−glk

∑
l αl(

∑
i p

2
li+

∑
i g

2
li)

(
∑

l αl(
∑

i p
2
li+

∑
i g

2
li))

2 (4)

When implemented, we pass the network output through a
softmax layer to ensure segmentation scores belonging to the
interval [0,1]. Moreover, we normalize αlg such as

∑
l αlg =

1. We also added a small constant ε to the GDLv and its
derivative to solve the division by zero issue.

2) Architecture experiments:
a) ENet decoder: ENet and its decoder relatives short-

ness (compared to its encoder), as well as the network two
steps training [18] (first the encoder is trained, then the whole
network), made us wonder about the decoder actual role. To
explore its behaviour we will, in one experiment (as in [4]
[19]), replace its decoder by a billinear upsampling (see Figure
6) and, in another experience, train ENet at once rather than
in two steps.

b) Networks comparison: To compare the two network
architectures, we will, for both of them, with nearly equal
output size (100x100 against 96x96), no input downscalling,
and a weighted softmax loss layer, apply:



Fig. 6: The ENet architecture with a bilinear upsampling
replacing its decoder (for an 512x512 input). Adapted from
[18]

-a training with randomly initialized weights
-a shallow fine-tuning (where the weight are frozen as shown
in Figure 7, 8)
-a deep fine-tuning (initialized with trained shallow fine-tuned
networks)

Fig. 7: U-Net shallow-Fine tuning architecture

III. RESULTS AND DISCUSSION

Along theirs training, neural networks achieve different
results as their weights evolve. To select the best version
of each training, we test the networks at different number
of iterations on our validation test. Indeed, due to possible
over-fitting, training a network for too long can reduce its
performances. To evaluate the different training states, we
measured several metrics (see below) against the number of
training iterations before selecting each network best training
iteration.

The following metrics will be used :
-pixel accuracy=

∑
i nii∑
i ti

-mean accuracy= 1
ncl

∑
i
nii

ti
-mean IoU (intersection over union) = 1

ncl

∑
i

nii

ti+
∑

j nji−nii

Fig. 8: ENet shallow fine-tuning architecture

-mean Dice coefficient= 1
ncl

∑
i

nii

ti+
∑

j nji

-frequency weighted IoU = (
∑
k tk)

−1
∑
i

nii

ti+
∑

j nji−nii

-Pearson’s correlation coefficient for the percentage of cell
pixel per frame: Corrc=

ncl

∑
xy−

∑
x
∑
y√

(ncl

∑
x2−(

∑
x)2)(n

∑
y2−(

∑
y)2)

where :
-nij is the number of pixels of the class i predicted to belong
to the class j.
-ncl the total number of classes
-ti =

∑
j nij the total number of pixels belonging to the

class i
-y = ti∑

i ti
the percentage of cell pixels per frame

-x = nii∑
i ti

the percentage of cell pixels inferred per frame

Although quite similar, (Dice coefficient= 2IoU
(1+IoU) ), we

decided to measure both the intersection over union metric (for
its intuitiveness) and the Dice coefficient (for its commonness
in medical imaging). We also decided to use the Pearson’s
correlation coefficient to evaluate the quality of our networks
cell percent evaluation (as this will be the information used
by the clinician).

A. Repeatability

Annotator Pixel accuracy Mean accuracy Mean IoU Frequency weighted IoU Mean dice Corrc
Without preprocessing 0.9177 0.9179 0.8271 0.8617 0.8958 0.7824

With preprocessing 0.9189 0.9180 0.8274 0.8638 0.8960 0.7826

TABLE IV: Analysis of the annotation repeatability.

Table IV shows, through a slight improvement of the
annotation repeatability , the validity of the pre-processing
applied to the dataset (modifying the frames cell percent by a
mean value of, out of 48 images, 0.01 percent).



IV. UNET

A. Parameters experiments

U-Net input downscaling factor Pixel accuracy Mean accuracy Mean IoU Frequency weighted IoU Mean dice Corrc
x1 0.8739 0.8676 0.7778 0.7873 0.8655 0.6843
x2 0.8924 0.8827 0.8126 0.8089 0.8915 0.8524
x4 0.8899 0.8812 0.8020 0.8089 0.8840 0.8648
x6 0.8600 0.8498 0.7515 0.7681 0.8481 0.8257

TABLE V: Comparison of different input downscaling factors
on U-Net performances.

1) Input downscaling influence: The metrics in Table V
shows better result for a input downscaling of factor 2 and
factor 4. We believe those improvements to be the conse-
quences of both the noise reduction and the access to a broader
fields of view while training. In fact, with downscaled images,
the network trains itself on less semanticly redundant images
(roughly equivalent to an increase in patch of batch size and
thus in performance). Due to a lack of time, no experiment
were carried to compensate this increase of semantic infor-
mation and conclude about the best trade off between noise
and features size. Despite those considerations, a downscaling
of factor 4 seems to be the most adapted to our limited
computation power (the network converge ≈ 2.67x faster) and
to future clinical application (the heavier the downscaling, the
faster can the offline inference be).

U-Net loss function Pixel accuracy Mean accuracy Mean IoU Frequency weighted IoU Mean dice Corrc
Weighted Softmax 0.8899 0.8812 0.8020 0.8089 0.8840 0.8648
Generalized Dice 0.8777 0.8674 0.7864 0.7893 0.8731 0.6499

TABLE VI: Comparison between the weighed softmax loss
and the generalized Dice loss to train an U-Net architecture
with a downscaled by 4 input.

2) Loss function importance: The above result (Table
VI), obtained with a downscaling factor of 4 on the U-Net
architecture, shows the superiority of the weighed softmax
loss over the generalized Dice loss. This difference of
metrics is due to the generalized Dice loss trained U-Net
performing poorly on low cell percents images (see Figure
9 and 10). While this behaviour reasons are unknown and
should be investigated (through retraining and the use of
different weighting schemes), it leads us to consider the use
of the weighed softmax loss as more appropriate to cells
segmentation.

(a) Input Im-
age

(b)
Groundtruth

(c) Weighed
softmax loss

(d) General-
ized Dice loss

Fig. 9: Network segmentation comparison.

Fig. 10: Loss function comparison through the prediction of
cell percent.

B. Architecture experiments

ENet Pixel accuracy Mean accuracy Mean IoU Frequency weighted IoU Mean dice Corrc
Bilinear decoder 0.8102 0.8191 0.7081 0.6850 0.8175 0.6580
Trained at once 0.8617 0.8534 0.7679 0.7626 0.8608 0.7780

Regular 0.8631 0.8548 0.7697 0.7638 0.8626 0.8004

TABLE VII: ENet decoder influence.

1) Decoder influence: In all metrics, the two steps trained
original ENet architecture, by outperforming its variants,
shows the non negligible contribution of the decoder.
Nevertheless, the experiment showed than an ENet trained at
once demonstrates near equivalence to its two steps trained
counterpart while converging significantly faster (200 000
iterations against 350 000 iterations). This gain in time and
practicality (only one network to train instead of two) as well
as its performances make us believe that prototyping would
be worth pursuing using a trained at once ENet.

Network Pixel accuracy Mean accuracy Mean IoU Frequency weighted IoU Mean dice Corrc
U-Net from scratch 0.8739 0.8676 0.7778 0.7873 0.8655 0.6829

U-Net shallow fine-tuned 0.8353 0.8326 0.7292 0.7183 0.8377 0.6683
U-Net deep fine-tuned 0.8729 0.8648 0.7848 0.7802 0.8716 0.7479

ENet from scratch 0.8631 0.8548 0.7697 0.7638 0.8626 0.8004
ENet shallow fine-tuned 0.8353 0.8326 0.7292 0.7183 0.8377 0.6683

ENet deep fine-tuned 0.8639 0.8535 0.7628 0.7694 0.8573 0.7991

TABLE VIII: Comparison between U-Net and ENet architec-
tures trained with a weighed softmax loss and no downscaling.

2) Networks comparison: Surprisingly, U-Net while being
slower (on 50 images of output size 516x516 pixels, U-Net
mean inference time is ∼ 11.19s and ENet mean inference
time is ∼ 2.85s using an Intel i7-3630QM and multi-threading)
lead to better overall metrics and less noisy segmentation (see



Figure 11, 12 and Tables VIII, X, IX). However, we can remark
ENet clear superiority at evaluating the cellular load through
more constant estimations (see Figure 11). Globally, we can
observe the clear cell correlation improvement of deep fine-
tuning (we believe this improvement to be the cause of more
general filters being developed in transfer learning) over the
others form of training (deep fine-tuned ENet must be compare
to its trained at once counterpart). The great amelioration of U-
Net correlation score when deep fine-tuned leads us to believe
in U-Net overfitting its training dataset. This observation is
supported by the superiority of ENet, a network using a
dropout strategy to reduce overfitting [27], [9], correlation
score.

Fig. 11: Network function comparison through the prediction
of cell percent.

Padding Background Cells
Padding 18.2572 13.9070 12.2881

Background 13.7371 18.8026 17.1282
Cells 12.4048 16.3769 17.9623

TABLE IX: Deep fine-tuned U-Net testing dataset log confu-
sion matrix.

Padding Background Cells
Padding 18.2488 14.4400 11.9503

Background 14.5034 18.7791 17.2097
Cells 13.1917 16.2906 17.9745

TABLE X: ENet testing dataset log confusion matrix.

(a) Measured
frame

(b)
Groundtruth

(c) Deep fine-
tuned U-Net

(d) ENet

Fig. 12: Network segmentation comparison. Cells pixel: blue
, Measured background: green, Padding: red

V. CONCLUSION

On one hand, based on a recent imaging technique and
reaching for new goals, our dataset, annotated by only one
clinician, is small and rely heavily on data augmentation.
On the other hand, CNN and others machine learnings ap-
proaches are highly dependant of the quality and quantity
of data available to train them. This discrepancy between
best practice and actual practice is detrimental to our results
and should therefore be addressed in future works. Never-
theless, the close-to-human cell correlation scores (better to
worse depending on the network and its training parameter)
for most of the developed architectures make us believe in
the application of semantic segmentation to evaluate cellular
loads within endomicrocopics images through deep-learning.
Indeed, if improvement could be made (the human annotator
still marginally outperform our best developed algorithm worst
metric by 6.79 relative percent) and experiments carried , we
have demonstrated the feasibility of such approach. Moreover,
the two applied networks, far from opposing themselves, could
be applied on different objectives. In fact, ENet seems well
adapted to be used in real-time segmentation and U-Net,
trained to reduce overfitting, could be the bases of more
complex offlines application.
Altogether, we consider our studies on the uses of CNN
for cellular loads evaluation within endomicroscopic images
of the lungs a success. Indeed, a strong linear correlation
between the annotator cell percent evaluation and the best
developed algorithm has been demonstrated (outperforming
the annotator repeatability by 10.5 relative percent thanks to
a score of 0.8648) despite the annotation subjectivity arising
from a limited image depth field, noisy images and tissues and
cells superposition.
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APPENDIX A
EXPERIMENT: INFLUENCE OF SEGMENTING TWO CLASSES

AGAINST THREE CLASSES

Fig. 13: Comparison between U-Net two classes training and
U-Net three classes training

Our choice of adding a third classes to the segmentation
task, while convenient, raises the question of its on the



overall segmentation performances. To investigate this new
class impact on performances, we specially trained the U-Net
architectures by automatically setting the padding pixels (the
pixels corresponding to the class we added for convenience) to
theirs correct labels. By being perfectly labelled, these classes
does not influence the weights patterns to which the network
converge to segment the two others class. As our special
trained U-Net and the normally trained U-Net both are trained
with the same initialization and the same hyperparameters, we
can directly compare both loss function with theirs training
loss. As we can see in Figure 13, the loss of the network
against the number of iteration shows the innocuousness of
the third added class to the overall classification.

APPENDIX B
GENERALIZED DICE LOSS DERIVATION

Let’s recall the Generalized Dice Loss :
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Where is the inverse of each class volume such as
αl =

1∑
voxels,i gli

gli is the groundtruth for the label l at the voxel i
pli is the network output for the label l at the voxel i
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Deep learning architectures for stroke lesion segmentation and outcome
prediction

Albert Clèrigues Garcia, Sergi Valverde, Arnau Oliver and Xavier Lladó

Abstract— Stroke lesions have two differentiated areas: the
core, formed by irreversibly damaged tissue, and the penumbra,
damaged tissue at risk that could be eventually healed and sal-
vaged. Segmentation and differentiation of core and penumbra
can help doctors to asses if the amount of potentially salvageable
tissue outweighs the risks of recanalization surgery.

In this master thesis, five different state of the art deep
learning architectures from related biomedical tasks are used
as baseline models to evaluate their application in stroke lesion
segmentation and outcome prediction. Ensembles combining the
outputs of several independently trained models are shown to
minimise the effect of suboptimal training hyper-parameters.
We show that ensemble models, built under specific conditions,
do improve segmentation quality to a degree. A recent stroke
lesion outcome prediction challenge shows automatic methods
are still far from human level performance. The addition
of registered atlases as additional modalities is proposed to
compensate the lack of data with related knowledge. The use
of this strategy improves the qualitative and quantitative results
only on some models, which suggests some architectures can
make better use of the additional information. Four different
datasets, including three from already held challenges, involving
the tasks of stroke lesion segmentation and lesion outcome
prediction are used to evaluate the implemented models. Finally,
the best methods on challenge datasets are submitted to their
online platform for evaluation. We achieve state of the art
results which place us among the three best methods in the
three challenges.

I. INTRODUCTION

Stroke is a medical condition by which an abnormal blood
flow in the brain causes the death of cerebral tissue. Stroke
is the third most common cause of morbidity worldwide,
after myocardial infarction and cancer, and is the leading
cause of acquired disability. Ischaemic strokes happen due
to due to insufficient blood supply and comprise 80% of
stroke episodes. Fig. 1 shows the appearance of stroke lesions
in several Magnetic Resonance Imaging (MRI) modalities.
Once the symptoms of stroke have been identified, a shorter
time to treatment is strongly correlated with a positive out-
come. The philosophical premise underlying the importance
of rapid stroke intervention was summed up as Time is Brain!
in the early 1990s [1].

The infarcted tissue after an episode is divided into three
regions depending on the potential for recovery, also referred
as salvageablity, of the tissue involved: core, penumbra
and benign oligemia (see Fig. 2). The core is formed by
irreversibly damaged tissue, characterised by a fatally low
vascularisation. The penumbra represents tissue with enough
blood supply that can be eventually salvaged depending on
factors such as revascularization, collateral blood supply,
tissue resistance, etc. The benign oligemia is the area whose

vascularity has been altered by the stroke but is not at risk
of permanent damage.

In the affected area of the brain, the stroke lesion un-
dergoes a number of disease stages that can be subdivided
according to the time passed since stroke onset. These are
divided into acute in the first 24 hours, sub-acute from day
one up to the second week, and chronic from the second
week onward.

1) Swelling and shrinking: Lesion swelling is commonly
observed soon after ischemic stroke, peaking at 3–5 days.
Over time, the stroke lesion shrinks as the swelling reduces
and tissue damaged by the injury is lost and replaced by
cerebrospinal fluid (CSF) leaving an area of cerebromalacea
with ex vacuo effect on adjacent structures. This effect refers
to the deformation of surrounding tissue as it starts filling the
area previously occupied by the infarcted area.

2) Spontaneous reperfusion: Spontaneous reperfusion is
a physiological response attempting to restore blood supply
in underperfused areas, occurring in about 20% of patients
by 24 hours and 80% by 5 days. This response is mainly
achieved by protraction of neighbouring vessels, if done
promptly it can greatly alter tissue outcome during the
upcoming 3 weeks.

3) No-reflow phenomenon: No re-flow phenomenon oc-
curs when recanalization of the blocked artery fails to
reperfuse the tissue capillaries. The absence of reflow is
related to a bad outcome.

II. STATE OF THE ART

Methods for stroke lesion segmentation are often col-
lateral, being originally designed for general brain lesion
segmentation such as tumours, multiple sclerosis lesions,
white matter hyperintensities... The complexity of the task,
the clinical nuances and the lack of incentives are all factors
that contribute to a sparse and diffuse state of the art
for stroke lesion segmentation. However, the situation has
evolved favourably for stroke imaging in the last few years
with the proliferation of high quality labelled public datasets.
The Ischemic Stroke Lesion Segmentation (ISLES) challenge
[3] in 2015 included the sub-acute ischemic stroke lesion
segmentation (SISS) and the acute stroke outcome/penumbra
estimation (SPES) subtasks. The following two editions of
the ISLES challenge in 2016 and 2017 focused on predic-
tion of chronic lesion outcome from sub-acute images. The
Anatomical Tracings of Lesions After Stroke (ATLAS R1.1)
is another dataset [4] released in late 2017 includes a large
number of samples of chronic stroke lesions in T1 images.



(a) T1 (b) T2 (c) DWI (d) ADC

Fig. 1: Example of stroke lesion, two days after the episode, caused by a Middle Cerebral Artery (MCA) occlusion in different
MRI modalities. Case courtesy of Dr Sandeep Bhuta, Radiopaedia.org, rID: 6840. The lesion is seen as hyperintense on T2
and DWI images, where the visible extent of the lesion differs significantly, and hypointense in T1 and ADC modalities.

Fig. 2: Temporal evolution of an ischaemic stroke lesion [2].

In the ISLES 2015 challenge SISS sub-task, Kamnitsas et
al. [5] used their fully convolutional architecture DeepMedic
achieving the first position. The third place of SISS was
awarded to Halme et al. [6] with an approach based on
Random Decision Forests (RDFs). Maier et al. [7], the best
method on the SPES sub-task, and McKinley et al. [8], the
second best method, also made use of RDFs for penumbra
segmentation. This kind of classifiers have excellent general-
ization properties, which has made them popular for difficult
tasks with few training samples such as stroke lesion segmen-
tation. However, random decision forests are essentially a
cascade of simple classifiers acting on hand crafted features.
Consequently, RDFs see their potential severely limited by
the quality of the given features, which may vary for different
tasks.

The ISLES 2016 and 2017 challenges changed their task
with respect to the 2015 edition, from acute lesion segmenta-
tion to lesion outcome prediction. In the 2016 edition, among
the top three methods one was based on RDFs and two
on CNNs. In the upcoming 2017 edition, only CNNs were
present among the top three methods. Recently, big advances
have been made in techniques that minimise the downsides
of deep learning methods for brain lesion segmentation.

III. METHODOLOGY

A. Implemented architectures

The deep learning architectures selected for evaluation
are a varied representation of the state of the art in brain
imaging. A combination of networks designed for tissue
segmentation and lesion segmentation as well as other well-
known networks will be evaluated.

• U-Net [9] is a U shaped network with 5 resolution steps
that won the ISBI 2012 cell tracking challenge.

• 3D U-Net [10] is a network based on the original
U-net architecture extended for 3D with some other
improvements.

• uResNet [11] is a U-shaped network with four resolu-
tion steps and residuals. Architectures using residuals
are easier to optimize and can gain accuracy from
considerably increased depth [12]. In this work, the
original 2D architecture has been extended for 3D to
better suit the problem of stroke lesion segmentation.

• DMRes [13] is an extension of the DeepMedic ar-
chitecture, an 11-layer deep, multi-scale 3D FCNN,
with residual connections was the overall winner of the
BRATS 2016 and the ISLES 2015 SISS challenge.

• CNNMULTI [14] is a nine layers deep multiscale FCNN
originally proposed for brain tissue segmentation.

B. Implemented pipeline

1) Training patch sampling: The implemented patch ex-
traction pipeline is a mixture of the ones from uResNet
[11] and DeepMedic [15] aimed not only to address class
imbalance but lesion type imbalance. Class imbalance is also
a concern for automatic lesion segmentation methods since
it can lead to poor performance and unexpected mistakes.
Stroke lesions in both acute and chronic stages are very
heterogeneous. This pipeline aims to have a balanced patch
representation of the lesion from each patient by ensuring
the same number of patches is extracted from each. To
ensure the desired number of positive patches is reached for
patients with smaller lesions a combination of several patch
extractions from the same lesion voxel and data augmentation
is done. Data augmentation is performed with six anatom-
ically feasible operations including horizontal and vertical
axial mirroring and 90o, 180o and 270o axial rotations.
Hence, using these functions the number of patches can
be augmented up to a factor of six. In practice, a goal
number of patches to extract per patient is specified. Then,
for each patient, 50% of the training patches are extracted
with uniform sampling from the whole volume and the other
50% with positive sampling. A diagram summarising the
whole process can be found in Fig. 3



Fig. 3: Diagram of implemented patch sampling strategy.

2) Network training: Once a balanced training patch set is
extracted, the weights of the networks will be trained with the
same hyper-parameters to offer a fair comparison. To avoid
costly grid search of training hyper-parameters, the Adadelta
optimizer is used to train all networks which requires no
manual tuning of a learning rate. Crossentropy is employed
as the loss function given its gradient properties that ease
convergence of the backpropagation algorithm. A soft Dice
loss based on the Dice similarity coefficient (DSC) is used
as the monitored metric for the Early stopping technique.
The networks were trained with a batch size of 32. A global
goal of 250 000 patches used for training each dataset is set
that makes a compromise on the amount of samples and the
training time. Finally, the crossvalidations will be done in 4
folds on all datasets, adjusting the amount of cases per fold
accordingly.

3) Segmentation and post-processing: Once the network
has been trained with a balanced training set we evaluate it
with samples never used for training. To segment a volume
with patch-based methods first the patches are extracted
and forward passed through the net individually. They are
sampled uniformly with a regular extraction step to make
sure all the parts of the volume are forward passed through
the net. Then, the segmented patches are combined in a
common space with the same dimensions as the original
volume, preserving their original spatial location, to produce
the final segmentation. In our case, the combination is
performed per voxel by averaging the class probabilities of
the various segmentations. Finally, the post processing step
involves a thresholding of the class probabilities followed by
a connected component filtering by lesion volume. The vari-
able threshold can compensate over/under confident networks
while the minimum lesion size takes advantage of lesion
priors to minimise false positives. An optimal combination of
threshold and minimum lesion size maximising the average
overlap is obtained through grid search for each task and
architecture.

IV. PROPOSALS

A. Ensembles

Recently, Kamnitsas et al. [16] won the BRATS 2017 brain
tumour segmentation challenge with its method Ensemble
of Multiple Models and Architectures (EMMA). The key
idea being that averaging the outputs of individual models
marginalizes the influence of the meta-parameters used for
training. This effectively averages away the variance of any
individual model, resulting in more robust and consistent
performance. Given the good results achieved by EMMA, an
ensemble will be built in a similar fashion with a selection
the implemented methods with the aim of improving results.
In practice, the performance of the trained models will be
evaluated and an ensemble will be built with the best per-
forming ones. In the end, the built Ensemble UNET, makes
use of the 3D U-Net and 3D uResNet. The performance of
both architectures is overall consistent across datasets and
show similar confidence levels on their class probabilities.
Given that both U-nets have compatible patch sizes, the input
and output patch shape of the ensemble will be 24× 24× 8
as seen in Fig. 4.

B. Atlas assisted lesion outcome prediction

Most of the presented methods to the ISLES 2017 chal-
lenge are adapted to stroke lesion outcome prediction from
other brain imaging tasks. Methods performing this task need
to capture the full correlation between acute images and final
lesion extent, really weakened both spatially and temporally.
For this, a network could be trained with a big enough
representation of all the possible cases and its evolution.
However, the number of required images for this approach
grows exponentially with the number of factors influencing
the evolution. To compensate the lack of data, a model using
additional knowledge, not contained in the training images,
could be used. In other words, either you have enough data
representing the full set of correlations or you build a model
that uses additional knowledge to fill the gap. In our case, a



Fig. 4: Diagram of implemented Ensemble UNET including the 3D extension of uResNet [11] and the 3D U-Net [10].

Fig. 5: Atlas of blood supply territories [17]. ACA (green),
MCA (red) and PCA (blue) refer to the standard flow terri-
tories perfused by the bilateral anterior, middle and posterior
cerebral arteries respectively.

Fig. 6: Vessel density atlas [18] axial slice series in a red
to yellow colormap, overlayed on top of the structural MNI
152 template for reference.

priori information about vascular and other processes can be
fed as additional knowledge to CNNs using atlases. For our
purpose, an atlas can be described as an image representing
an average model of a structure. Furthermore, an atlas can
include richer information, such as local image statistics
and the probability that a particular spatial location has a
certain label. In our case, atlases with information about brain
vascularity are of especial interest:

• Blood supply territories atlas depicted in Fig. 5 was
created based on the prints of vascular territories by
Tatu et al. in 1998, using arterial transit time (ATT) data
from a population of elderly with hypertension [17]. The
labels from the atlas correspond with the ramifications
of the Anterior, Middle and Posterior cerebral arteries
which are the three main arteries that irrigate the brain.
Establishing the arterial territories for each part of the
brain is a non-trivial task which is open to interpretation.

• Vessel density atlas [18] depicted in Fig. 6 is a freely
available digital atlas of frequency of vascularisation. It
was obtained from N = 38 healthy participants scanned
with the time-of-flight magnetic resonance technique. It
essentially encodes the probability of finding a vessel
in a particular spatial location.

Atlases can be integrated in a CNN framework as an
additional input modality. In this way, the network can
consider the whole neighbourhood and extract local and
global statistics as features. In practice, the atlases are already
registered to the MNI 152 T1 structural template. We perform
a linear registration of the template to the patient ADC
image and obtain the transform, which will be used to
register the atlases to the patient’s space. Finally, patches
are extracted for training and testing containing all co-
registered modalities across the channel dimension including
the atlases.

V. EVALUATION

A. ISLES 2015 SISS results

The evaluation metrics for each of the architectures can
be found in Table I. The best overlap is achieved by the
Ensemble UNET model with 63.7 ± 25.3 %, not far from the
inter-rater overlap for the SISS dataset of 70.0 ± 20.0 % [3].
The ensemble of 3D u-nets has a comparable performance
to uResNet and is significantly better than the 3D U-Net
(p <0.05). The richer correlations found in the bigger 3D
neighbourhood probably make the network more sensitive
to probable lesions. However, overall the average overlaps of
62.1% of 3D U-Net and 61.5% of uResNet are marginally
higher than the 60.1% achieved by the U-Net.

Challenge evaluation results: The best approach in the
SISS dataset was the 3D uResNet with an average crossval-
idation overlap of 61.5%. The results situate our implemen-
tation on the third place out of 34 entries of the ongoing
leaderboard as seen in Table II.

B. ATLAS R1.1 results

The evaluation metrics for each of the architectures can be
found in Table I. The 3D U-Net achieves the best result with
an overlap of 72.4 ± 21.0 %, which is not far from the inter-
rater overlap of 76.0 ± 14.0 % for this dataset [4]. The 3D
U-net is significantly better than all other tested networks
(p <0.05). The bigger size of this dataset means a more
complete representation of the correlations between input
and output is present. Our hypothesis is that the doubling of
channels on the 3D U-Net increases the capability to capture
the bigger number of correlations present in this dataset. This
capability is not apparent with smaller datasets as there are is
a limited amount of information to capture. The two FCNN
architectures perform significantly worse than the u-nets,
probably due to the training procedure less suited for this



TABLE I: Results of 4 folds crossvalidation on ATLAS R1.1, ISLES 2017 and ISLES 2015 SISS and SPES.

SISS ATLAS R1.1 SPES ISLES 2017
Architecture DSC (%) HD DSC (%) HD DSC (%) HD DSC(%) HD
uResNet 61.5 ± 25.3 36.2 ± 27.6 62.5 ± 24.0 56.2 ± 25.0 77.6 ± 17.6 14.1 ± 10.3 38.7 ± 22.2 26.2 ± 20.9
3D U-Net 62.1 ± 25.5 38.1 ± 26.8 72.4 ± 21.0 48.3 ± 26.6 77.8 ± 17.8 12.2 ± 5.6 38.8 ± 23.0 26.0 ± 20.0
U-Net 60.1 ± 27.4 32.2 ± 28.0 63.0 ± 22.4 78.1 ± 20.8 78.2 ± 15.3 11.7 ± 6.1 33.6 ± 22.4 34.8 ± 24.2
DMRes 54.6 ± 28.6 47.1 ± 28.9 33.6 ± 26.2 89.8 ± 15.4 71.6 ± 18.8 14.8 ± 9.6 34.9 ± 20.6 32.2 ± 21.9
CNNmulti 51.0 ± 30.2 56.7 ± 35.6 38.4 ± 26.6 95.0 ± 14.3 75.8 ± 16.4 13.5 ± 8.6 30.7 ± 22.2 25.9 ± 17.3
Ensemble UNET 63.7 ± 25.2 31.7 ± 26.1 68.8 ± 23.4 32.1 ± 26.2 78.1 ± 18.5 11.7 ± 6.1 40.0 ± 22.8 24.8 ± 19.9

TABLE II: Ongoing benchmark leaderboard of the ISLES
2015 SISS challenge testing set evaluation.

Ranking Username DSC HD
1 kamnk1 0.59 ± 0.31 39.6 ± 30.7

N/A zhanr6 0.58 ± 0.31 38.9 ± 35.3
N/A clera1 (ours) 0.56 ± 0.29 34.4 ± 27.1

2 fengc1 0.55 ± 0.30 25.0 ± 22.0
3 halmh1 0.47 ± 0.32 46.3 ± 34.8

kind of architectures. Overall, CNNMULTI performs signifi-
cantly better than DMRes (p<0.05) with 5% more average
overlap. The Ensemble UNET made by averaging the results
of 3D U-Net and uResNet is significantly worse than 3D
U-Net (p<0.05). This is the only task where the Ensemble
UNET model does not improve results as compared with the
individual networks.

C. ISLES 2015 SPES results

The evaluation metrics for each of the architectures can
be found in Table I. All the networks obtained a high
DSC as compared with the other considered tasks in this
document. This is due to the systematic way in which the
gold standard was generated, which establishes a simple
numerical correlation between the intensities and output
label. The original U-Net achieves the maximum overlap at
an average of 78.2%. The 3D U-Net and uResNet achieve
77.8% and 77.6% of average overlap respectively, marginally
lower and with around 2.5% more variability. The more
consistent results achieved by the U-Net are due to the
smaller, less confounding 2D neighbourhood that allows for
more generalizable and robust features. The FCNNs achieve
the lower overlap with 71.6% for the DMRes and 75.8% for
CNNMULTI, which is the closest to the u-nets. The Ensemble
UNET achieves a higher average overlap, minimising the
segmentation errors of individual networks and improving
the overall segmentation consistency.

Challenge evaluation results: The best approach was the
2D U-net architecture, which was submitted for evaluation.
The results situate our implementation on the third place
out of 12 entries of the ongoing leaderboard with an average
overlap of 80% as seen in Table III. In the SPES challenge,
just one out of the seven presented methods was CNN based
and it was the worst performer, with mainly RDFs in the top
positions. Three years later, the advances in deep learning
mean CNNs can offer similar generalizability properties as
RDFs, achieving comparable results.

TABLE III: Ongoing benchmark leaderboard of the ISLES
2015 SPES challenge testing set evaluation.

Ranking Username Approach DSC
1 mckir1 RDF [8] 0.82 ± 0.08
2 maieo1 RDF [7] 0.81 ± 0.09

N/A clera1 (ours) U-Net 0.80 ± 0.10
3 robbd1 RDF [20] 0.78 ± 0.09

TABLE IV: Average metrics of 9-fold crossvalidation on
ISLES 2017 dataset with and without the BST and VD
atlases registered as an additional modality.

Architecture DSC (%) HD
uResNet 38.7 ± 22.2 26.2 ± 20.9
uResNet + atlas 40.5 ± 23.6 26.5 ± 21.7
3D U-Net 38.8 ± 23.0 26.0 ± 20.0
3D U-Net + atlas 38.1 ± 23.8 30.3 ± 24.4
U-Net 33.6 ± 22.4 34.8 ± 24.2
U-Net + atlas 35.1 ± 22.8 33.9 ± 25.9
DMRes 34.9 ± 20.6 32.2 ± 21.9
DMRes + atlas 34.3 ± 21.7 25.4 ± 18.1
CNNMULTI 30.7 ± 22.2 25.9 ± 17.3
CNNMULTI + atlas 32.3 ± 21.0 28.5 ± 19.5
Ensemble UNET 40.0 ± 22.8 24.8 ± 19.9
Ensemble UNET + atlas 41.1 ± 23.5 27.7 ± 24.0

D. ISLES 2017 results

The evaluation results of each model in the lesion outcome
prediction task can be seen on Table I. The Ensemble UNET
achieves the best results with a 40% average overlap, around
1% higher than the individual methods. Again, the presence
of several failed cases widens the metrics variance difficult-
ing a finer analysis of the performance differences between
the models. In this case, the 3D u-nets have significantly
better results (p <0.05) as compared with the 2D u-net,
which had comparable performance in the ISLES 2015 SISS
and SPES tasks. The networks greatly benefit from the richer
spatial correlations of 3D neighbourhoods for the task of
stroke lesion outcome prediction. This suggests that the
features needed for accurate prediction have a wide spatial
influence. The FCNN architectures show significantly lower
results as compared with the 3D u-nets, with a performance
comparable to the 2D U-Net.

E. ISLES 2017 with atlases results

The addition of vascular related atlases marginally im-
proved the quantitative and qualitative results of some net-
works. From the evaluated networks uResNet, CNNMULTI and
U-Net all show an increase in average overlap of around



Fig. 7: Detailed overlap results of the ISLES 2017 dataset
evaluation with and without the BST and VD atlases regis-
tered as an additional modality.

TABLE V: Ongoing benchmark leaderboard of the ISLES
2017 challenge testing set evaluation.

Ranking User DSC HD
N/A pinta1 0.36 ± 0.22 30.6 ± 14.0
N/A clera2 (ours) 0.34 ± 0.21 32.5 ± 13.8

1 kwony1 0.31 ± 0.23 45.3 ± 21.0
2 lucac1 0.29 ± 0.21 33.9 ± 16.8
3 mokmc2 0.32 ± 0.23 40.7 ± 27.2

1.6%, which also translates in higher median values. On
the other hand, the 3D U-Net and DMRes models have
marginally less overlap as compared with the baseline.
This suggests something in the architectural design of these
networks can better handle with the increasing number of
modalities. In the case of the 3D u-nets, uResNet improved
its performance while 3D U-Net marginally decreases. The
main architectural difference of the 3D U-net with respect
to uResNet is the doubling of convolutional layers per step
and the absence of residuals. One of these factors or a
combination of both might be preventing the 3D U-Net from
effectively utilizing the additional information. The uResNet
model sees an increase in its lower quartile with respect
to the baseline, as seen in Fig. 7, indicating a better and
more consistent segmentation of some harder cases. The
Ensemble UNET model achieves the highest average overlap
with 41.1%. Despite the worse performance of 3D U-Net in
this case, the ensemble still improves results as compared
with the individual results of each model.

Challenge evaluation results: The best approach was the
3D uResNet in combination with the two registered atlas ,
which was submitted for evaluation. The results situate our
implementation on the second place out 27 entries of the
ongoing leaderboard with an average overlap of 34% as seen
in Table V.

VI. CONCLUSIONS AND FUTURE WORKS

In this master thesis, we made an extensive quantitative
and qualitative evaluation of state of the art deep learning
architectures applied to stroke imaging tasks. More specifi-
cally, the developed work can be summarised as follows.

1) Reviewed the state of the art on methods for stroke im-
age processing and related biomedical imaging tasks.

2) Implemented five state of the art deep learning archi-
tectures for stroke lesion segmentation and outcome
prediction.

3) Implemented a training patch extraction pipeline suited
for lesion segmentation tasks that addresses class and
lesion type imbalance and makes use of anatomically
feasible data augmentation functions.

4) Proposed of the addition of atlas as registered modal-
ities to improve stroke lesion segmentation, which
showed marginally better results only on some net-
works. We also explored the use of ensemble models
that improved results by reducing false positives and
refining the segmentation borders.

5) Evaluated the implemented deep learning architectures,
trained with the same hyperparameters and pipeline,
and the proposed improvements.

6) Compared our implementation against state of the art
methods. Our implementation achieved state of the art
performance, ranking third in the ongoing leaderboard
of both ISLES 2015 SISS and SPES and second on
the ISLES 2017.

We hope the experience and insights gained during the de-
velopment of this work will serve for the participation in the
upcoming ISLES 2018 challenge. The insights obtained from
the response of different architectures to the same dataset
allows us to determine what strategies are effective and which
not. The addition of atlases as additional modalities as well as
what architectural features can effectively utilize the given
information will be further studied. Despite the change of
focus of ISLES 2018, the strategy of atlas assisted deep
learning may also be of help for lesion segmentation. The
creation of more stroke lesion related atlases from images
of available datasets will be explored too. Finally, a more
deliberate ensemble strategy can be implemented once a
number of suited architectures for the task have been found.

REFERENCES

[1] Camilo R. Gomez. Editorial: Time is brain! Journal of Stroke and
Cerebrovascular Diseases, 3(1):1–2, jan 1993.

[2] Bernd F. Tomandl, Ernst Klotz, Rene Handschu, Brigitte Stemper,
Frank Reinhardt, Walter J. Huk, K.E. Eberhardt, and Suzanne Fateh-
Moghadam. Comprehensive Imaging of Ischemic Stroke with Multi-
section CT. RadioGraphics, 23(3):565–592, may 2003.

[3] Oskar Maier et al. ISLES 2015 - A public evaluation benchmark for
ischemic stroke lesion segmentation from multispectral MRI. Medical
Image Analysis, 35:250–269, jan 2017.

[4] Sook-Lei Liew et al. A large, open source dataset of stroke anatomical
brain images and manual lesion segmentations. Scientific Data,
5:180011, feb 2018.

[5] Konstantinos Kamnitsas, Liang Chen, Christian Ledig, Daniel Rueck-
ert, and Ben Glocker. Multi-Scale 3D Convolutional Neural Networks
for Lesion Segmentation in Brain MRI. In Proceedings of ISLES
(SISS) challenge, 2015.



[6] Halla-Leena Halme, Antti Korvenoja, and Eero Salli. ISLES (SISS)
challenge 2015: Segmentation of stroke lesions using spatial nor-
malization, Random Forest classification and contextual clustering.
Proceedings of ISLES (SISS) challenge, pages 31–34, 2015.

[7] Oskar Maier, Matthias Wilms, and Heinz Handels. Random forests for
acute stroke penumbra estimation. In Proceedings of ISLES (SPES)
challenge, 2015.

[8] Richard Mckinley, Levin Häni, Roland Wiest, and Mauricio Reyes.
Segmenting the ischemic penumbra: a spatial Random Forest approach
with automatic threshold finding. In Proceedings of ISLES (SPES)
challenge, 2015.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI),
pages 234—-241, may 2015.
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Particle Detection with Acoustic Waves

Thomas DREVET

Abstract— Particles detection is a process that is getting more
and more interest for applications mainly related to disease
detection (Cancer, AIDS). Several methods were developed, but
there is a lack of works and studies on some aspects of the
particles detection techniques: for instance, the existing methods
are all based on very complex setups interacting with Bulk
Acoustic Waves.
My work is oriented about investigations on those aspects:
try to build a technique based on Surface Acoustic Waves,
perform particles in suspension detection, use a less complex
setup. It implies that I should answer different interrogations:
what should be the properties of my setup, which particle
model, which detection technique? During the time that lasts
my thesis, I investigate on those problematics using a simulation
software, COMSOL, during two studies: one based on the
frequency domain to know more about what is happening inside
a microchannel in presence of a particle, and one based on time
domain to simulate what a particles detection should look like
with my setup and my parameters.

I. INTRODUCTION

Particles detection techniques are widely used in different
fields such as medical or industries [1], in order to per-
form different tests (detecting flaws, medical diagnostics).
Those techniques can be under different format using either
chemical reactions for destructive tests, either mechanical
properties (acoustic waves) for non-destructive tests. All of
those techniques can be improved (higher sensitivity) in order
to have more accurate results. The work presented here is
oriented around one precise technique, based on Surface
Acoustic Waves (SAWs). My work focused on the detection
of particle inside a ’Lab on Chip’ device.
My thesis was designed around two problematics:

• What is the detection capability of SAWs for particle
in suspension? Can we differentiate particle mechanical
properties ?

• What are the parameters requirements (frequency, chan-
nel size, particle size, particle material) to obtain ex-
ploitable results ?

In order to answer these two problematics, I used COM-
SOL Multiphysics, a simulation software, designed to solve
finite physics analysis. This software is widely used in
academia and industries and can be applied for several
applications such as electrical, mechanical or chemical. The
choice of using this tool was due to its capability to perform
the different types of analysis required for my investigations:
possibility to work in frequency and time domains, easy to
play on parameters/resolution.

My thesis is oriented around two investigations, based on:
• frequency domain: study of the changes in the acoustic

pressure field with different type of particles

• time domain: study of acoustic response in time with
different type of particles

II. LITERATURE

A. Detection: Back-scattering and Transmission

The design of the ’Lab on Chip’ device (two InterDigital
Transducers (IDTs) set parallel to each other and around
the microchannel) is illustrated on Figure 1. It permits to
record the data thanks to two methods: Back-scattering or
Transmission. Those two techniques are commonly used in
acoustic detection, especially for flaw detection in materials
(non destructive tests) [2]. One of my objective is to access
which method is the most appropriate for the characterization
of particles in suspension. For this, I will model both
methods in COMSOL and compare the signal received in
both configuration.

Fig. 1. The ’Lab on Chip’ device, image taken from [3]

1) Back-scattering Technique: The back-scattering is an
approach of the pulse-echo technique. First introduced by
Sergei Sokolov in 1937, the acoustic pulse-echo technique is
directly inspired from the military RADAR system [4]. The
main principle is to send an acoustic pulse that will reflect
on everything it encounters. The pulse will meet and then
go back to the emitter which will also serve as a detector.
The obtained signal will contain data from what it crossed
(nature and location). The figure 2 illustrates the way the
back-scattering technique can be applied in the case of the
’Lab on Chip’ device, and what I can extract from it. In
order to extract the content of the signal, the objective is to
compute the back-scatter function BSTF(f), following this
formula:

BSTF (f) =
Rsignal(f)

Rcoef ∗Rref (f)

with Rsignal(f) the Fourier Transform of the back-scatter
signal, Rsignal the reflection coefficient and Rref (f) the
Fourier Transform of the input signal. The objective with



Fig. 2. The back-scattering technique applied to the ’Lab on Chip’ device

the obtained curve is to see if we can use it as ’fingerprint’
tool, to detect the type of particle we are facing.

2) Transmission Technique: In this second technique in-
stead of emitting and receiving the signal with the same IDT,
we emit the pulse with one and we receive the output signal
with the opposite one, as shown on figure 3. As for the
Back-scattering technique, the goal here is to catch the signal
modified by the medium it goes through (material, location).
For this method, we are computing the Measured Scattering-

Fig. 3. The transmission technique applied to the ’Lab on Chip’ device

Cross Section σ(f), following this formula:

σ(f) = R2 |S(f)− Snp(f)|2

|Sref (f)|2
(2d)2

with S(f) the signal obtained with the particle, Snp the
signal obtained in the situation where there is no particle in
the channel, Sref the signal emitted by the IDT, R the radius
of the particle and d the distance IDT/particle. The obtained
curve should be close to the curve inferred by the particle
model, as for the other techniques.

B. The Faran Particle Model

The concept of particle model will be important to sim-
ulate, in true condition, what is happening (physical param-
eters, positioning of elements) and to compare my results
with the theory. Those models are used to compute the
emitted frequency and afterwards the comparison tool for my
results. There are several particle models which are existing
and that are currently used by different detection methods
(Single Cell, Anderson). Among them, I decided to study
more deeply one of them that is the Faran model[5]. The
Faran model designed by James Faran, in 1951, to model

the sound scattering of solid cylinders and spheres. This
mathematical model is still commonly used to estimated and
solve the solution of the way an acoustic wave is interacting
with a cylinder or a sphere (particle in 2 or 3D). Despite
the model oldness, it is still very used to estimate different
elements in acoustic scattering cases as explained in [6], for
ultrasonic scattering of bones.

C. The ’Lab on Chip’ device with Surface Acoustic Waves

1) The ’Lab on Chip’ device: The ’Lab on Chip’ device
is a small instrument composed by a Lithium Niobate
(LiNbO3) substrate, a piezoelectric material that permits the
generation and the travelling waves propagation. On this sub-
strate, two InterDigital Transducers (IDTs) are set parallel to
each other, between them, a microchannel in Polydimethyl-
siloxane (PDMS) is bounding in. PDMS is commonly used
in microfluidic applications for its low reflection [7]. This
type of device can be used in applications such as particles
separation (Nam et al. [8]), particles trapping (Chen et al.
[9]) or particles sensing ( Go et al. [10]).

2) SAWs Generalities and their Solid Propagation: The
study from Lord Rayleigh in 1885, about waves propagation
[11], put in light the existence of a new type a waves
that propagate in elastic solids with interesting properties,
called the Surface Acoustic Waves (SAWs). Composed by
a longitudinal and a transverse (shear) component, they
present, whatever the material (isotropic or not), different
velocities [12]: the first propagating parallelly to the SAW
propagation axis and the second normal to the surface. The
figure 4 shows this propagation: the longitudinal component
along the x-axis (direction of the wave) and the shear one
along the y-axis.

Fig. 4. SAWs propagation, image taken from [12]

The Surface Acoustic Waves are generated by applying a
voltage to two Interdigital Transducers (IDTs), placed on a
piezoelectric material [12]: one of them is used as converter
between the voltage signal and the mechanical SAWs and the
second one do the contrary to work as receiver, as shown on
figure 5.

3) The SAWs/Liquid Interation: The SAWs propagation is
a key element in my thesis: you will see the importance of
the propagation of the SAWs facing a liquid. As explained in
[13], the waves are strongly absorbed (where the amplitude
is decaying) depending on the ’quantity’ of liquid crossed,



Fig. 5. SAWs generation by IDTs, image taken from [12]

becoming Leaky SAWs (LSAWs). The figure 6 shows the
wave propagation inside the ’Lab-on-Chip’ device, when the
two IDTs are emitting SAWs.

Fig. 6. SAWs in ’Lab on Chip’ device, image taken from [3]

This phenomenon also creates a finite pressure difference,
that leads to the generation, directly above the substrate, of
longitudinal sound waves (a Bulk Acoustic Waves) into the
liquid. The created waves will have a diffraction angle ΘR,
called the Rayleigh angle:

ΘR = arcsin(
vl
vS

)

with, vS the sound velocity of the substrate and vl the sound
velocity of the liquid. Another phenomenon is appearing
thanks to the interaction SAWs/liquid: an acoustic radiation
pressure appears in the direction in which the sound prop-
agate himself within the liquid, creating some droplets. At
high SAW amplitudes (high generation frequency or setup
not well designed), those droplets become very deformed,
preventing to see well what is happening inside the channel.
An example of droplets is shown on figure 7.

Fig. 7. Example of Droplets created by high SAW amplitude, image done
using COMSOL

D. Existing Particles Detection Techniques

Particles detection has been existing for years and several
techniques have been developed. Kishor et al. [14], from

2016, is a technique that is very close to my research
question. As my work, the technique is based on ’the lab on
chip’ device: The main difference comes from the acoustic
waves generation: as explained in my work, I generate SAWs
with one of my IDT and I obtain my data either through a
transmission with my second IDT or via a back-scattering.
Here, they are generating bulk acoustic waves using a pulsed
laser pointed on the micro channel that will become SAWs in
order to be measured by the IDTs. The different tests they
have done using a blue dye, are able to detect them very
successfully.
There are several techniques that are not using a single
device as the ’Lab on Chip’ one. One of them is the method
presented by Baddour et al. [15]. They are using a pulser, that
through a transducer, will generated high frequency sound
waves. Those waves, as in a SAW device, will be recorded
after passing to a channel, by a transducer. The processing
of their data is very interesting because it is near to the one
I am using: they are also using a scattering signal, but it is
another model, the ’Single Cell’ one, mainly used for cell
analysis. Their work gives a results close to their theory but
it is not adapted to their application (do not fit well with all
the type of cells they are working on). They also have issues
with resonances and interferences that are highly visible in
their output work. There is another interesting method, the
one from Falou et al. [16]. This technique is close to the
previous one in terms of methodology (scattering) even if
they are using the Anderson model instead of the ’Single
Cell’ one. The main difference comes from their different
setup usage: In it, they are using a custom made structure
in plexiglass containing an ultrasound transducer, pointing a
window served to let pass the optical informations, formed
at this location. Those data will then be catch up by a
microscope, situated under the window. This setup, quiet
complex to build, is giving them very good results on the
particles they are testing (polystyrene micro-particles, cells).

E. Particles Detection Applications

Those particle detection techniques can be used for dif-
ferent applications. For instance, they can be used as tracker
as shown in different research papers from Jochen Guck,
as Urbanska et al. [17]. In this publication, they are using
cytometry to track the lineage of cells during days (cytometry
is a measurement technique for cells that allows to get their
characteristics based on , it is often use for different tests as
Cancer or AIDS diagnostics [1]).

III. MODEL PRESENTATION

A. The Virtual Model from the ’Lab on Chip’ device

As explained previously, there are several methods to
perform particles detection (Falou et al., Kishor et al.). Their
setups are very complex/expensive, and my work is using a
simpler setup and surface acoustic waves what it hasn’t been
done yet. I decided to work with the basic model from the
’Lab on Chip’ device, shown on figure 8.

My investigations are realized using COMSOL, with a 2.5
dimension model from the device realized by Gergely Simon,



Fig. 8. 3D Diagram from the ’Lab on Chip’

shown in the figure 9. A 2.5 dimension model is an linear
extension from a 2D one, transforming it into a king of three
dimension model. This type of model permits to speed up
the simulation in many cases and it allows, for instance, to
include a particle.

Fig. 9. Front and Isometric views from the COMSOL Model

B. The Parameters Choice

1) Size of Particles and Particles Materials: For the tests
with a particle, I included a single particle centered in the
channel. The choice of using a single particle has been taken
because it permits to use easily the Faran Model that works
in my case. The different tests I realized during my studies
are mainly oriented around the way particles interact with the
acoustic field in the frequency domain study and influence
the data recorded at the IDTs in the time domain study. In
order to check the size influence, I decided to do tests with
two sizes: 50µm and 25 µm for the sphere radius, allowing to
have an overview of the output modifications that can differ
with sizes evolution. The second particle parameter that I
played with, during my tests, is its material. It is important
to test several materials in order to see if we are able to
detect correctly the nature of the particle. I summarized all
the materials and their properties of the particles in the table
I.

2) IDTs Frequency: For my tests, I decided to fix the
frequency following the Faran model [5]. To test the possible
frequencies, I used a Matlab code, that allows to draw

2*Name Density Cp Cs Acoustic Impedance
(g/cm3) (m/s) (m/s) (g/cm2 − sec× 105)

Glass 2.32 5640 3280 14.5
Liver Cell 1.07 1549 1.03 1.65
Polystyrene 1.06 2325 1120 2.94
Steel 7.85 5960 3235 45.5

TABLE I
PARTICLE MATERIAL PROPERTIES

attenuation for all the frequencies, depending on the situation
(particle size/material, environment properties). The figure
10 shows the curve from the situations with a polystyrene
particle one of 50 µm radius. The objective is to match
the spikes from the studies output and the local minimum
from those models. I decided to work with two different
frequencies for my studies: 30 MHz for the frequency
domain study and 50 MHz for the time domain one.

Fig. 10. Faran Model simulation for a polystyrene particle (50 µm radius),
done using Matlab

IV. FREQUENCY DOMAIN STUDY

A. Presentation of the Study

The frequency domain study is the first one I realized: as
said in introduction, its goal is to evaluate the way particles
impact the detections within microchannel from the device.
To do so, we check the acoustic pressure field from the
channel obtained using the COMSOL simulations. I ran
one simulation without any particle and four with a 50 µm
particle with a different material (from the table I) each time
to test the properties influence of them (Density, Acoustic
Impedance, Wave Speeds) and a last test with a smaller
particle 25 µm to test the influence of the particle size.

B. Presentation of the Test Results

A simulation realized in the frequency domain takes
around 6 hours to be performed an Intel Core i5-6500 64 bits
with 16 Go RAM. COMSOL can give different informations
depending on what we want to study or verify. For this
frequency domain study, I mainly work on the acoustic
pressure field (in Pa) happening in the microchannel. For
instance, the figure 11 shows how the full result are displayed
in COMSOL, where we have a view of the microchannel



containing, in this case a particle, at the center of it. I can
work with the full 2D data, but in order to speed up the
analysis, I decided to only work in 1 dimension by taking
only the middle line of the channel. I exported those reduced
data to Matlab in order to have more tools for the data
processing and for the plotting.

Fig. 11. Acoustic Pressure Field - Frequency Domain test - 50 µm particle
of Steel (30MHz), done with COMSOL Multiphysics

The figure 12 shows the central line acoustic pressure for
different tests regarding the particle material. The figure 13
shows the results from the tests I did about the particle size.

Fig. 12. Frequency Domain study, Particle Material Influence (30MHz),
plot done with Matlab

Fig. 13. Frequency Domain study, Particle Size Influence (30MHz), plot
done with Matlab

From what we see from the two graphs, we can’t see
any clear link between parameters as the wave-speeds or the
density, and curve shape as the amplitude or a time-delay.
The only link that might be done is between the Pressure-
Wave speed and the amplitude of the font before facing the
particle. To be sure about this relation, I would need to do
more tests (more particles with different properties).
For the particle size influence, it is also the same conclusion
that we can do: we can observe that the particle size has an
influence on the curve amplitude, but it is not clear enough
(not enough data to confirm the hypothesis).

V. TIME DOMAIN STUDY

A. Presentation of the Study

This second study was the longest. As previously stated,
the aim of it is to check if we are able to detect the particle
inside the microchannel. To do that, I will use the ’Lab-on-
Chip’ model and work with a IDT frequency of 50 MHz.
I will follow the same process as for the frequency domain
study: I realized different simulations, for testing how the
particle properties and the particle size are influencing the
voltage received by the IDTs, thanks to the acoustic waves
displacements. I will realize the tests with the same particles
(size and material), as the frequency domain one. To perform
such work, I will emit a signal with 17 of 18 electrodes from
the IDT (the 17th farthest electrodes from the channel). This
signal follows the mathematical formula s(x) = sin(freq ∗
2∗π∗x), with freq being the IDT frequency (50 MHz), from
0 to 33*10−9 seconds. The shape of the signal is shown on
figure 14.

Fig. 14. Input signal for the time domain study, s(x) = sin(freq∗2∗π∗x)
with freq = 50MHz

The last electrode from the emitting IDT (the closest to
channel) is used as a receptor, as long as the closest electrode
to the channel from the opposite IDT, permitting to test the
two types of detection techniques

B. Presentation of the Test Results

At first, those tests have an important issue: they are very
time consuming. One simulation in the time domain, with an
Intel Core i5-6500 64 bits and 16 Go RAM, takes around 2
days (50 hours), and the time required to export the data (few
hours), limiting the number of simulations I could run during



the time that lasted my thesis. A time domain simulation
gives different information on what is happening: as for the
frequency domain study, we can have access to the pressure
acoustic field (in Pa) that takes place inside the microchannel.
In this study, we can observe the displacement of the waves
in the water, for each iteration of the simulation, as shown
on figure 15.

C. Applying the Detection Techniques

1) The Back-scattering technique: We should use the data
in order to compute the back-scattering technique, by com-
puting the background difference. The background difference
allows to quantify the impact of the particle presence on
the signal. To obtain it, I do the difference between the
signal containing the particle and the signal with no particle
to have the background for the studied particle. Then, I
compute the Fast Fourier Transform (FFT) to pass it into
the frequency domain. Finally, I use the formula from the
back-scatter function BSFT(f). To assert my results, I should
compare the obtained curve with the one obtained by the
Faran model simulation. The obtained curve for the 50 µm
radius Polystyrene particle is shown on figure 16.

We can observe that the curve I am getting is very far from
what I should obtain (curve realized by the Faran Model
10): I should see a link between the spike locations from
the BSTF and the local minimum from the Faran curve (at
30 MHz, 40 MHz, 50 MHz). But in this situation, there is
absolutely no relationship. It means that I either did a mistake
during my work (simulations or computations), either the
strategy I decided to follow is not working.

2) The Transmission technique: From those data, we can
apply the FFT on the signal without the particle, and on all
the signal obtained in the tests where there are particles.
When we have them, we can use the formula from the
Scattering-Cross section σ(f).
Then, I should follow the same logic as for the previous
technique, by analyzing the results I am getting with the
Faran model. The figure 17 shows the results I am getting
for the transmission technique (50 µm radius Polystyrene
particle).

The transmission technique gives a one spike curve at 50
MHz. When I analyze this curve with the Faran model one,
we have the matching spike but there are two that are missing
(30 and 40 MHz). It means that our results are incomplete.
I can deduce that we face the same issue as for the back-
scattering technique: I have either a modeling or processing
error.

We can compare the results got from those two techniques,
to see which one is working the best in our setup. From the
results I obtained, we can say that the transmission technique
seems to give a better matching (we have one spike on the
three, compared to the zero from the back-scattering). But
both methods are giving results that are too far from the
Faran model. I don’t know from the results I have right now,
if the strategy is good or not: I have to check if I did no
major mistake in my work, or the technique I built is just
not doable.

D. Testing the Noise limit for the detection

We can perform another test with the electrical potential
recorded by the IDTs, with the time domain data: it is pos-
sible to determine the level of noise for which the detection
starts to be impossible. This study will have an important
role, when the process will be tried in real condition, to
determine the quality of the obtained results.
Those tests are realized using Matlab: I add white Gaussian
noise on the recorded data, using the awgn function, with a
different Signal to Noise Ratio (SNR). The SNR corresponds
to the level of noise on the signal, computed by dividing the
power of a signal (meaningful information) by the power
of background noise (unwanted signal). Most of the time,
we define it in dB by applying a log10 on the ratio and
then multiplying the obtained value by 10. Once I add noise
on my tested signal, I try to compare it to all the original
signal (signals obtained for every particles I tested in the time
domain study) by computing the errors, leading to a match.
My full study is to run for different SNR (-30 dB, -22 dB,
-16 dB, -9 dB, -3 dB, 0 dB) for all the particles I tested,
an important number of times (1 million). I present in the
table II, the results I obtain for the 50 µm radius Polystyrene
particle.

SNR (dB) -30 -22 -16 -9 -3 0
No Particle 12.9 3.0 0 0 0 0
50 µm Polystyrene 45.4 76.3 98.1 100 100 100
25 µm Polystyrene 16.1 8.9 1.0 0 0 0
50 µm Glass 12.2 5.3 0.3 0 0 0
50 µm Liver Cell 13.3 6.5 0.5 0 0 0

TABLE II
NOISE LIMIT STUDY FOR THE 50 µM RADIUS POLYSTYRENE PARTICLE

(RESULTS IN %)

The results obtained here, are showing that after an SNR
of -18 dB, the correct matching drops under 95 %, showing
that the noise will start to be an issue with a noise that
corresponds to a SNR around -16 dB, when we will realize
our test in the ’real’ world. Those results are around same
value for all the type of particles I worked on (more or less
2-3 dB).

VI. CONCLUSION
A. Conclusion

My work, on the detection of particles in suspension, had
to check the capability of SAWs to realize this job. To do
that, I used the ’Lab-on-Chip’ device (a COMSOL version
of it), to see how the particle properties (size, material) are
influencing some physical aspects (acoustic pressure field,
electrical potential). Those aspects were tested inside two
studies: one in the frequency domain that focus on the way
the particle is modifying the acoustic pressure field, and one
in the time domain focused more on the detection using
the electric potential. This first study permitted to put in
light that the pressure-wave speed of the material and the
particle size seems to have the biggest influence on what
is happening. The second study dealt with detection issues,



Fig. 15. The pressure acoustic field inside the microchannel for some iterations (50 µm Polystyrene, 50 MHz), done with COMSOL Multiphysics

Fig. 16. The back-scattering technique applied to a 50 µm radius
Polystyrene particle, done with Matlab

Fig. 17. The transmission technique applied to a 50 µm radius Polystyrene
particle, done with Matlab

where I compared the back-scattering and the transmission
technique, to quantify them. At this point, I am not sure
about my results that have to be confirm but the transmission
technique looks to be better. I also work on the noise limit
that is acceptable, showing that until a noise of -18 dB, we
can still use our data. My overall work allowed to study
different parameters and see what suit the most to have
exploitable results: The physical model I choose (the Faran
model) helped me to find the optimal frequency (30-50
MHz); some tests I realized permits me to determine also the
channel size (in order to avoid the appearance of droplets),
the best detection technique, the noise limit (SNR = -16dB).

B. Future Work and Improvements

There are some points that can be improve: First, we
should confirm the results from the studies by realizing new
tests, with new parameters: try new size for the particles, test
new materials. If the results are confirmed, we can compute

the influence of the particle on what the sensor is recording
from the IDT: the sensor should be able to detect the particle,
with its precision (the sensor that equip the ’Lab-on-Chip’
device from the lab has a 12 bits resolution). It should
be computed from the results for the detection techniques
and the sensor properties. When the simulations are giving
results that are good enough, we can start to do tests in
’real condition’ with the ’Lab-on-Chip’ device, to confirm
the results obtained using the COMSOL simulations, and
the process we decide to follow. There are some choices
that I did during my work that can be modify to enhance
my results; the main one is the ’physical’ model choice.
The Faran model is the existing one that fit the most my
situation but it presents a major default: in this model, we
consider the particle as being surrounded by nothing (air),
whereas in my setup, the particle is inside a PDMS channel,
containing water. Optimally, we would need to design our
own model to fit 100 % our situation, but it requires to spend
a lot of time to develop it (get the Mathematical knowledge,
understand fully the existing models, design and test the
new model). The second point that can improve my result
quality is to work with a true 3D model of the ’Lab-on-
Chip’ device (instead of the 2.5D model). It would allow to
ensure independently the particle way of influencing what it
is happening in the microchannel, without all the limitations
of the 2.5D simulation model, and to perform new type of
studies (shape of the IDTs, channel orientation)
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OPHA*: planning feasible 3D paths for AUVs

Daniel González-Adell, Pedro Patrón, Juan David Hernández, Yvan Petillot

Abstract— This paper presents Orthogonal Planes Hy-
brid A* (OPHA*), a novel technique that expands the
Hybrid A* algorithm to plan 3D paths in an orthogonal
planes fashion. Such approach is targeted to autonomous
underwater vehicles constrained by minimum turning
radii (vertical and horizontal). Moreover, it seeks to
reduce the steering differences between control architec-
tures when deployed into different torpedo-shaped AUVs.

The approach has been validated in two simulated
underwater environments: one cluttered and known and
a second one unknown by performing real-time re-
planning. The method has been tested with three different
control architectures from real vehicles inside SeeByte’s
Neptune © Autonomy Framework. Furthermore, OPHA*
has been proven to perform in significantly less time
when compared to a RRT-based approach operating with
the same limitations.

Whilst developed for non-holonomic underwater vehi-
cles, the approach could be extended or used in other
domains.

I. INTRODUCTION

Three-dimensional (3D) path planning is not a
recent problem as in multiple robotics applications
(in platforms like autonomous underwater vehicles
(AUVs), unmanned aerial vehicles (UAVs) or indus-
trial manipulators) robots are forced to perform tasks
in a three-dimensional space. Additionally, if the robot
has motion constraints in one or more of its axis,
such path needs to be drivable/feasible to be followed
with accuracy. Additionally, the waypoint following
technique can vary among different vehicles, and a
new path planner should provide an easy way to deal
with such constraint.

Not much research has addressed the problem of
path planning for non-holonomic AUVs. Even less in-
vestigations have been carried out to take into account
motion constraints of such vehicles in an unknown 3D
environment.

Hernandez et al. combined two underwater ve-
hicles to perform close-proximity surveys [4]. The
same author presented an asymptotic optimal RRT
(RRT*)-based motion planner for a torpedo-shaped
AUV moving in a 2D workspace that used concepts
of lazy-collision checking and anytime algorithms [5],
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and validated it in an online fashion in an unknown
environment.

Fig. 1. Nessie VII, a torpedo-shaped AUV simulated to validate
OPHA* in an unknown environment. Source: OSL, Heriot-Watt
University.

Petres et al. presented the FM* method, which takes
into account vehicle kinematics and ocean currents to
plan a continuous path from a sampled environment.
Moreover, Petillot et al. used sequential quadratic
programming to plan a path from sonar images taken
by forward-looking multibeam sonar mounted on an
AUV, and proved the validity of such approach in
simulation [9]. Nevertheless, the two last approaches
did not validate their capability of performing real-time
re-planning.

In the ground domain, Dolgov et al. used the Hybrid
A* algorithm [12] in a semi-structured environment to
obtain a drivable path over a lattice which was later
improved via non-linear optimization. They verified
their approach in a real vehicle in the Darpa Urban
Challenge [1], [2].

In order to deal with underwater scenarios like the
ones mentioned, this paper contributes to the state-
of-the-art of motion planning by presenting a path
planner for AUVs operating under motion constraints
in 3D workspaces. The technique, named Orthogonal
Planes Hybrid A* (OPHA*), aims as well to reduce
tracking variations among different vehicles thanks to
its orthogonal planes planning fashion. This approach
has been integrated in SeeByte’s Neptune Autonomy
Framework [7].

II. ORTHOGONAL PLANES HYBRID A*
This section exposes Hybrid A* and the proposed

approach OPHA* as an evolution of the first. Its node
generation equations are detailed.

A. 2D planning with Hybrid A*
The Hybrid A* algorithm is a variant of the A*

algorithm that takes into account continuous coordi-
nates inside a discrete lattice over the workspace. Each



Fig. 2. Left: discrete search in A*, which allows to travel
between cells’ centers. Right: continuous search in Hybrid A*,
which considers minimum turning radius and orientation of each
node while expanding it.

Fig. 3. Hybrid A* child node generation for a turning radius R on
a left turn maneuver with a travelled distance l. The green arrow
under the vehicle indicates the curve of expansion. It is assumed
that vehicle steers around its gravity center.

node configuration is composed of continuous position
(x, y) in the 2D plane and orientation ψ with respect to
the world frame. The goal search relies on expanding
at every iteration the node with minimum combined
cost (that is, its path cost plus the heuristic distance
to the goal node). In this expansion, child nodes are
generated at the end of a circular motion with a pre-
defined set of turning radius and at a given travelled
distance. These are multiples of the minimum turning
radius of the vehicle. This is graphically shown in
figure 2.

During that exploration stage, for each of the nodes
to be expanded and given a minimum turning radius
Rmin to be satisfied, the computation of each of the
child states of a parent state (i.e. its expansion, shown
in figure 3) follows:

1) The location of the turning center is computed
as:

Cx = x+R ∗ S ∗ sin(ψ) (1)

Cy = y −R ∗ S ∗ cos(ψ) (2)

where [Cx, Cy] is the location in the plane of
movement of the rotation center for a particular
turning radius R = α*Rmin (multiple of Rmin)
and S ∈ {1,−1} denotes the side towards which
the vehicle turns in such plane. It is assumed that
the vehicle steers from its gravity center.

2) The computation of the corresponding steering

angle β at the expanded child node with respect
to the parent node position is computed as:

β = l/R (3)

where l is the travelled distance from parent to
child node defined.

3) The state of the child node for the previous
turning radius is computed as:

x′ = Cx −R ∗ S ∗ sin(ψ − (S ∗ β)) (4)

y′ = Cy +R ∗ S ∗ cos(ψ − (S ∗ β)) (5)

ψ′ = (ψ − (S ∗ β))mod(2π) (6)

This procedure is used for the rest of turning radii,
where each of the values is a multiple α*Rmin of
the minimum turning radius Rmin given by the AUV
specifications.

In the particular case that the heading angle β is
lower than a predefined threshold th, the trajectory
from the current node to the child is assumed to be
a straight line with the same heading. Then, the child
state is computed as:

x′ = x+ l ∗ cos(ψ) (7)

y′ = y + l ∗ sin(ψ) (8)

ψ′ = ψ mod(2π) (9)

Every child node generated in a collision-free lo-
cation of the map is added to an Open List O. Once
all the child nodes have been generated from a parent
node, the node with minimum combined cost in the
list O becomes the one to be expanded in the next
iteration.

This pipeline is repeated until the goal node is
expanded. At such moment the path is computed back
by a reverse search in the list of all nodes previously
expanded. Such a list, also known as Closed List,
containes each node expanded and its parent node.

B. 3D planning with OPHA*

OPHA* (whose algorithm is shown in algorithm
1) is an extension of the Hybrid A* algorithm to
plan three-dimensional (3D) paths by taking into ac-
count minimum turning radii RHmin (horizontal) and
RVmin (vertical) as well as the maximum operational
pitch of the vehicle θmax. This approach uses two
orthogonal planes: the first one is parallel to the sea
surface (if AUV horizontal) and is centered at the
robot’s position; the second plane is orthogonal to
the first one at that position. Both planes are tilted
by the node’s orientation. New states are generated
analogously to the Hybrid A* method detailed, but in
both planes. The equations that describe the constraints
associated to the motion in Y axis is now used for the
vertical motion (Z axis). Figure 4 shows the generation
of states in both planes.

When calculating a path for a vehicle that moves in
a 3D workspace (e.g. an underwater environment), the



Fig. 4. OPHA* expansions in XY and XZ orthogonal planes
(red and blue nodes respectively) at a configuration node tilted by
its orientation. Each node corresponds to a multiple of the minimum
turning radius for each plane. AUV in orange.

way a dynamic controller has to achieve a waypoint
can slightly vary among vehicles. In other words,
assuming that the circular trajectory that the AUV will
follow will be the desired one can lead to collisions.
Moreover, these motion controllers typically reside
in the manufacturer’s main vehicle computer (MVC)
[3] (i.e. the frontseat) and can rarely be accessed.
For that reason, the dimensionality of the workspace
over which the vehicle moves is reduced to the two
dimensions of one of the orthogonal planes. This is
expected to lead to a more accurate tracking of the
path defined. Also, such assumption allows to use
the planner in more than one vehicle with different
frontseat interfaces.

Additionally, an extra constraint is set: in order
to prevent implicit roll φ motion, performing a yaw
motion at a given state is only allowed when the pitch
on the AUV at that particular state is lower than a
threshold θth_ψ .

Then, the added planning constraints on the yaw and
pitch motions are of the form:

θqi ≤ θmax ‖ θmax ≥ 0 ∀qi ∈ Q (10)

ψqi 6= 0 ⇐⇒ θqi ≤ θth_ψ ‖ θth_ψ ≥ 0 ∀qi ∈ Q
(11)

where qi is any state generated during the planning
phase and Q is the set of accepted states.

III. FRAMEWORK FOR ONLINE
RE-PLANNING

A. General architecture

The behavior of the joint architecture (visually
shown in figure 5) between the path planner proposed
and SeeByte’s Neptune Autonomy framework is de-
scribed as the following key points:
• A Neptune behavior sets an initial configuration
qstart and a goal location (without orientation)
qgoal.

• The motion planner module receives both config-
urations and plans an OPHA* path taking into
account RHmin, RVmin, θmax, θth_ψ and the
updated octomap of the environment. The goal
area is defined as a sphere of radius thgoal.

Algorithm 1 OPHA* algorithm
1: ns ← (qs,c, θs,c, ψs,c, qs, 0, h(qs, G),−) .

Starting node
2: UNV ISITED ← PriorityQueue()
3: UNV ISITED.insert(ns)
4: V ISITED ← 0
5: nodeToExpand← ns
6: while nodeToExpand 6= G do
7: nodeToExpand← UNV ISITED.pop()
8: V ISITED.append(nodeToExpand)
9: isY awAllowed ← (nodeToExpand.θs,c) <
θth_ψ

10: D ← computeHeadings(isY awAllowed)
11: for all δ ∈ D do
12: n← nodeToExpand.neighbor(µ(δ)) .

µ(δ): motion primitive for angle δ
13: if | n.θs,c| > θmax then
14: break
15: if n∈ Cfreeand n/∈ V ISITED then
16: compared = False
17: for all node ∈ UNV ISITED do
18: if n== UNV ISITED.node

then
19: compared = True
20: if

UNV ISITED.node.g > n.g then
21: UNV ISITED.node← n
22: break
23: if !compared then
24: UNV ISITED.insert( n)
25: path← ComputePath(V ISITED)

• The mission handler receives the full waypoints
list, establishes a connection to the vehicle inter-
face (operated by Neptune) and iteratively sends
the next waypoint to it as soon as the waypoint
achievement signal is received from the same
module.

• Inside the vehicle interface, the dynamic con-
troller of the vehicle (interfaced as a waypoint
follower controller) steers the AUV towards the
waypoint and notifies the mission handler when-
ever the waypoint has been achieved in order to
get the next one.

• The vehicle maps the environment with the
equipped rotating multibeam sonar as it advances
through the environment.

• In case the path followed is discovered to be
occluded at any location, the re-planner mod-
ule (which performs a continuous path collision-
checking) immediately sets a new planning query
from the next waypoint from the old path (which
the AUV still has not reached) to the goal.

B. Mapper and simulated environment

A UWSim [10] simulated device (a vertically
mounted multi-beam sonar) produces the sonar data



Fig. 5. Architecture designed for the online (re-planning) implementation integrated in SeeByte’s Neptune Autonomy Framework.

Fig. 6. Sonar beam simulated configuration with aperture of 120
degrees (no longer horizontal but vertical aperture as the sensor
is mounted on the vehicle rotated 90 degrees). Sonar joint allows
rotation around the sonar’s new vertical axis (blue arrow).

over a .3ds mesh simulated environment. This sensor
has, in the position placed, a vertical aperture of
120 degrees. Additionally, the joint that holds the
sonar allows a rotation of 30 degrees to each side,
so the sensor continuously sweeps the environment
with acoustic waves inside this rotation range. This
configuration is shown in figure 6.

C. Collision-checking

A new configuration is accepted as valid if and only
if all the intermediate points from the parent node
to itself (included) are collision-free. Also, given the
vehicle is not understood as a point in the 3D space
but as an object of concrete size, the collision-checking
must be performed for the whole volume of the AUV
and for its orientation at each of the intermediate
points. Figure 7 illustrates this.

This collision checking has been achieved by using
the flexible collision library (FCL) [8] and Octomap
[6] library altogether inside the robot operating system
(ROS) [11] framework. The vehicle has been modeled
as a square prism in all tests.

D. Online re-planning

The re-planning sub-module performs a collision-
checking for all the main and intermediate waypoints

Fig. 7. Examples of accepted (left, collision-free) and discarded
(right, non-collision-free) expansions from parent (P) node to child
(C) node for a given turning radius. Each position of the AUV
corresponds to the intermediate point that is checked for collision.

Fig. 8. Left: path before discovering occlusion (path as black
curve). Right: re-planning a new path after discovering the occlusion
(new path as blue curve and starting node for re-planning as red
circle). Borders of object mapped as purple lines.

of the path with the same collision-checking approach
explained. In the case of a newly discovered path
occlusion at any of the checked points, the module
triggers a pause signal that stops the waypoint-feeding
from the mission handler to the vehicle interface. The
re-planner then sends a new planning query from the
next waypoint to achieve of the old path to the defined
goal. This prevents the AUV from passing over the
new query’s start node while the re-planning is still
being computed.

IV. RESULTS

A. Comparison with RRT-based approach

The approached designed has been compared with
Orthogonal Planes RRT (OPRRT), a variant of



Fig. 9. LAUV and REMUS 600 AUVs. Sources: OceanScan and
Hydroid.

Fig. 10. An example of an offline computed OPHA* path suc-
cessfully followed by the Remus 600 dynamic controller (trajectory
followed as yellow arrows).

the rapidly-exploring random tree (RRT) with non-
holonomic constraints method that performs in the or-
thogonal planes fashion introduced in this work. Such
a comparison is done on the base of computational
time required and states expanded for each of the
planners and for the following set of parameters:

In the case of OPRRT being a stochastic method,
10 goal-biased path computations sampling with a
probability of 5% the goal node have been performed
and averaged into a final result.

From the results shown it can be extracted that
the RRT methodology sees its capacity of rapidly
finding a path by sampling the environment severely
damaged when restricted to expanding its nodes in two
orthogonal planes and with the additional constraints
exposed in section II-B, instead of in the whole 3D
space. Moreover, it is clear that the OPHA* planner
finds a 3D path in such conditions expanding many
less nodes than the sampling-based technique. The
computational time required for the grid-based method
is significantly lower as well.

B. Offline planning and trajectory tracking

The control architectures from three different AUVs
(figures 1 and 9) inside SeeByte’s Neptune Autonomy
Framework have been used to successfully follow
offline-planned paths in non-cluttered (figures 10 and
11) and cluttered environments (figure 12).

C. Online planning

The re-planning procedure has performed as ex-
pected and all obstacles encountered during the survey
shown in figure 13 have been avoided. An example
of such an avoidance is shown in figure 14, where a
re-planning sequence is performed to avoid the new
obstacle encountered. In that situation, false sonar
measurements have caused unnecessary re-plannings.
Further sonar filtering techniques could be used to

Fig. 11. An example of an offline computed OPHA* path
successfully followed by the LAUV dynamic controller (trajectory
followed as yellow arrows). AUV loitering around final waypoint as
the path gets close to its end.

Fig. 12. An example of an OPHA* path and trajectory successfully
followed (as yellow arrows) in the cluttered oil and gas structure by
Nessie VII dynamic controller. Left: entering the structure. Right:
spiraling down to get under the structure.

reduce their frequency of occurrence. The AUV Nessie
VII has been used in the online tracking of the path.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The purpose of the approach presented is twofold:
first to allow to perform path planning in a
3D workspace explicitly taking into account non-
holonomic constraints; second to limit the motion con-
troller to perform vertical or horizontal curves instead
of curves in three dimensions when steering towards
a waypoint, allowing the planner to be deployable in
different vehicles.

Real dynamic controllers from three different
torpedo-shaped vehicles have been effectively inter-
faced to follow offline OPHA* paths computed thanks
to the combination with SeeByte’s Neptune Autonomy
Framework. In particular, the controller from Nessie
VII AUV has been used to explore an unknown envi-
ronment by performing a survey in an online fashion,
i.e. autonomously performing 3D obstacle avoidance
while moving towards the goals set.

Fig. 13. The result of a survey close to the simulated seabed with
the AUV Nessie VII. Online re-planning performed in order to avoid
the structures encountered. Sonar false measurements appear above
of the mapped structures (on the right side). Survey goals as blue
circles and trajectory followed in red (on the left side).



OPRRT Iteration Path Length (m) Time (s) States expanded
1 140 9.8487 1340
2 228 9.5439 1226
3 117 1.5912 285
4 123 2.3125 370
5 198 10.5902 1207
6 117 1.1213 246
7 120 0.8053 198
8 117 1.3072 292
9 117 1.1447 297
10 201 4.8929 717
OPRRT Average 147.8 4.3158 618

Path Length (m) Time (s) States Expanded
OPHA* 105 0.3061 53

TABLE I
OPHA* AND OPRRT PERFORMANCE FOR THE SAME QUERY IN AN UNCLUTTERED ENVIRONMENT. MEASURED ON AN ACER ASPIRE

5755G I7-2630QM 8GB. USING WEIGHTED EUCLIDEAN AS HEURISTIC IN OPHA*. OPHA* OUTPERFORMS NOT ONLY THE

AVERAGE, BUT ALL COMPUTATIONS OF THE RRT-BASED METHOD CONSTRAINED TO THE LIMITATIONS EXPLAINED IN SECTION II-B.

Fig. 14. From left to right and from top to bottom: five online
re-planning procedures with OPHA*. Bottom-left re-planning is
triggered by the sonar false measurements (as sparser voxels). Re-
planned paths as black arrows and trajectory followed in yellow.
The obstacle is successfully avoided.

A comparison between the OPHA* algorithm and
OPRRT, a 3D RRT algorithm under the same con-
straints, i.e. the absolute pitch limitation and the al-
lowance of performing a horizontal turn based on the
current state’s pitch, has been carried out. This has
proved the advantage in speed that the first method has
over the second in such restricted situations by achiev-
ing planning rates that typically oscillate between 1
and 20 Hz even in the simulated cluttered environment
of an oil and gas sub-sea structure.

B. Future work

Testing the approach in a real-world scenario would
be desirable, as ocean currents have not been taken into
account in the planning procedure.
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Visual Place Recognition through Reading Scene Texts

Ziyang Hong and Sen Wang

Abstract— Visual place recognition is a fundamental problem
in mobile robot navigation application. Sparse feature based
visual place recognition has been dominant in the research
community for long time, however it becomes fragile when
it try to deal with extreme perceptual changes. In contrast to
traditional feature based methods, we tackle the visual place
recognition from a novel perspective. When describing a place
or a scene, we use scene text as our primitive, scene text
is invariant to illumination changes and discrimnative. Our
proposed system takes the spatial coherence between scene
text landmarks into account. Our experiment result shows that
the proposed system outperform traditional vision based place
recognition methods on the dataset we have collected.

I. INTRODUCTION
A visual place recognition system comprises three parts:

image processing for the vision data (usually this would
be image), the map and the belief generation. The belief
generation part will take information from the vision data or
both vision data and the motion data. It is responsible for
updating the map and making the place recognition decision
based on the vision input and the map which has been
initialized. Most of the visual place recognition algorithms
are not consistent and robust against extremely perceptual
changes. Before recognizing a place, the system needs to
build or incrementally build a map. There are three types
map representations generally used in place recognition:
pure image retrieval, topological map and topological-metric
map. In reality, for a place recognition system, avoiding
false positive matches is the first priority since detecting
an incorrect loop closing will be destructive to the robot
mapping and localization system. Apart from that, a place
recognition system can also be evaluated base on how many
matches are true positive within a certain distance.

The definition of place recognition defined in [17] is sim-
ple and straightforward; by giving an image that representing
a place, can the robot tell whether this place has been visited
or this is a new place. A human is very good at doing
such a task and is able to identify a place even with the
environment completely changed, for example, identifying a
place in sunny day or dark night, and in summer or winter.
But for a robot, it is very challenging to perform visual place
recognition due to the appearance is changed drastically (see
Figure 1), and what’s more, different places might have
similar appearance and visual features so called perceptual
aliasing. Apart from that, when the robot revisits the same
place, it could observe the scene from different view-point,
in which the robot only receive partial information of the
visited place.

Z. Hong and S. Wang are with Institute of Sensors, Signals, and Systems,
Heriot-Watt University, Edinburgh, UK zh9@hw.ac.uk

Fig. 1. Visual place recognition system needs to be able to deal with
perceptual aliasing as well as perceptual changes due to the lighting and
weather. [17]

II. RELATED WORK

Vision based place recognition algorithms are the ma-
jor trend in the research community due to its nature of
commonality and versatility, a low cost commodity RGB
camera will satisfy the need of the vision based place
recognition system. This chapter will mainly focus on vision
based methods. Apart from visual place recognition, another
category of place recognition algorithms are using range
sensor like LiDAR and to build a global descriptor in a
scene. The following content will mainly focus on vision
based place recognition algorithms.

A. Vision based Place Recognition

Compared to 3D ranging sensor based place recognition
methods, vision based methods have been explored by the
research community for a long time since the evolution
of camera. However this remains very challenging for an
outdoor large-scale navigation. In large-scale outdoor en-
vironment , instead of using an accurate metric map, a
topological map is more favorable in the context of place
recognition.

1) Sparse Feature based Place Recognition: The devel-
opment of local visual features like SIFT [16], SURF[3] and
ORB[21] has provided accessibility to solve problem like
structure from motion, camera motion estimation and image
mosaic. Sparse feature based place recognition algorithms
have shown great success and become dominant compared
to other methods. In 2005, Newman and Ho [19] proposed
a saliency-MSER-descriptor pipeline using SIFT to look for
wide-baseline images matching. After that in 2008, inspired
by the bag-of-words model for scene retrieval in [24], Cum-
mins and Newman proposed a probabilistic localization and
mapping model based on visual appearance which is named



as FAB-MAP[5]. In FAB-MAP, instead of trying to detect
loop closure in a metric map, they adopt the topological
map representation. In [1], Sunderhauf and Protze made use
of BRIEF [4] descriptor and proposed a fast version of it
named BRIEF-Gist. Hamming distance between two BRIEF-
Gist descriptors is calculated for measuring the similarity of
two images. Similar to FAB-MAP, [6] used bag of words
model combining ORB features for fast place recognition.
This method is the first one which makes use of binary
descriptor, being one order of magnitude faster than all the
approaches prior to this. To cope with large-scale and long-
term navigation under the online processing time constrain,
[10] split the most frequently and last seen keyframes in the
working memory for a loop closure also based on bag-of-
words approach . Different from FAB-MAP which counts the
visual words in each images, Vector of Locally Aggregated
Descriptors (VLAD) [9] computes the sum of the residuals
between each visual word and the corresponding clustering
center. In [1], a fast and incremental pipeline is implemented
which relies on Bayesian filtering as a extension of bag-of-
words method.

2) Sequence based Place Recognition: Instead of using
sparse features and bag-of-words model, Milford and Wyeth
[18] used the whole image as the descriptor for place recogni-
tion. It was the first attempt that tried to address the problem
raised by extreme perceptual changes in the environment
by exploiting the spatial and temporal information between
frames. In SeqSLAM, it computes the intensity contrast
vector between the query image and the template images,
looking for the closest matching.

3) End To End Deep Learning based Place Recognition:
In NetVLAD[2], a set of the local descriptors of the single
image is learned by a convolutional neural network, the
compact form of the local descriptors are computed similar
to VLAD[9]. The query image is matched by searching the
closest one in the images database. In [7], during training
three-stream siamese network is deployed, both relevant and
query image are used to compute the loss, additionally an
irrelevant image is used to reinforce the network to produce
similar representations for the relevant images. Whereas in
[20], 3D models are constructed for each cluster of images
and are used to guide for the image retrieval.

B. Scene text detection and recognition

Scene text detection and text recognition has a wide range
of applications which will also facilitate robotics applica-
tion. Inspired by SSD[14], [13] formulates the text region
detection similar to object detection task, employing anchor
boxes on multi-scales. Region proposal text detector like
[8] directly gives the region where has highest probability
on where the text appears. Both [12] and [27] are able
to deal with oriented scene text. In [26], a set of multi-
scale mid-level primitives are learned without using deep
learning techniques. CRNN[22] is an end-to-end text recog-
nition framework which predicts a sequence of characters by
giving a crop of image in which text appears. FOTS [15] is
unified text detection and text recognition framework which

shares the features both in text detection and text recognition
achieving 22.6 fps on dataset ICDAR 2015.

C. Text based Place Recognition and Localization

With deep learning techniques, text detection and text
recognition become very robust and accurate. However text
information has not been widely used for robotics application
such as robot navigation or place recognition. The first
attempt of putting text information in robot navigation is
[25] where a conjunction text feature is used to encode
text information, text is used as landmark for loop closure
detection.

III. TEXT BASED PLACE RECOGNITION SYSTEM

The key ingredient in the proposed system is scene text
in urban environment. The system contains two major part:
the mapping stage and the place recognition stage, these two
stages are processed separately. As shown in Figure 2, the
input of the system are RGB images captured by a standard
camera. Each frame will go through a deep learning network
for detecting the text and recognizing text at each locations in
the frame. A dictionary based text filtering will be applied
to remove some false positive text detection and incorrect
recognition of text both in training and testing stage. After
that, each frame is represented by a histogram, each entity
of the histogram is corresponding to a word which can be
found in the predefined dictionary. The mapping module is
responsible to initialize and update the map based on the
forthcoming word histogram. In the place recognition stage,
the text filtering part is the same as mapping stage, and then
the place recognition system will perform a search in the
map to find the image pair match. The detail information of
the system will be explained in the following subsections.

Fig. 2. Mapping stage

Fig. 3. Place recognition stage



A. Text Detection And Text Recognition

To spot the scene text in the wild, we select TextBoxes++
[12] a deep learning text detector to extract the bounding box
of each word. TextBoxes++ is able to predict multiple words
that appear in the image, what’s more, the bounding boxes
are in the form of quadrilaterals, which means the network is
able detect arbitrary-oriented text from different view-points.
Similar to SSD, they adopt the VGG-16 [23] architecture as
the backbone, connecting 6 text prediction layers. At the end
they applied a non-maximum suppression procedure.

After receiving the bounding boxes prediction from
TextBoxes++, we extract the bounding boxes and crop them,
then use another deep learning network named CRNN for
text recognition proposed in [22]. Given an image filled with
a word, CRNN will yield a sequence of characters following
from left to right order.

B. Predefined Dictionary

Once we obtain text detection and text recognition across
the whole image, we will apply text filtering to get rid of
some false positive text detection and some meaningless
string output from text recognition. But before applying text
filtering, we need to predefined a dictionary. We build a
dictionary containing all the shops’ name and the words
appear on the shops’ sign around an area where we want
to conduct our navigation. Why we do that is because those
words appear on a shop sign will not be occluded or removed
across daytime and night time. For example, if we are going
to navigate in Princess Street at Edinburgh, we will manually
put words like ”starbucks”, ”coffee”, ”princes” and ”street”
into the dictionary.

C. Text Filtering

To filter the text recognition result in each frame, we
measure the Levenshtein distance [11] between the pre-
dicted string and all the words in the predefined dictio-
nary. Levenshtein distance is a string metric in information
theory and linguistics. By definition, Levenshtein distance
is the minimum operations including deletions, insertions
and substitution to take for correcting string A to string B.
For example, the Levenshtein distance between the string
”sitting” and string ”kitten” is 3. The following operations
are operated to convert from ”kitten” to ”sitting”:

1) replacing ”k” with ”s”
2) replacing ”e” with ”i”
3) inserting ”g” after ”n”
Even though TextBoxes++ is able to detect text bounding

boxes from different view-point, the detection is not perfect
so that sometimes the bounding box does not cover the
whole area of the text region. Therefore the text recognition
result is not complete and we are not able to find a perfect
match in the dictionary. By introducing the measurement of
Levenshtein distance, we will be able to filter those incorrect
recognition and retrieve a complete string from partial obser-
vation of a string. We set up a threshold for rejecting the text
recognition if the minimum Levenshtein distance across the
whole dictionary is larger than the threshold distance. For
example, if we set up the threshold distance to be 2, and we
observe a text recognition being the string ”starbuc” which is

not a complete word in terms of the predefined dictionary, but
since the distance is only 2, still no larger than the threshold,
so we will eventually retrieve the string ”starbucks”. But for
a string of recognition like ”cofta”, it will be discarded since
the Levenshtein distance between ”coffee” and ”cofta” is 3.

D. Compute Word Histogram at Each Frame

After filtering the text information, we will build a word
histogram for each frame. The number of bins of the his-
togram depends on how many words does the dictionary
contain. Each bin represent a word, the occurrence for each
word in each frame can only be 1 or 0 which means whether
we detect a word from the dictionary or not in this frame.
If the same word occur in multiple positions in a frame, we
will only count 1.

E. Topological Mapping of Text Landmarks

In this project, we aim to deploy place recognition in
a urban complex environment so that we argue that a
topological mapping without metric would be appropriate
and realistic for this goal. As mentioned above, each frame
will be represented by a histogram of words coming from
the dictionary. In the topological map(see Figure 4), each
node contains an image and a histogram containing at least
one word from the dictionary. If we do not detect a word in
the frame we are checking, this frame will not be inserted
into the map. Each frame is corresponding to a place,
but we are allowing a place being represented by multiple
consecutive frames. By storing all these consecutive frames
and histograms in the map, we are able to preserve spatial-
temporal information between all the text landmarks along
the navigation.

Fig. 4. Topological map of places

During the mapping stage, we might receive many con-
secutive frames which contain the same histograms, to
avoid storing redundant frames, we need to set up a local
frame buffering scheme instead of directly inserting a new
frame(with text recognized) into the map. The global map
will be incrementally built as we navigate through a route.
The frame which has no text recognition will not be added
to the global map.

F. Place Topological Matching

After building a topological map, the second part of
the system is place recognition, finding image matching
pairs. The place recognition module consists of two key
components: the first one is called Global Searching, the
second component is called Local Best Match. Similar to



Fig. 5. Global searching scheme

the mapping stage, each frame streaming from the camera
will be applied text detection and text recognition, then the
text filtering by comparing the recognized text string to the
dictionary.

1) Global Searching: To recap what is mentioned above,
the global map is a topological map, each node is consisting
of a histogram and an image, nodes are connected without
metric information but in a temporal order. Inspired by
SeqSLAM [18], to exploit the spatial-temporal information
between the text landmarks, we perform a global searching
across the whole global map. A sliding window is created
during run-time for place recognition testing, this sliding
window will slide across the topological word histogram
map at each test. The size of the sliding window is a
user defined parameter which can be changed depends on
the dataset. For each image that we want to conduct place
recognition, we will push it to the center of the sliding
window, so that its left and right neighborhoods will be the
preceding words histogram and successive words histogram
in a temporal sequential order. The assumption we made here
is that during mapping and testing time, the spatial-temporal
relation between the text landmark will not change according
to lighting condition. So that we can find a close matching
between the sliding window and the global map.

Let’s denote the sliding window size to be w, M to be the
number of nodes in global map, j to be the position where the
center of the sliding window is pointing to, Dj to be sum of
differences for the operation when the sliding window moves
to the position of j. di is the absolute difference between the
histogram hi of the sliding window and its corresponding
histogram Hk of the global map in one operation.

di = | hi −Hk | (1 6 i 6 w) (1)

where k = j − (w − 1)/2 + i − 1, w is the size of sliding
window.

Dj =
w∑
i=1

di (1 6 i 6 w) (2)

After searching across the whole global map, we track down
the position which provides the minimum sum of differences
Dmin.

Dmin = min
j

Dj (w−1)/2+1 6 j 6 M − (w−1)/2+1)

(3)
where M is the number of nodes in the global map.

Once we find Dmin in the global searching step, it means
global searching has shrunk the search area for us and the

Fig. 6. One operation when the sliding window moves to location j

correct matching will be within that area. Then we want
to find the best match locally by simply comparing the
histogram of the query image to all the candidate histograms
within that area. We set up a threshold and calculate the
minimum difference between the candidates, if the minimum
difference is not less than the threshold, we consider the not
finding a match between the query image and the global
map. If the minimum is less than the threshold, it will be
considered as finding a match.

2) Update The Sliding Window: Once a whole iteration
of global searching and local best matching is finished, the
front frame of the sliding window will be pop off, a new
frame coming from the streaming will push back to the end
of sliding window, again the center of the sliding window
will be conducted with the same mechanism.

IV. EXPERIMENT AND RESULT

We want to compare our proposed methodology with the
state-of-the-art place recognition algorithms and evaluate the
performance of our proposed method. Due to the nature of
our proposed algorithm, we need to make use of scene text
in a urban environment so that we collected a set of data
between day time and night time at Edinburgh city center.

A. Evaluation Measurements

The standard performance measurement for place recogni-
tion is precision-recall curve. Precision is the portion of the
true positive matches over the the sum of true positive and
false positive. Recall is the portion of true positive matches
over the sum of true positive and false negative.

The state of the art algorithms for large scale outdoor place
recognition will be FAB-MAP and SeqSLAM. Here we will
test them on all of the dataset we have collected.

B. Dataset Collection

The dataset collected for the experiment are only contain-
ing RGB images which are captured on an Android phone.
We also equipped our phone on a camera stabilizer so that we
can reduce the motion blur especially for night time imaging.
The images are divided between day time and night time by
going through the same routes. Some are captured with or
without the stabilizer on a bus or by walking. The locations
and the routes we choose for data collection are Princes
Street , Edinburgh and South Bridge Street, Edinburgh where
you could find many scene text along both the streets. We



collected 6 sequences in total, day 1 and day 2 are a pair,
day 4 and night 4 are a pair, day 6 and night 6 are a pair.

1) Day Time Images Captured On A Bus Without A
Stabilizer: In this set of images, they are captured without
using the stabilizer on the bus during filming. The view point
and the field of view is slightly different. Here we have day 1
set and day 2 captured in the morning and in the afternoon
respectively.

2) Day Time Images Captured By Walking With A Sta-
bilizer: In this set of images, they are captured with using
a camera mounted on the stabilizer during day time while
walking along the street. Here we name one set as day 4
which is captured at Princes Street, the other set as day 6
which is captured at South Bridge Street.

Fig. 7. day 4 images set

Fig. 8. day 6 images set

3) Night Time Images Capture By Walking With A Sta-
bilizer: In this set of images, they are captured with using
the stabilizer during night time and I was walking along the
street. Here we name the one set as night 4 which is captured
at Princes Street, the other set as night 6 which is captured
at South Bridge Street.

Fig. 9. night 4 images set

C. Precision-recall curves comparison

Here we compare the proposed method with FAB-MAP
and SeqSLAM by verifying the precision-recall curve.

Fig. 10. night 6 images set
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Fig. 11. Precision-Recall Comparison Between Three Methods on day 1
and day 2 image sequences

As we can in Figure 11, the performance of FAB-MAP
is poor, SeqSLAM is better than FAB-MAP. Our method
performs the best on the test between day 1 and day 2
dataset.
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Fig. 12. Precision-Recall Comparison Between Three Methods day 4 and
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In Figure 12, we can see that our methods still perform
better than both FAB-MAP and SeqSLAM. And the precision
is much higher than those two.

As it shows in Figure 13, once again our proposed method
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performs better than SeqSLAM and FAB-MAP.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

To solve the vulnerability of existing vision based place
recognition algorithms due to perceptual changes. We pro-
posed and tested a novel place recognition system by making
use of scene text information. The final remarks of our
proposed system are listed below:

• We explored the feasibility of using scene text for
describing a place or a scene and proved that high level
feature can be used for place recognition.

• We designed a complete and novel system for place
recognition. The topological map we proposed is very
light-weight and highly scalable. It only takes few
memory storage.

• We evaluated the performance of proposed system,
the experiment result demonstrates that our proposed
system is able to deal with extreme illumination changes
and occlusions. It performs better than the traditional
sparse feature based and sequential based place recog-
nition algorithms.

• The matching between the map and the query image
does not require any training, it can be scaled to any
size of dataset.

B. Future Works

In the future work, we would like to incorporate the robot
odometry from the wheel encoder to build a topological met-
ric map which is similar to FAB-MAP. in such a topological
map, each node is associated with metric information. Apart
from that, we want to associate our topological map with
GPS coordinate respect to the Google map so that it become
a global localization system.
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3-D Semantic Localization with Graph Kernel Techniques

Yu Liu and Sen Wang

Abstract— Place recognition lies at the heart of long-
term mapping and localization for autonomous robots. The
appearance-based approaches have proven remarkably suc-
cessful but still face challenges under drastic appearance
changes. On the other hand, recent advances in dense SLAM
systems and semantic segmentation via Convolution Neural
Networks (CNNs) enable reconstructed maps to encapsulate
rich semantics and geometry. Inherently, descriptors based on
these features should be minimally affected by appearance
variations. In this paper. we explore leveraging the dense
semantic features and their underlying geometry for place
recognition and global localization. We exploit using an object
graph to capture objects’ topology for each place, and using
a walking-based graph kernel method to match object graphs.
Finally, we utilize point cloud registration method based on
the Fast Point Feature Histogram (FPFH), followed by the
iterative-closest-point (ICP) algorithm to align objects from the
matched scenes. When semantic information are reliable, our
global localization framework achieves accurate 6 Degree of
Freedom (DoF) pose estimation, demonstrating the potential of
addressing place recognition and global localization problems
in the semantic object space.

I. INTRODUCTION

Autonomous navigation is a crucial feature for a variety of
mobile robotic platforms and applications. For this purpose,
the robot platform must be able to reliably localize itself by
interpreting its surrounding and be able to cope with unex-
pected changes in the environments. In addition, identifying
a place that has already been visited, also referred as loop-
closure detection, is the core technique of the Simultaneous
Localization and Mapping (SLAM) problems to reduce esti-
mation drift and reconstruct globally consistent maps of the
environments.

With place recognition lying at the heart of the loop-
closure and localization problems, relevant research, espe-
cially visual appearance-based methods, have been exten-
sively investigated. One main spectrum of approaches is to
utilize local invariant features, such as SURF[5], SIFT[20]
and ORB[30] features extracted from images. This approach
and its variants are adapted by many state-of-the-art SLAM
methods [9][24][[25]][14][19]. Alternatively, successful re-
sults have also been acquired by using global image repre-
sentations [43][3][23].

In spite of their impressive performance, in real-world
applications appearance-based methods are typically affected
by a number of challenging problems. For instance, seasonal
or weather changes over long navigation, drastic viewpoint
changes, natural or artificial illumination variations, as well
as the emergence of new static objects or dynamic elements
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Heriot-Watt University, Edinburgh, UK smw2@hw.ac.uk

(e.g., vehicles) may drastically alter the appearances of the
scene. Even though there exist a host of studies attempting
to overcome such challenges, achieving robust place recog-
nition using visual appearance remains a difficult task.

Today’s RGB-D SLAM systems are capable of recon-
structing dense 3-D maps [14][19][10], which provide rich
texture and full structures of the environments. However,
this rich amount of dense points are not directly applied to
facilitate place recognition. On the other hand, the inclusion
of rich semantic information within dense maps potentially
permits a greater range of high-level tasks. As a specific
example about localization, if the robot possesses a semantic
and spatial understanding that a specific part of the en-
vironment corresponds to specific objects, similar to how
humans query semantic information to their knowledge of the
environment, the robot can localize itself when re-observing
these objects.

From an intuitive standpoint, semantic features are in-
herently appearance and viewpoint invariant, e.g., a chair
remains a chair regardless being captured under lighting
or dark, viewed from right or left direction. With reliable
semantic information in the map and the sensor’s query, a
semantic-based descriptor could potentially achieve absolute
viewpoint and lighting invariance. Recent studies on place
recognition have also been exploring the adoption of higher
level visual features that have a closer relation to the semantic
description of the environment [1][34][37][27][13][7][8][11].
In this paper, we explore leveraging rich 3-D semantics and
geometry information on place recognition and localization
problems. Our main contributions in this work is twofold.
Firstly, our proposed framework utilizes 3-D dense object
semantics and their underlying geometry and topology for
place recognition and localization, fully operating in the ob-
ject space. Secondly, via point cloud registration on objects,
our method is able to estimate an accurate 6 DoF pose for
the query scene for global localization.

II. RELATED WORK

In this section we briefly review the current state-of-the-art
in appearance-based place recognition. This is followed by
a number of recently proposed methods utilizing high-level
features in relation to our proposed framework.

A. Visual based place recognition

Visual feature matching based on the visual Bag-of-Words
(BoW) [35] techniques has been extensively used for place
recognition and loop closure detection since the introduc-
tion of FABMAP (Fast Appearance-Based MAPping) [9].
Studies applying the BoW framework often utilize sets of



locally invariant features (such as SIFT[20], SURF[5], and
ORB[30]) from the image space to represent each image
associated with a location, and have shown success applying
the TF-IDF (term frequency-inverse document frequency)
[15] [2][22] and probabilistic scoring methods [9][18][38] for
place recognition in the presence of viewpoint and moderate
lighting changes. However. one obvious drawback of these
methods is that they neglect the spatial arrangement among
features, resulting in higher perceptual aliasing and incidence
of false-positive. Studies have attempted incorporating spatial
information to the recognition framework, such as modeling
locations by visual landmarks and a distribution of 3-D
distances provided by range finders or stereo cameras [28],
extending the standard visual vocabulary with a spatial
dictionary by dividing up images into regular grids[17], and
modeling spatial relations between features by covisibility
information [41][22].

B. Utilizing high-level features and objects

Appearance-based methods, in spite of their great success
at place recognition and large-scale mapping, still suffer from
the problem of changing environmental condition over longer
periods. Recent studies have moved toward the adoption of
higher level visual cues such as semantic cues for place
recognition. For instance, Snderhauf et al. [42] use a land-
mark proposal system [48] to extract highly salient regions
in the images as high level landmark, and employ features
extracted from inner convolutional layer of a pretrained CNN
network. Cascianell et al. [8] extend Snderhauf’s work by
adapting the covisibility graph [22] to model the environment
as a structured collection of visual landmarks. Instead of
RGB-based region proposals, Yu et al. [46] exploits cluster-
ing point cloud of similar surfaces as high-level landmarks
to perform place recognition.

Alternatively, place recognition based on objects and their
spatial relations have also been explored recently. In [26],
the authors build an object graph for each place and perform
place recognition by measuring node and edge differences.
Other attempts such as [1] first detects objects by convolving
pre-defined primitive kernel patches of basic shapes with
the full 3-D dense maps generated from Kintinuous SLAM
system [44]. The authors also represent a place as a sparse
object graph. With the recent advances in learning-based
semantic extraction methods, [13] proposes using CNN for
semantic segmentation to obtain per-pixel semantics of the
query images and represent their underlying topologies of
objects. On the other hand, McCormat et al. [21] com-
bine state-of-the-art SLAM system and CNN for semantic
segmentation, building an geometrically consistent semantic
map by probabalistically fusing multiple semantic prediction
from observations of different viewpoints.

C. Graph matching

When it comes to representing a place as a constella-
tion of visual objects, researcher often choose to utilize a
graph structure to describe the object content and topology
[1][13][46][26]. Similarity between places is hence reduced

to measuring pair-wise similarities between graphs. One
common solution is to formulate the graph matching problem
as an assignment problem [46][26][1]. The turns matching
into an optimization problem, with the objective of finding an
exact correspondence between the nodes and edges from two
graphs. However in the general case, solving graph matching
in this manner is NP-hard [47].

An alternative spectrum of method to graph matching
problems is inexact graph comparison, which does not ex-
plicitly solve for pair-wise correspondences. For example,
[39] converts their graphs of visual landmarks into weighted
graphs of known landmark categories. Similarity is then ap-
proximated by the normalized cross-correlation between the
two associated adjacency matrices. On the other hand, [40]
chooses to augment each node in the graph with a histogram
describing the presence of connected nodes nearby. Graph
similarity is then measured by standard dot product scheme.
Others attempt to solve graph matching using graph kernels
based on walks [12][13]. In [13], random walk descriptors
are extracted for every node, each storing the base vertex
label and the labels of visited nodes in sequence. Also
employing a walk strategy, [12] inspects pair-wise similarity
of walks’ composing nodes and edges for scene modeling
problems.

III. PROPOSED ALGORITHM

Our method leverages building object-based graphs from
the incoming RGB images, depth maps and semantic classi-
fication. We then match graphs between the query and those
built from the global map using a walking strategy. The final
goal of our localization method is to estimate the 6 DoF pose
of the camera with respect to the global map. Figure 1 below
illustrates the architecture of our proposed method.

A. Reconstruction of dense semantic maps

We partially implement the Bayesian fusion method pro-
posed by [21] to obtain dense semantic maps. Similar to
their work, we employ the publicly available SLAM system
- RTAB-Map (Real-Time Appearance-Based Mapping) [19]
and the semantic segmentation CNN - SegNet[4]. After
mapping, RTAB-Map generates a map of registered RGB
point clouds, a series of camera poses and their associated
keyframes in RGB. On the other hand, SegNet is a deep
convolutional encoder-decoder architecture for pixel-wise
semantic segmentation. Different variants of models and pre-
trained weights are publicly available; We choose to use
the model trained with SUN RGB-D [36] indoor dataset
for semantic labeling. This model takes raw RGB images
and outputs semantic features over 37 indoor object classes
for every pixel. To obtain the raw probability data in order
to cope with McCormat’s method, we minimally alter the
model’s output to extract full probability over all class.

To begin fusing semantic features, the global map is
initialized with a uniform probability distribution. By using
the camera pose associated to each RGB frame and the
intrinsic matrix from the RGB-D camera, we project the
semantic probability distribution derived from SegNet into



Fig. 1: Overview of our proposed global localization
pipeline. The inputs from the sensor (e.g., RGB-D camera)
are semantically segmented and fused into the local point
cloud (query local place). The global semantic map is sub-
divided into map local place. Each local place is converted
into its 3-D graph representation in terms of semantic objects
as nodes and connections to each other as edges. Our method
matches each query graph to the map’s sub-graph. Finally,
the point clouds associated to the matches are aligned for
estimating the 6 DoF pose of the query place.

the map. In details, we apply frustum culling for each camera
pose to only keep the points within the camera’s field of
view (excluding the rest of the points in the map). This is
followed by the projection of these 3-D points within the
field of view into the image space. Once the association be-
tween 3-D points and 2-D pixel coordinates are established,
the semantic probability distribution at each pixel is back-
projected to the associated 3-D point. This back-projected
semantic distribution is then multiplied by the distribution a
3-D point currently has (and then normalized). This allows
updating any 3-D point’s semantic distribution from multiple
observations. Subsequent observations of the same point will
eventually converge and lead to a more confident labeling.

B. Local query place generation

We propose to register multiple incoming frames of point
clouds to represent a query place. The motion between each
consecutive frame is assumed small and known, which can
be calculated using visual odometry [45]. In our work we
treat each registered point cloud as a local place analogous
to the key-frame based framework using an keyframe images.

Augmenting each local place with semantic features is
done in the same way as we perform semantic mapping. The
only difference is that in case of local place, the target point
cloud is each registered point cloud instead of the global
map.

C. Graph representation for each local place

Given a place of 3-D points with semantics, we represent
the place with an object graph. We define an object as:

O , {LO,CO,RO,SO} (1)

where LO is the semantic label associated with the object, CO
is the center of the object, RO is the radius of the bounding
sphere which fully encloses every point of the object, and
SO is the surface descriptor which will be covered more in
the following section. We choose to use radius of a sphere
for our objects dimension as spheres hold the convenient
property of being rotationally invariant.

To add object vertices to the object graph, we extract blobs
of object by performing euclidean clustering [31] on points
with the same semantic label. The dimension of the sphere
is simply the distance of point furthest away from the cluster
center.

We choose to form undirected edges between any two
object vertices when they are within a proximity distance
with each other. Nodes which are far apart will simply be
unconnected. The distance is the relative offset between their
center locations in the 3-D space. Figure 2 shows an example
of a query location and its corresponding object graph.

Fig. 2: Concept of object graph from the 3-D densely labelled
semantic point cloud.

D. Shape descriptor

Each object vertex holds the shape property associated
with the surface of that object. We implement the shape
descriptor proposed by [46], which is built from the Fast
Point Feature Histogram (FPFH) [32] of the object’s point
cloud.

The FPFH of a point is a histogram describing three
types of angular relationship between the normal of that
point and those of its neighbors within a sampling radius
[32]. For a perfect plane model point cloud, the FPFH of
every underlying point has an unique form of histogram
distribution. The shape ratio descriptor proposed by [46]
measures the variation of every points FPFH of the target
point cloud from that of a plane model. In other words, we
will distinguish one surface from another by assessing their
degree of deformation from a plane.



To build the shape descriptor for each object, we first
calculate the FPFH for every point in that object. This results
in a 33-bin histogram FPFH signature for each point, where
each angle property is divided into 11 divisions. We then
calculate the Euclidean distance between every points FPFH
and that of a plane element. We then assign each Eudlidean
distance of point feature to a specific bin index b of a
histogram. The calculation of the bin index is given by:

b = ceil

[
EDist(Pr)

EDistmax
D

]
(2)

where D denotes the number of subdivisions determining
the resolution classifying each angle point feature. The over-
all length of the histogram is thus D. Finally we normalize
the resulting histogram between 0 and 1.

E. Graph matching

Our method is inspired by the intuition and related litera-
ture that semantic graphs hold reliable discrimination power,
which can facilitate place recognition. However, explicitly
solving for node and edge correspondence is an NP hard
problem. Instead, we choose to perform an inexact matching
by using the walk based graph kernel strategy employed by
[12].

In [12], a walk of length 1 corresponds to an edge and the
two nodes connected by that edge. Graph similarity is then
defined as sum of similarity between walks of two graphs.
To perform matching between two walks is equivalent to
matching the similarity between individual pair of constituent
nodes and edge of those walks.

1) Node comparison: Each node has a number of prop-
erties as described in section III-C. We choose to model
node similarity using two of them: semantic label and shape
descriptor. We use the same annotation as in [12]. Node
comparison is formulated as follows:

knode(r,s) = δrskshape(r,s) (3)

In the above equation, r and s each represents a node from
a walk. δrs is a simple Kronecker delta function, which is
1 if the two nodes being compared have the same semantic
label and 0 otherwise. We define kshape(r,s) as:

kshape(r,s) = 1−d (4)

where d denotes the Euclidean distance between two shape
histograms. Essentially, two nodes of different object types
will not be matched even if their shape descriptor express
high similarity.

2) Edge comparison: We define two edges’ similarity
based on both metric distance and semantic relations. Metric
distance is simply the observed length of each edge. We
believe such distances still encodes meaningful spatial infor-
mation. However, metric distance is sensitive to viewpoint
variations, as occlusions or objects being partially captured
influence the center location of a node. Hence we try to
incorporate semantic relations based on how two connected

objects interact, in terms the degree of enclosure of their
associated bounding sphere. We classify four semantic rela-
tions as illustrated in figure 3.

Fig. 3: Four semantic relations based on the degree of ”en-
closure” between the object pair. ”d” denotes the Euclidean
distance between two nodes’ centers

3) Graph comparison: Given the node kernel and an edge
kernel, the similarity between walks of length 1 is defined
as the product of the two node scores and the edge score.
In cases when multiple walks are present in each graph, we
compute the similarity between all pairs of walks from each
graph and sum the score. Finally, we normalize the score as
equation 5 by dividing the result of a graph kernel by the
maximum of the evaluation between each graph and itself:

normkG(Ga,Gb) =
kG(Ga,Gb)

max(kG(Ga,Ga),kG(Gb,Gb))
(5)

F. Object alignment

During graph comparison, individual walks receiving high
scores indicate potential good match between the associated
objects and spatial relations from the two graphs. After
conducting graph matching, for every query place and the
best matched place found in the map, we only keep objects
from both scenes which express high similarity. We then
estimate the relative transformation between the two scenes
by aligning the sets of objects from query place to map place.

To perform alignment, we once again rely on the FPFH
features following the Sample Consensus initial alignment
scheme (SAC-IA) as proposed by [32]. The estimated trans-
formation gives us an initial alignment to localize the query
place within the map. Finally, the transformation is further
refined by ICP [6].

IV. EXPERIMENTAL RESULTS

We evaluate our global localization framework based on
three considered dataset: two with groundtruth semantic
labels, and the other one obtains semantics via SegNet. Our
algorithm is implemented dominantly in C++ and partially
in python under Robot Operating System (ROS) [29]. We
also extensively make use of the Point Cloud Library (PCL)
[33].



A. Experimental setup

1) Groundtruth semantics: We choose to use the publicly
available ScenNN dataset [16]. This dataset consists of sev-
eral sequences of indoor scans using an ASUS XTION Pro
RGB-D camera. Each environment data provides the RGB,
depth, and pixel-wise semantic classification frames for the
full sequence, and two global maps (RGB and semantically
labeled respectively). The complexity of an indoor scene
and the number of different semantic classes vary. We use
sequence 011 and 025 in our experiments.

We carry on our experiments as follows. As we model
our algorithm based on the key-frame based method, we
consider the original global map consisting of multiple key
local places. Localization is then carried out by finding the
best match query place to the best-match map place. To
prepare for map’s local places, we directly extract sets of
local point clouds from the global map using frustum culling
method and the provided camera poses.

The trajectory provided by SceneNN does not necessarily
include loop closures, as the mapping environment is small
and effect of camera drift is minimal. Hence, we model
our localization experiment by using the same sequence
but different frames for query places to imitate making a
second travel in the map via a similar trajectory with the
first one. Contrary to each map’s local place which we
obtain from the given global map, each query local place
is generated by projecting the provided semantic images to
the corresponding depth maps, and then register the resulting
local point clouds. Probabilistic fusion is not required as
we have the groundtruth segmentation. We also make sure
frames used to build map’s local places are not reused for
generating query places.

2) CNN semantics: We apply SegNet and our Bayesian-
fusion approach to acquire the global semantic map of our
own collected data. According to our proposed pipeline,
we would then collect a second sequence of the same
environment to create query local places and try to match
each of them against the global map.

In practice, in order to obtain the groundtruth trajectory
for the query sequence without the use of additional sensor,
we also perform semantic mapping on the second sequence
and keep the initial camera pose as identical as possible
to the first sequence. This will allow the second map to
have the same map frame as that of the first one; hence
the keyframe trajectory provided by RTAB-Map for the
second sequence is used as groundtruths. Having the each
keyframe pose and the semantic map of the query sequence,
we simplify the generation of each local query place by
directly extracting from the query semantic map by applying
the frustum culling method again. This simplified way of
generating a query local place is reasonable; our original
proposal for generating a local query place is to utilize the
Bayesian fusion technique and fuse semantic predictions of a
scene observed from multiple viewpoints. Directly extracting
a local place associated with a keyframe pose from the
semantic map inherently has considered multiple frames of

observations.

B. Localization on groudtruth semantics

Figure 6 (a-d) displays the mean localization error on both
Sequence 11 and 25, in terms of position and orientation for
each query local place. Indices with non-zero results indi-
cate global localization was successfully carried out for the
corresponding query places. Within our framework, a query
place could fail to be localized if the SAC-IA alignment step
could not find enough inliers to support its hypothesized
transformation. This also suggests that incorrect matching
of places would most certainly fail consequently in the
localization step. On the other hand, due to the nature of
our proposed framework using walks (two nodes linked by an
edge) to measure graph similarity, any query place containing
only one object or multiple unconnected objects would au-
tomatically not be taken into matching. This results in place
recognition nor localization not being triggered. This second
factor dominates in both sequences, as both environments
are sparse in terms of the objects accommodated. In our
framework, object misalignment would directly impact the
localization accuracy. Figure 4 exhibits an example of a
poor alignment in Sequence 11, reflecting a high error at
the corresponding index.

Fig. 4: Final alignment on query 29, Sequence 11.

Table I shows the mean localization error of each se-
quence. Overall, Sequence 25 exhibits a significantly larger
error in roll and yaw. This is due to multiple query scenes,
even though correctly matched to the right local map place,
failed to completely align with the correspondences. In
addition, during the computation of the mean error, we
removed an outlier from Sequence 25 as the estimated pose
failed completely (figure 5). To avoid incidence such as this
one, a stricter inlier criteria can be set for the alignment step;
however at the cost of possibly rejecting correct localization.

TABLE I: Localization mean error on groundtruth semantics
(unit: cm and degree)

X Y Z Roll Pitch Yaw
Seq. 11 1.994 1.820 1.474 2.210 2.913 2.248
Seq. 25 1.6125 3.160 3.473 11.241 1.342 10.276

C. Localization on CNN semantics

As we do not hold any groundtruth semantics, we first
qualitatively inspect the dense semantics for each generated
local place. Figure 7 shows examples of local query places



Fig. 5: Final alignment on query 32, Sequence 25.

and the associated RGB frames for reference. The semantic
features are prone to a degree of error (mislabeling or
oversegmentation) even after the Bayesian fusion; however,
they are fairly consistent between the global and query maps.

Figure 6 (e-f) and table II show the localization error.

TABLE II: Localization mean error (unit: cm and degree)

X Y Z Roll Pitch Yaw
mean error 2.828 4.064 5.943 5.836 7.656 4.892

Overall, we observe an increase in localization error
in terms of position, as compared to experiments with
groundtruth semantics. This may be due to the nosier sur-
faces of the point cloud data from RTAB-Map, where the
reconstructed map after loop closure detection still exhibit
slight inconsistency. On the other hand, localization accuracy
in orientation is better than that of Sequence 25, as it has
multiple local places which do not perfectly align with their
matches. This experiment demonstrates that the proposed
framework’s functionality even under nosier geometry and
semantics.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

We have presented a global localization framework lever-
aging 3-D dense semantic features, its underlying surfaces
and topology to match and estimate the 6 DoF pose of the
camera associated with the given observation in the global
semantic map.

Our approach was evaluated on two real-world data se-
quences where idealistic semantics are available, and one
of our own collected indoor data utilizing semantic seg-
mentation CNN to densely augment points in the map with
semantic features. In both cases, our method was validated
to be able to perform global localization, and finds the 6
DoF pose within a certain order of deviations from the
groundtruths. This demonstrates the potential of using com-
pact graph representation of semantics to capture the scene
topology, and the estimation of the camera pose based on
object alignments. The incorporation of the object alignment
scheme did significantly raise the computation complexity
due to the computation of each point’ normal and FPFH
features. Nevertheless, with reliable dense semantic features,
the result of global localization proves accurate in terms of
both position and orientation.

B. Future work

Even though our results demonstrate the potential of
addressing the place recognition and global localization prob-
lems using dense semantic features, there remain many chal-
lenges and possible improvements to the proposed frame-
work. Firstly, our method was experimented minimally. In
experiments where the ideal semantic features are assumed,
we have only experimented on two sequences with few
objects, minimal repetition and simple arrangement which
otherwise would have imposed great challenges. On the other
hand when we took the experiment on our dataset without
groundtruth semantics, we simplified experiment setups by
extracting local places directly from a SLAM optimized
global map, which would have granted us more information
and advantages than generating local places from the sensor’s
incoming frames. Furthermore, we are motivated by the
intuition that using objects as visual landmarks potentially
copes well with drastic lighting and viewpoint variations,
as objects remain the same properties under these changes.
However relevant experiments have not yet been conducted
during the write up of this thesis.

One possible improvement to the current framework is
to incorporate a motion model and the probabilistic frame-
work. Our proposed method was developed to handle the
localization problem in a straightforward way; it determines
which local place of the global map matches well with a
query place, and then calculates the transformation between
the underlying objects to align the two places. In reality,
matching query scene in such discrete approach not only is
prone to erroneous estimation and observation uncertainties,
but also is computational costly as every local place of
the map is compared with the query one. In the contrary,
modeling the place recognition and localization problem
probabilistically can facilitate identifying the correct match
from a small number of match candidates based on prior
observations.

Moreover, we believe that defining a local place by reg-
istering multiple frames and associated point clouds may
only be an intermediate proposition. We started out in this
approach due to our observations that single-frames capture
limited views of objects and can be sensitive to occlusions.
This would be challenging with our current framework which
performs localization on discrete queries. On the other hand,
incorporation of the probabilistic framework can potentially
take advantage of multiple single-frame observations.
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Compressed Low-Light Scene Reconstruction using Hyper-Spectral
Single-Photon LiDAR

Anirudh Puligandla

Abstract— Recent introduction of the Single-Photon LiDAR
technology has garnered wide interest to produce accurate
3D reconstructions from limited amounts of photons. Such
devices have higher sensitivity over traditional laser scanning
systems and are capable of imaging over multiple wavelengths
from visible to near infra red simultaneously. With such
advantages this technology has found many applications under
low-light scenarios. Low-Light constraints may arise due to
various factors such as short acquisition times (e.g, long range
applications) or low light-flux of the emitted laser (e.g, bio-
medical applications, where even low-powered lasers might
damage the tissues). This work focuses on the reconstruction of
Intensity images simultaneously, from measurements taken over
multiple peak wavelengths, using a Poisson measurement model
and Alternating Direction Method of Multipliers (ADMM)
algorithm. Different sparsity promoting regularizers have been
proposed under a Compressed Sensing framework. This work
will also show that the proposed methods are capable of
reconstruction with light flux as low as 1 or even 0.5 received
photons per pixel over an image.

I. INTRODUCTION

Photon counting techniques have been used for decades
mainly to monitor the atmosphere [1]. For example, precip-
itation can be estimated by checking the amount of water
present in the air [2], or, pollution can be estimated by
checking the amount of aerosols present in the air [3].
Single-Photon Lidar (SPL) is an example of advanced photon
counting device. Traditional lidar systems have been widely
used in geographical information systems [4], [5], underwa-
ter imaging (mainly bathymetry) [6], [7], forest monitoring
[8], [9], [10], space imaging [11], [12], and in molecular
biology applications mainly for time-resolved fluorescence
spectroscopy [13], [14], [15]. Time of Flight (ToF) SPL with
an architecture to scan the scene in a raster scanning fashion
will be used in this context [16]. As mentioned in [17],
Single-photon imaging is the detection of two-dimensional
patterns of low-intensity light (i.e, when the number of
detected photons in each pixel is lower than 10).

Fig. 1 depicts an illustration of the photon detection pro-
cess. Full circles in the images represent photon interaction
while open circles indicate no interaction of photons. The
image on the left illustrates photons interacting with the
image sensor while the image on the right illustrates the
subsequent electronic photo-charge detection and conversion
process. The noise in the detection process arises due to two
primary factors. Firstly, the variance of photon detection also
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Fig. 1: An illustration showing the noisy photon detection
process, source: [17]

includes the variance of the photon detection process. As a
consequence, detection of photons becomes prone to errors
(full circles on the left become open circles on the right,
larger full circles on the right). Secondly, as the electronic
noise is acting on all the pixels, photons may be reported
even in locations where no photons are imaged onto the
image sensor, known as ”dark counts” (shown with a cross
symbol on the right hand side image).

A. Problem Definition

(a) (b) (c)

Fig. 2: Illustration showing observations and ground truth
intensity image for one wavelength. (a) photons collected
uniformly, (b) photons collected only on 1/16th of the total
number of pixels, (c) expected result.

Under low-light conditions, Poisson noise assumptions are
appropriate to minimize noise. In the rest of the document,
we will see how an optimization framework can be con-
structed to maximize the likelihood of photon detection. The
architecture of single-pixel ToF cameras has shown to reduce
the required size, complexity and cost of the photon detector
array down to a single unit [18]. By combining the single-
pixel SPL with random Compressed Sensing measurements,
a trade-off between space and time can be achieved during
image acquisition. We will also see how some regularizers
(known as priors from a Bayesian point of view) can help
in hyper-spectral intensity image reconstruction. Lastly, we
will see how a minimization problem can be framed that can
be optimized using a convex optimization algorithm such as
the Alternating Direction Method of Multipliers (ADMM)



algorithm. Fig. 2 depicts an illustration of the problem stated
above.

B. Prior Work

A recent methodology to obtain 3D reconstructions from
SPL data was proposed by Shin et al. in [19], [20]. This
method assumes that at a given pixel, the response signal
can be the sum of responses from limited number of objects
with different reflectivities at different depths. This method
is shown to be able to model translucent objects with a better
resolution at the pixels containing edges. But the union-of-
subspaces model limits it only to a few pre-defined responses.
However, this method works only for the cases with sufficient
amount of photons at each pixel location while considering
only single band. Recently, Altmann et al. had proposed
an algorithm under the Bayesian context for simultaneous
reconstruction and spectral unmixing of multi-spectral SPL
data using the Markov Chain Monte Carlo (MCMC) method,
[21]. This method works by estimating the abundances
of each material in each pixel. Although the algorithm is
efficient, it requires previous knowledge about the spectral
response of all the materials present in the scene. In similar
lines, they had also proposed another method to use convex
optimization with an aim to minimize the estimated number
of materials in each pixel while maintaining the data fidelity
or the regularizer terms low, [22]. However, this method also
requires prior knowledge about the spectral responses of all
the materials present in the scene.

Shin et al. proposed another method in [23], [24], where
a known baseline noise is assumed over all the measured
pixels. This assumption is not adequate as the baseline noise
is pixel dependent. Despite these assumptions, the method
achieves good reconstructions for data with low photon
counts because of the exploitation of spatial correlation
among the pixels through the use of Total Variation (TV)
regularization. From prior work it is evident that convex
optimization techniques provide reconstructions with high
accuracy under low-light (low photon reception) settings.
In addition to the above mentioned methods, some compre-
hensive reviews of Poisson image restoration algorithms can
be found in [25], [26]. Regularized variants of the classical
Richardson-Lucy (RL) method have been proposed in [27],
[28] that use Total Variation (TV) and Wavelet-based Reg-
ularization, respectively. Some multiscale approaches that
handle image inverse problems can be found in [29], [30],
[31], [32].

II. 2D IMAGE INTENSITY ESTIMATION

A. Observation Model

SPL works by emitting multiple time correlated light
pulses and detecting the reflected photons. SPL uses the Time
Correlated Single Photon Counting technique (TCSPC) to
count the number of photons imaged onto the sensor [33].
TCSPC exploits the fact that for signals with high repetition
rate, the light intensity is so low that the probability of
detecting one photon in one signal period is far less than
one [34]. The output signal is constructed by recording the

photons, measuring their time of arrival in the signal period
and building a histogram of the photon times. The probability
of detecting more than one photon per period is close to
zero [34]. Therefore, the probability of detection of photons
for each signal period can be seen as a Bernoulli trial1,
as there can be either 1 or 0 photons per signal period.
Hence, the detection of photons at each pixel is a sequence
of consecutive Bernoulli trials. We know that the summation
of consecutive Bernoulli trials (binary terms) leads to a bino-
mial distribution [17]. The binomial distribution represents a
Poisson distribution, as a special case, when the number of
detected photons is very low, [35].

(a) High (b) Low

Fig. 3: Comparison between the output signal from SPL
at each pixel for high or low number of detected photons,
respectively

Now, if an object is present within the range of the SPL,
the peak intensity value of the response signal depends
on the reflectivity of the object at the wavelength of the
emitted pulse while the position of the peak depends on the
position of the object. This work requires some calibration
data that contains response signals for an object with known
reflectivity that is imaged at a known position w.r.t. the SPL
device. This calibration data is collected for a predefined
time of acquisition by imaging at all the wavelengths. Fig.
3 shows a comparison between the response signals at high
and low number of observed photons. It can be seen that
when the number of detected photons is very low (<10
photons per pixel (ppp)), the structure of the response signal
becomes intractable. The estimation of the intensity images
can be divided into two sequential steps, i.e, estimation of
the background intensity (noise due to other light sources)
followed by the estimation of true reflectivity (response
intensity) of the scene. Two separate inverse problems that
relate the underlying intensity images to the observations
through a linear relationship. The baseline intensity can be
estimated from the first few time bins of the response signal
as these bins only represent background light. Fig. 4 shows
an illustration of the measurement model. The red dotted
lines in the images highlight the separation of the histogram
bins into two parts to estimate the baseline (left of red line)
and response (right of red line) intensities.

The baseline intensity can be related to the observations

1A Bernoulli trial is an experiment whose outcome is random and can
only be of two possible outcomes, either success or failure.



Fig. 4: An illustration of the measurement model. Top: ex-
ample of true response intensity per depth. Middle: expected
photon count for each time bin that depends on a,b and d.
Bottom: simulated photon count y, at each pixel, using the
Poisson model

by using the following equation

yp,l ∼ Pr(bp,l) (1)

Where, Pr(λ) represents the Poisson Distribution with mean
intensity λ, yp,l is the photon count at pixel p and wavelength
l, summed over the first few time bins (upto tb). Similarly,
the response intensity can be related to the observations as

yp,l ∼ Pr(rp,lFlxp,l + bp,l) (2)

Where, yp,l is again the photons counts summed over
the remaining time bins xp and bp are the response and
baseline intensities, respectively, Fl is each column of the
concatenated calibration matrix F = [F1...Fl...FL], and rp,l
is a pixel-wise multiplicative factor compensating for the
wavelength vignetting effect that is the same as the reduction
in brightness at the peripheries of the image often seen in
photography or optics. F ∈ RD×L (where, D is the range
of the SPL system in discrete steps and L is the number of
wavelengths) is known as the calibration matrix. The data
in F is usually collected for long a time (such as 100s) to
minimize noise and this matrix has to be scaled according
to the acquisition time of the observed data, using (3).

F = Fcalib

(
∆t0
100

)
(3)

where, ∆t0 is the acquisition time in seconds. Now, using
the negative log-likelihood of Poisson probability function
[36], the observation model can be defined, supposing that
under the compressed framework, we randomly select a set
of pixels Sα,l from the P pixels for each wavelength l. The
observations models for the baseline intensity is as follows

LY,α(B) =
L∑
l=1

∑
p∈Sα,l

[− log(bp,l)σp,l + Tbbp,l] (4)

Where, B represents the concatenation of L matrices
[b1, ..., bl, ..., bL] and B ∈ RP×L (where, P is the total num-
ber of pixels in each wavelength l) and σp,l =

∑Tb
t=1 yp,t,l is

the sum of the response signal for each pixel location. The
observation model for response intensity is as follows

LY,α(A|B̂) =
L∑
l=1

∑
p∈Sα,l

[rp,lσfap,l + Tabp,l

− σp,l log(rp,lσfap,l + Tabp,l)] (5)

Where, B̂ is the reconstructed solution matrix of the baseline
intensity images over all the images, Ta is the total number
of bins (time-steps) in the photon count histogram and again,
σp,l =

∑Ta
t=tb+1 yp,t,l. Similarly to the previous case, A is

considered to be a concatenation of L column-vector images,
A ∈ RP×L.

B. Minimization Problems

We will now see what regularizer terms are appropriate
for image reconstruction from Hyper-spectral lidar data.
The regularizer terms are some prior information about
the scene that are imposed on the observation model as
penalty terms. The prior information that is generally used
under compressed sensing framework can be some sparsity
coefficients in the gradient domain or some wavelet basis.
The peak wavelengths at which the scene is imaged are close
to one another. For example, for the data used in this work,
the peak wavelengths range from 500nm to 820nm at steps
of 10nm. Moreover, the surface responsible for generating
response at each pixel location is the same over all the
wavelengths. This implies that it is sensible to assume a
high correlation between the intensity images over different
wavelengths in addition to spatial correlation.

1) TV Regularization: The first efficient yet simple algo-
rithms for minimization problems using Total Variation (TV)
regularization were developed in the 2000s, [37], [38]. [39],
contains a detailed overview on the working and convexity
of TV regularization in a convex minimization problem.
Total variation describes a phenomenon that is similar to
the energy of a signal. Mathematically, it is the integral
of the absolute gradient of the signal (or image in this
context). We know that the gradient of an image describes
the edges. Exactly in the same way Total Variation describes
the detail present in an image. The TV regularization in this
context will be performed individually over images at each
wavelength. For simplicity, it will be called Spectral TV
Regularization, STV, and it can be represented as follows

STV (X) =
L∑
l=1

TV (xl) (6)

where, X will correspond to B or A depending on whether
we estimate the baseline intensity or the response intensity.

2) Nuclear Norm Regularization: Let us assume a data
cube X ∈ RN×L, where N is the total number of pixels in
each image, imaged over L wavelengths. The nuclear norm
over the data cube is represented by ||X||∗, where X =



UΣV T is the SVD decomposition of X . The nuclear norm
works by estimating from the sum of absolute singular values
(we have L absolute singular values in this case) over all
the imaged wavelengths L. In other words, nuclear norm
enhances the spectral correlation present in each row of our
data cube X . NN regularization has been shown to be very
efficient in the context of multi-spectral radio-interferometry
imaging, [40], [41].

3) Joint Sparsity Regularization: A new regularization
term that promotes joint sparsity and low-rankness on the
data matrix was proposed recently in the context of radio
astronomy, [40]. The term ’joint’ refers to sparsity in both
the spatial and spectral domains simultaneously. This model
is based on the assumption that the photons received over the
image can be seen to be reflected from a finite number of
sources, ρ, each with a different spectral signature. Under
this assumption, a linear mixture model X = SH† can
be adopted, where the columns of the matrix S ∈ CN×ρ
represent the responsible sources present in the image and
the columns of the matrix H ∈ Cρ×L are their corresponding
spectral signatures. The rank of the matrix X is given by ρ,
that implies low-rankness. Suppose if none of the sources
are active at a given pixel location, then one whole row of
X will be zero.

C. TVNN Model

This model is formed by combining the TV and Nuclear
Norm regularization (hence, the name TVNN). The mini-
mization problem to estimate the intensity images can be
written as follows

X̂ = arg min
X

[LY,α(X) + τ1STV (X) + τ2||X||∗ + iR+(X)]

(7)
where, X = B and LY,α(X) = LY,α(B) for baseline inten-
sity reconstruction and X = A and LY,α(X) = LY,α(A|B̂)
for response intensity reconstruction, iR+(X) is an indicator
function enforcing non-negative values on the solution X ,
and, τ1 and τ2 are small positive parameters.

D. Joint Sparsity Model

This minimization problem uses only the joint sparsity
regularization. The regularization term can be defined by
encapsulating joint-sparsity in some adequate basis Ψ along
with an analysis prior based on the l2,1 norm. The minimiza-
tion problem can then be defined as

X̂ = arg min
X

[LY,α(X) + τ1||Ψ†X||2,1 + iR+(X) ] (8)

where, ||Ψ†X||2,1 stands for the component-wise l2,1 norm.
The notations are similar as in (7) and the likelihood term
can be raplaced accordingly for estimating A or B. This
regularization term promotes smoothness of the spectral lines
along with joint-sparsity in basis Ψ. Ψ can be any wavelet
basis in which the data can be assumed to be sparse.

III. ALGORITHMIC DETAILS

As calculating an exact solution of the formulated inverse
problem is computationally impossible, optimization can
be employed to approximate the solution iteratively. The
ADMM algorithm belongs to the primal-dual class of convex
optimization algorithms. The ADMM algorithm is not new
but it is still widely used due to its accuracy and versatility.
[42] has a detailed explanation on a variant of the ADMM
algorithm that is able to model cost functions with more than
two terms. Under the framework of the ADMM variant, a
minimization problem can be written as follows

min
z∈RN

J∑
j=1

gjH
(j)(z) (9)

where, gj(.) are closed, proper, convex functions and H(j) ∈
Rm×n are arbitrary matrices. This problem can be written
in the form of the standard ADMM algorithm with the
following considerations

f1 = 0 ; G =
[
H(1) . . . H(J)

]T ∈ Rm×n (10)

where, m = m1 + . . .+mJ , and f2 : Rm×n → R given by,

f2(u) =
J∑
j=1

gj(u
(j)) (11)

where, u(j) ∈ Rmj and u = [(u(1))T , . . . , (u(J))T ]T ∈ Rm.
With this definition of the ADMM, the solution for each term
in the minimization problem can be computed sequentially
as

u
(j)
k+1 ← arg min

v∈Rmj
gj(v) +

µ

2

∣∣∣∣v − s(j)
k

∣∣∣∣2
2

(12)

for j = 1, . . . , J , where, s(j)
k = H(j)zk+1 − d

(j)
k . The

resulting algorithm for the JS model is shown in Fig. 5. This
algorithm can be easily adapted for the TVNN model by
replacing the joint sparsity terms with those corresponding
to the TV and NN terms.

The solution to the minimization problems shown in the
algorithm, such as, the ones at steps 13 and 15 is given
by the so called ”Moreau proximity operator”. For example,
the solution to step 15 is given by the soft-thresholding
operation, defined for each row k as,

(
Sl2,1α (Z)

)
k,:

,

{
z̄
||z̄||l2−α
||z̄||l2

||z̄||l2 > α

0 ||z̄||l2 ≤ α
∀k (13)

where, z̄ = zk, is the row k of the input matrix Z and α can
be chosen equal to 2τ

µ .

IV. RESULTS

The two methods proposed above were tested on real
data consisting of 32 images, each of dimension 190× 190
pixels, imaged at peak wavelengths of light ranging from
500nm to 810nm in steps 10nm. Figure 6 shows the setup
that was used to acquire this real data. This data was
acquired for 10ms for each pixel location at each wavelength
step. As the reflectivity of the materials depends upon the
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3) Initialize u(1)

0 , u(2)
0 , u(3)

0 , d(1)
0 , d(2)

0 , d(3)
0 ,

4) Pre-compute (MT
αMα + 2I)−1

5) Set k = 0, µ > 0, τ > 0
6) while ||zk−zk−1||2/(min(||zk||2, ||zk−1||2)+ε) AND

k ≤ kmax iter do
7) ζ
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22) end
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Fig. 5: Variant of the PIDAL-FA algorithm, [42]

wavelength of the light pulse, the average photon counts
of the measurements over the data varies from ∼ 230 to
∼ 1800 photons per pixel depending on the wavelength
used for the image. To evaluate the results quantitatively,
the reconstructions, from data at full measurements, obtained
using the TVNN method were used as the ground truth
images. These reconstructions were obtained with very low
values for the two regularization parameters (see (7)) to keep
their impact low. The Signal to Noise Ratio (SNR) metric
was used to quantitatively evalute the reconstructions that
can be given as

SNR = 10 log

(
||x̂||22
||x̂− x||22

)
(14)

where, x̂ is the ground truth image matrix (x̂ ∈ RN×L+ ) and x
is the estimated intensity image matrix of same dimensions,
with N as the number of pixels in each image and L as
the total number of wavelengths, and, ||.||22 represents the
squared l2 norm.

Table I shows the correspondences between different aver-
age photon counts over the data and the corresponding sub-
sampling ratios. The relation is that when the average photon
counts per pixel over each image is doubled, the number of
considered pixels in the image is halved. The joint sparsity
model was tested using Discrete Cosine Transform (DCT)
and Daubechies Wavelet Transform (DWT) as two separate
sparsity bases. The three models will hence, be called TVNN,

Fig. 6: The setup that was repeatedly imaged over different
peak wavelengths

TABLE I: Table showing the correspondence of sub-
sampling ratio (α) with the mean photons per pixel (ppp)
per each band of wavelength. 1st and 3rd columns show the
average number of photons per pixel

before sampling sub-sampling ratio after sub-sampling
0.5, 1, 2, 4, 8 1, 1/2, 1/4, 1/8, 1/16 0.5
1, 2, 4, 8, 16 1, 1/2, 1/4, 1/8, 1/16 1

10, 20, 40, 80, 160 1, 1/2, 1/4, 1/8, 1/16 10
50, 100, 200 1, 1/2, 1/4 50

100, 200 1, 1/2 100

JS-DCT and JS-DWT for simplicity.
Table II shows the SNR values for the reconstructions from

the data with different average photon counts per pixel at
different levels of sub-sampling. The table is divided into
cells of three rows each corresponding to the three proposed
methods for some fixed average number of photons per
pixel (first column). The best reconstruction for each cell
is highlighted as the bold SNR value. It can be observed
from the highlighted values that JS-DWT method has the
best reconstructions out-performing the TVNN method by a
margin, specially, in the case low measurements (≤ 10 ppp).
The improvement with compressed sensing can be seen at
low observations (shown with an underline highlighting the
best value of that row). It can be observed that in some

TABLE II: Table showing the SNR (dB) values for the
reconstructions obtained using the proposed methods for
different average values of photons per pixel (rows) against
different sub-sampling ratios (columns).

ppp
α 1 1/2 1/4 1/8 1/16

100
TVNN 53.08 50.48

JS-DCT 53.59 49.89
JS-DWT 54.59 51.16

50
TVNN 46.74 48.69 46.33

JS-DCT 47.95 47.27 42.68
JS-DWT 48.99 47.97 43.79

10
TVNN 34.38 41.33 42.79 39.75 35.69

JS-DCT 37.58 42.12 40.22 36.03 31.69
JS-DWT 39.29 43.14 41.43 37.34 27.83

1
TVNN 22.65 27.77 34.42 35.89 32.73

JS-DCT 28.25 30.64 31.06 30.34 28.01
JS-DWT 27.22 27.31 27.41 27.15 21.87

0.5
TVNN 20.91 21.32 22.33 22.53 23.09

JS-DCT 26.68 26.95 26.89 26.78 26.16
JS-DWT 26.70 28.75 29.67 28.99 24.64



(a) Ground truth (b) TVNN method

(c) JS-DWT method (d) JS-DCT method

Fig. 7: Response Intensity image reconstruction results using
the three methods at high measurements (∼ 100 photons per
pixel per band) at the 15th band

cases, it is better to consider fewer samples (upto 1/8th of
the total number of pixels) than to measure data at all the
pixel locations.

Figure 7 shows the reconstruction of the response intensity
images from the data with an average of 100 photons per
pixel per band. The varied effect of smoothness from the
three different methods can be seen from those images. It can
also be noted that the three methods have equally appealing
results, visually. However, the difference between the three
methods is more evident at low observations.

It has been observed that data with ∼ 0.5 photon per pixel
per band is the limit to obtain visually satisfactory results.
The methods start to collapse when the measurements go
lower than that. Figure 8 shows that the joint sparsity method
performs very well at all the wavelengths even from data with
extremely low measurements.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Firstly, an in-painting method has been successfully im-
plemented for a Poisson noise model by minimizing the
negative log-likelihood of the observed data. The intensity
image estimation problem was efficiently modelled by sep-
arating the estimation process into two sequential steps of
estimating the baseline intensity and response intensity. The
proposed minimization problems have shown to be able to
model the data appropriately, specially, when the data has
observations consisting of an average of <10 photons per
pixel. The methods have shown to perform extremely well
while reconstructing intensity images at all the considered
wavelengths, simultaneously. Lastly, it was shown that the
proposed observation model and the minimization problems
support the compressed sensing framework.

B. Future Works

This work did not make any contributions towards the
estimation of the depth profile of the scene. So, further
research can be conducted in the direction of estimating the
depth images of the hyper-spectral SPL data, while keeping

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8: Response Intensity image reconstruction results. The
columns correspond to the 6th, 15th and 32nd wavelength
bands respectively. Row 1 ((a)-(c)) shows the ground truth
images, Row 2 ((d)-(f)) shows the measurements corre-
sponding to an average of ∼ 0.5 photons per pixel per
band collected only on 1/4th of the total number of pixel
locations, and, Row 3 ((g)-(i)) shows the reconstructions
using the JS-DWT method.

in mind that estimating the depth at each pixel location
poses a non-convex problem. Although, depth estimation
is non-convex, the reconstructed response intensity images
should facilitate depth reconstruction. As this work obtains
good reconstructions of the response intensity images, fu-
ture research can focus on material classification using the
reconstructed response intensity images. By looking at the
quality of the reconstructed response intensity images and
the contrast between reflectivity of different objects present
in the scene, material classification can be easily achieved
even at low-light observations.
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Abstract— Joint attention has been shown to have an im-
portant impact on the development of the social cognition in
children. Children with autism spectrum disorder (ASD) are
especially affected by the lack of joint attention skills. Few
studies have shown that early interventions and improvement
of these skills in the early child development can improve the
social skills in the long term. As a consequence research in
using robots as therapy tools providing aid in the development
of social skills for children with ASD has increased over the past
few years. The goal of this study is to design and implement
an interactive game with the humanoid robot Pepper, which
incorporates the two most basic emotional postures, happi-
ness and sadness, as an engaging and motivating factor for
the children. Furthermore, the game is designed to improve
social skills, more specifically the initiation of joint attention
in pre-school children with ASD. In total twenty volunteers
participated in this study to evaluate the proposed method, 13
played the game and 7 watched a promotional video of the
game. The obtained results from the questionnaires indicated
that emotional postures in interactive game are beneficial for
increasing engagement and motivation in users. However, it was
difficult to conclude whether the designed game could promote
the behaviour of initiating joint attention in children with ASD.

I. INTRODUCTION

Socially assistive robotics (SAR) aims at developing
robots that provide assistance to the user through social inter-
action rather than physical contact [1]. These robots have a
wide variety of application domains and so far they have been
used for physical disabilities and rehabilitation such as post-
stroke [2, 3] and children with cerebral palsy [4] in cognitive
and behavioural disorders as interactive therapy [5, 6], in
elderly to reduce stress and depression [7] and as educational
tools for students [8]. SAR has become increasingly popular
research area over the past decade mostly because it has a
great potential to encourage independence and improve the
quality of life for people with disabilities [9].

A. Autism Spectrum Disorder

From the cognitive and behavioural disorders, the most
researched area is therapy in the autism spectrum disorder
(ASD). ASD is a term defining a group of few neurode-
velopmental disorders such as autism and Asperger’s syn-
drome, that are characterized by deficits in social interaction,
problems with verbal and non-verbal communication, and
restricted, repetitive behaviours [10]. The exact cause of
the disorder is still not known, although the most recent

research indicates that a possible cause is the formation of
too many synapses due to the RNF8 gene [11]. Consequently,
a medical test has not been established, thus the diagnosis is
based on the specialist’s observations of child’s development
and behaviour, more specifically social skills such as facial
expressions, body postures and gestures, and eye contact
[10]. Children with ASD usually fail to identify other’s emo-
tional states, fail to make eye contact and have difficulties to
follow social norms [12]. Often but not necessarily, children
with ASD have to some degree a language deficit which can
be in the context of verbal communication absence or intense
talking without giving a chance to the other speaker. It is
difficult to say at what age individuals get diagnosed since
it differs from one person to another. The aforementioned
symptoms can be indicators that can be noticed by the
parents in the first 18 months the earlies [13]. Early diagnosis
and treatment have shown to improve the quality life and
independence in individuals with ASD [12].

1) Joint Attention and ASD: Recently a lot of research has
been focused on the impairment in the development of joint
attention (JA) is children with ASD, as the earliest indicator
of the disorder [14]. JA refers to the person’s ability to share
attention with a social partner on the same object or event
[15, 16]. In order to do so the individual exploits social
behaviours such as pointing, eye gazing, articulation, and
gestures to express interest in sharing an information with
another individual. There are two categories of JA skills:
initiating joint attention (IJA) - the ability to want to share
interest with others, and responding to joint attention (RJA)
- ability to follow other’s gaze and gestures. For example,
when someone wants to direct the attention of another person
to a specific object, in order to coordinate the attention of
the other, they will point towards the object, IJA, and the
other person will attend the object by focusing their gaze to
the object, RJA. So both of them will focus their attention
both on the object and between each other at the same time.

The behaviours of JA facilitate social learning which
makes JA essential or more like a prerequisite for the
development of language skills such as intentional commu-
nication, social cognition and theory of mind [17]. Typically
developing infants exhibit behaviours of JA in the first 4 to
18 months [14], but children with ASD have impairments in
JA skills, more specifically deficits in the development of the



IJA behaviour rather then the RJA [16]. If ASD is diagnosed
early, the research on JA intervention demonstrates that early
intervention can improve the JA skills which as a result will
also improve the development of social and communication
skills [18, 19].

2) Social Motivation and ASD: As a consequence of the
impairments in social interaction which are considered to
be the core problem in ASD, many different theories on
the cause of social deficits have been developed. The social
motivation theory of autism states that the social deficits in
individuals with ASD are in close relation to issues with
their social motivation [20]. Social motivation refers to the
people’s drive to engage in social interaction and usually
individuals who lack social motivation may not make eye
contact with other people, they may not interact or learn
from other. All of these behavioural indicators fall under the
characterized symptoms of individuals diagnosed with ASD.
The social motivation theory explains that children with ASD
experience decrease in their motivation for social interactions
where the main cause is deficits in the brain’s reward
pathway [21]. To be more precise, they have irregularities in
the circuit transmitting reward signals which is responsible
for the dysfunctional ’wanting’ circuit [21]. Social reward is
one of the socio-biological mechanism that belongs to the
social motivation framework. There are two main composite
elements in social reward: ’wanting’ referring to striving or
having motivation for something regardless of the reward,
and ’liking’ referring to the feeling of pleasure caused from
the reward. Children with ASD have dysfunctional ’wanting’
circuit as opposed to the typically developing children [21].
They exhibit ’liking’ behaviours, but they lack motivation to
manifest ’wanting’ behaviours.

B. Robots in ASD Therapy

When it comes to social interaction and behaviour, in-
teracting with humans represents the best type for learning
social skills. However, children with ASD show more interest
in interacting with objects rather than humans, possibly
because the social actions of humans are unpredictable while
children with ASD prefer routines and repetitive behaviours
which make them feel comfortable and calm [22]. Interest-
ingly, many studies [23–28] have shown that children with
ASD react positively when interacting with humanoid robots,
triggering a boost in engagement and attention. Therefore the
emerging technology of social robotics has a great potential
to deliver social behaviours and interactions that will allow
and encourage children with ASD to comfortably identify
and improve targeted skills. Currently in the field of robots
in ASD therapy there are methods that have been developed
and evaluated by testing, but there are also studies where a
method has been just proposed as a potential therapy on the
basis of existing treatment techniques. In addition this field
is still being researched in order to reach the full-potential
of SAR and to provide the necessary therapy.

Stanton et al. examined whether the robotic dog AIBO
could provide help in the development of social skills in
children with ASD [29]. Their method consisted of com-

parison of how children interacted with the robotic dog and
a toy dog. In this study 11 children participated with age
range from 5 to 8 and it was reported that the children
showed more engagement and increased interaction with the
robotic dog. On the other hand, as part of the AuRoRa project
focused on robots as tools for therapy in ASD, Robins at el.
investigated whether robots can be used as therapeutic or
educational toys using the humanoid-toy robot Roberta [23]
. In a long-term study, they aimed to decrease anxiety in
children with ASD and encourage interaction skills such as
eye-contact, imitation, turn-taking, while slowly increasing
the unpredictability of the robot’s actions. Four children with
ASD from 5 to 10 years old participated in this study and
the results showed that the children perceived the robot as
salient object which resulted in increased interaction.

Duquette et al. studied how can the robot Tito facilitate
interaction such as imitative play in children with ASD [30].
One group of children were interacting with a human and
another with the robot. The imitation play was focused on
facial expressions, body movements, and familiar actions
with and without objects (such as pointing at objects or
waving hello). The experimental phase was performed with
four children with ASD and it was reported that the children
interacting with the human showed higher imitation of body
movements and familiar actions, but the children interacting
with the robot showed increased shared focused attention
in all types of imitation play especially in imitating facial
expressions. This observation is very important for the future
development of robots in ASD therapy, since children with
ASD usually avoid eye contact and have difficulties under-
standing facial expressions when interacting with humans. In
[24] they developed a similar system like the one designed
in this study. Aiming to promote JA skills, they proposed an
interactive robot-assisted system using the HOAP-3 robot,
for children with ASD using eye gazing as social behaviour,
where in this study pointing was used as a behaviour to IJA.
Regarding the JA skills their method consisted of two parts,
first the robot tried to attract the child by introducing itself,
dancing etc., and once the child was interested, the robot
continued the interaction with a JA task. The JA task was
designed in such a way that the robot would point out an
object and detect the child’s eye gaze. If the child managed to
successfully achieve JA with the robot, the robot responded
with joyful motion. They have tested their system with 5
children (10-11 years old) and reported that majority of time,
the children interacted with the robot with attention, either
focusing on the robot’s face when static or focusing on its
movements when in motion. Finally they have concluded that
their approach showed that robots are capable of providing
motivation and a socially learning environment for children
with ASD.

From the literature reported, it is clear that children with
ASD show increased motivation and interaction when in
contact with robots. Accordingly, it can be observed that
robots definitely have a great potetnial to aid children with
ASD in the development of their social and communication
skills. In addition the data from studies that are focused on



JA and how can robots deliver JA behaviours shows that
robots are capable of of providing JA.

This study is focused on designing and implementing
an interactive game with a humanoid robot that conveys
emotional postures aiming to improve social skills in children
with ASD. More specifically, engage children with ASD in
game to aid them in developing and improving the skills of
IJA while also incorporating emotional postures as a social
reward as part of the social motivation framework. This rises
the following questions: What are the possible benefits of
emotional postures in an interactive game with a humanoid
robot? How can social robots promote the initiation of joint
attention in children with ASD through an interactive game?
Can emotional postures be considered as a social motivation
in an interactive game that aims to promote initiating joint
attention?

II. METHODS

To investigate the proposed research questions, two meth-
ods were developed. To test the impact of the emotional
postures on the game, whether they provide motivation to the
user, the human-robot interaction and user’s experience, the
designed game was tested with participants who played the
same game once with emotional postures and once without.
To evaluate the designed system in terms of whether it
will encourage JA in children with ASD and whether the
emotional postures can be perceived as social reward, a
’promotional’ video of the game was made.

A. Pepper Robot

For the physical appearance of the robots used in
autism research, humanoid robots are reported to be more
favourable, as Scassellati et al. explain, the resemblance of a
human might help the child with ASD to not only recognize
the social cues that the robot is projecting but also to identify
them in social environments [31]. Pepper, the robot used in
this research, is a humanoid robot produced by the Aldebaran
Robotics Company (see Figure 1), which is 1.21 m tall and
0.48 m wide, has 20 degrees of freedom in its head, arms
and back. It has two HD cameras on the forehead used for
perception and one 3D camera behind the eyes used for
localization and navigation, and a tablet attached to his chest.
The operating system of the robot is NAOqi OS and the
available APIs are the NAOqi API, SDK Python, C++, and
JavaScript for the tablet. In this research the NAOqi API was
used with the graphical user interface Choregraphe Suite.

B. Game Desgin

When designing the game the following aspects from the
ASD symptomatology were taken into account: inability to
socially interact, avoidance of eye contact, language difficul-
ties and difficulties understanding emotions and associating
them contextually. The game consists of a quiz-like structure,
where Pepper asks a general knowledge question and waits
for the user to point to the correct answer. The questions
were inspired from several websites which offer example of
questions appropriate for 2 to 5 years old children [32–34].

Fig. 1: The Pepper robot and the joint angles

The speech recognition feature of the robot was avoided
due to speech and language difficulties present in many
children with ASD, so instead the tablet was used to start
and stop the game. When the robot has finished introducing
itself and explaining the instructions of the game, a click-
to-start image is shown on the tablet. Before the robot starts
with the questions it explains to the user that the game can
be stopped at any time by pressing on the tablet which is
showing a click-to-stop image. Then the robot begins with
asking the pre-formulated questions. Each time a question
has been asked, two images appear on the monitors, one
correct and one incorrect. The images were taken from the
internet and were resized to fit the screen and also to show
written word describing the object shown. For each question
the user has to answer by pointing to (IJA) one of the screens.
Once pointing has been detected, Pepper looks at the screen
to which the user has pointed at (RJA) and according to
the answer performs a corresponding posture and then says
whether the answer is correct or not. When the answer is
incorrect Pepper shows a sad posture, and when the answer
is right a happy posture. When the game has finished, the
robot does a verbal expression of gratitude by thanking the
user for playing and goes to sleep.

Fig. 2: Framework of the game setting showing the positions
of Pepper, the monitors and the participant

C. Emotional Postures

Postures were incorporated in the game as an engaging
factor for the children with ASD, but also as a social



motivation. Having a quiz-like structure where only one
answer has to be chosen from two offered leaves room
only for two emotional behaviours. Accordingly the two
considered emotions were happiness and sadness. Due to
a lack of emotional postures implemented for the Pepper
robot, the postures used in this study were adapted from
tested emotional postures for NAO. Both, NAO and Pepper,
have the same range of the joint angles for the head and
arms, the only difference is their legs. Pepper has one hip
and knee with total of 3 DOF (see Figure 1) while NAO has
two legs and each has hip, knee and ankle with 11 DOF in
total and higher range. When the posture adapted from NAO
had different values for each leg, the average of the value was
used for the hip and knee values in Pepper. Seven different
postures were implemented for both sadness and happiness
taken from three different research studies [35–37].

D. Participants

Twenty individuals participated in this study for both,
playing the game and watching the video of the game.
Thirteen participants, 12 male and 1 female (mean age =
25.23, std = 3.72) volunteered to take part in this research
and play the game. All participants were recruited from
the Heriot Watt University and were either master, PhD
or postdoc students. The majority of them had either a
background or some knowledge in Robotics, from which two
have worked on Social Robotics but none has worked on
therapy in cognitive and behaviour disorder. The experimen-
tal procedure was approved by the ethics committee at Heriot
Watt University and prior to the game testing, the participants
were provided with written consent form. Seven participants
volunteered to watch the ’promotional’ video of the game
and fill a questionnaire. Three of these participants were
parents, three special educators and one research student.
All of them have worked or been in contact with children
with ASD in a range from 2 to 16 years.

E. Procedure

For the first part, where the participants were playing the
game, the testing took place in the Earl Mountbatten building
at Heriot Watt University, Edinburgh, in the EM1.50 room.
Once the participants have read the information sheet and
signed the consent form they started playing the interactive
game. To avoid any bias towards the role of the emotional
postures on the game, two versions of the game were played
and the questions asked by the robot were the same for
both versions. The two versions of the game were: one
without emotional postures, and one with emotional postures
used as a social reward as part of the social motivation
framework. Both of the games were played in a continues
flow where once the first version of the game has finished,
the robot informs the participant that in 5 seconds they will
start playing the second version of the game. Six of the
participants first played the version with emotional postures
and then the version without, and seven of them vice versa.
There were 15 general knowledge questions in total per
version, and the total participation time was approximately

10 minutes. The participants were told that the answers were
not scored and they were encouraged to also give wrong
answers if they wished. The participants filled a questionnaire
with questions regarding the effect of the emotional postures
on the whole experience.

For the second part, several ASD organisations and schools
for children with ASD were contacted and asked to partici-
pate in the study and it was explained that the study is open
for anyone who has been in any relation with children with
ASD (e.g. parent, teacher, researcher, etc.). They were send
a link containing a short description of the aim of the game,
the video and the questionnaire divided in 3 sections: ASD,
Joint Attention and Emotional Postures each with regard to
the game. The questionnaire investigated two aspects, namely
whether emotional postures can be beneficial for children
with ASD and if so in which way. Two societies, Lothian
Autistic Society and Autism Berkshire, responded positively
and shared the study on their Facebook page.

III. RESULTS AND DISCUSSION

The questionnaires use for evaluation contained multiple
choice, Likert scale and open questions. For each of the
Likert 5-scale questions in the questionnaires these bar charts
a Chi-Square test of significance was performed and the p–
value was determined (with significance level p = 0.05). The
p–values for the questionnaire data from the participant that
played the game were all found to be statistically significant.
On the other hand there were three questions from the
video questionnaire which have a p–value greater than 0.05.
For multiple choice questions where 2 or 3 options were
given and the open questions are reported without visual
representation. Three of the open answer questions from
the questionnaire for the participants watching the video
are reported in Section IV-B, since they were regarding
possible improvements of the system and possible problems
that might happen if a child with ASD would have played
the game.

A. Benefits of The Emotional Postures

The participants playing the game were asked questions
regarding the emotional postures including specific questions
on the effects of the emotional postures on the overall expe-
rience (see Figure 3b), to describe the game with and without
emotional postures with already offered attributes (see Figure
3d) and lastly, a question on which version did they prefer
and why. Figure 3b shows that all of the participants thought
that the emotional postures make the game somewhat more
engaging, fun and motivating or entirely more engaging, fun
and motivating. Only one participant found the emotional
postures not so motivating. The p–value for the three ques-
tions is p << 0.05, making the obtained answers statistically
significant. Taking the average for each question indicates
that the participants found the emotional postures very useful
to make the game more engaging, more fun and motivating.
When asked to describe both versions of the game, the one
without emotional postures was described with the attribute
"Boring" with highest percentage 46.3%. Meanwhile the
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Fig. 3: Answers from the questionnaire of the participants playing the game, asking whether they found the emotional
postures engaging, fun and motivating

version with emotional postures was described the most with
the attribute "Engaging", more than half of the participants
(76.9%). Both games were described as "Fun" but the version
with emotional postures exceeds with 69.2%. These obser-
vations can relate back to the first two questions evaluated,
which confirms the benefit of using emotional posture to
make the game more engaging and fun. Another thing to
note regarding the comparison of the two versions, is that few
participants (23.1%) described the version without emotional
postures as "Tiring" while more than half described the
version as "Amusing". These two are the only attributes
that were uniquely assigned to each version of the game
that emphasize the quality of emotional postures in terms of
bringing fun and engagement in the game. It was noticed that
during the experiments, the participants were getting bored
and tired from the game since they were answering the same
questions for both version. However, only the version without
emotional postures was described as "Tiring". Almost all of
the participants (92.3%) preferred the version with emotional
postures over the one without, except one participant who
did not show any preference. This question was followed by
an open answer question asking the participants to explain
why did they prefer this particular version. The answers can
be summarized as follows: the interaction was more fun
and amusing, the feedback (emotional postures) brings more
excitement to the user, the game was more engaging, and the
robot seemed more engaged.

Participants that watched the video including both versions
of the game, were asked questions regarding the usage of
emotional postures to improve JA skills, or as a social reward
in the motivational framework, and whether children will
appreciate them while playing the game. The data regarding
JA was found to be statistically insignificant and therefore it
si not discussed. However, when asked whether the emotional
postures are appropriate as a social award 85.7% answered
with somewhat and 14.3% with very much (p << 0.05).
Since these answers are statistically significant, the average
indicates that the participants found the emotional postures
somewhat appropriate as a social award.

B. Promoting IJA in Children with ASD

When both groups of participants were asked whether
children would appreciate the emotional postures while play-

ing the game, both groups either somewhat or very much.
However, one participant that played the game answered
as undecided and another as not really. The answers for
both groups were statistically significant meaning that both
groups agree that the children will very much appreciate the
emotional postures.

When JA behaviour is provided by a robot it is very
important for the robot to be seen as a social partner. More
than half of the participants (61.5%) that played the game
found the game very encouraging to point in order to show
an answer (p << 0.05) and 53.8% thought they would not
experience the game in the same way if the robot did not
look at the answer they were showing. These findings suggest
that people experienced IJA especially because when asked
whether they felt like playing alone or with a social partner,
61.5% answered with a social partner.

On the other hand, the participants watching the video had
to answer more specific questions regarding the JA involved
in the game and for children with ASD. It was assumed
that these participants would have a great knowledge and
experience of at least 2 year in the fields of ASD, especially
children. The participants were asked with an open answer
question for the age at which this game would be appropriate.
When asked for which age is the game appropriate, the
answers gave a range from 3 to 6 but also one participant
answered any depending on the ability. The answers for
whether the participants thought the game would improve
IJA in children with ASD were found to be statistically
insignificant. The follow-up open answer question that asked
the participants how will this game improve IJA, almost all of
them answered "I don’t know" or "Can’t be sure", confirming
the insignificance of the answers. The answers regarding to
the possible benefits that the game might provide for the
children with ASD did not yield as statistically significant
(p > 0.05). This question was followed by an open answer
question, asking the participants to explain how and in what
ways would it help the children with ASD. Even though the
participants were not sure about the game being beneficial for
children with ASD, they had several interesting points when
answering how it might help. Some of these answers were:
the usage of pointing as a pre-speech skill, children with
ASD would enjoy the robot celebrating the correct answer,
improving social interactions and develop social skills, and



again imitating of the movements was mentioned by the same
participant.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The ultimate objective of this study was to investigate three
aspects: the effect of emotional postures in an interactive
game, the usage of social robots to promote IJA through
interactive game, the possibility of using emotional postures
as social reward. In order to do so a game incorporating emo-
tional postures was designed and tested with young adults. To
test the user experience of the game with emotional postures,
two version of the game were tested, with and without
emotional postures.Additionally, the game was focused on
improving a specific social skill in children with ASD, JA
which is very important in the development of social and
communication skills. More specifically, the targeted skill
was IJA, and pointing was taken as a social behaviour that
people use to express the concept of sharing. A brief video
was made including both version of the game and it was sent
to few autism societies along with a questionnaire. For this
part, the participants were evaluating the game in terms of
whether and how would the game be beneficial for children
with ASD and whether the game promotes IJA.

From the observation made in the discussion it is clear that
there is a difference between the versions with and without
emotional postures, where in both methods participants pre-
ferred the game with emotional postures and found it more
engaging, fun and appropriate as a social motivation. Further-
more, in both methods participants thought that children will
appreciate the emotional postures while playing the game.

If we combine the data observed from both methods
together it can be concluded that the game proposed in this
study is suitable for pre-school children with ASD and the
emotional postures are beneficial in terms of encouraging
and motivating the user to play the game. Further research
is needed to evaluate how and whether the designed game
can improve social skills in children with ASD, especially
whether it promotes IJA.

B. Future Works

For future work, the most apparent approach would be to
test the game with pre-school children with ASD, however
there are several improvements that have to be made before
proceeding with testing. The questionnaire formulated for
the participants that watched the video had open answer
questions regarding the possible problems and improvements
of the system.

Regarding the language used in the game, majority of
the participants noted that most children with ASD have
difficulty processing spoken language and in order for them
to understand the instructions and questions given by the
robot, they have suggested to make bigger pauses between
two sentences. Additionally, they have also suggested sim-
plifying the questions or including someone in the game
such as caregiver, parent, teacher etc. who will be able to
aid the children when needed. Furthermore, few participants

suggested adding an option for the robot to repeat the
question and also if the child’s response is incorrect the robot
should encourage the child to try to answer the question
again by repeating it. Regarding the appearance of the robot,
several participants suggested that the robot should have
more humanistic look and bigger eyes that blink (the robot
used was programmed to blinked but maybe it was not
clearly visible in the video). Although children with ASD
avoid eye contact with people, when interacting with robots
they spent most of the time looking at the robot’s face. Few
of the participants also noted that the movements of the robot
take too long and could be more fluid. Further, by one parent
was noted that the child might touch the tablet repeatedly.

Taking into consideration the aforementioned suggestions,
the game can be improved in the following way: simplifying
the language used by the robot, adding an option to repeat
the question, changing the answer the robot gives when an
answer is incorrect by giving a chance to the user to answer
it again. Once these changes have been made the game
could be tested with pre-school children with ASD. The
evaluation of the game could be done in several sessions,
where the experimental group would play the game and the
control group would be playing the same game but without
emotional postures and the robot would not turn to look
where the child has pointed. The child’s JA capabilities
should be observed before the trial, during the trials and after
the final session to see if there has been any improvement
in both groups.
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Learning Underwater Motion and 3D Reconstruction from Optical and
Acoustic Sensors

Shubham Wagh, Sen Wang and Yvan Petillot

Abstract— Autonomous Underwater Vehicles (AUVs) are in
increasing demand to perform different underwater tasks such
as coral reef monitoring, harbours security, mine counter-
measure missions etc. However, its autonomy still presents
some challenges in terms of navigation and localization. One
of the key features still missing from the current system is
the capability to automatically gain knowledge and improve
performance through end-to-end learning. Based on the recent
works, we propose two unsupervised learning framework for 3D
reconstruction and motion estimation in underwater scenarios
using raw optical and sonar image frames individually to
solve the challenging problem of localization and navigation
in underwater environments. The results of the experiments
demonstrate appreciable results and showed a great potential in
improving the performance if supplemented with large number
of good datasets both for sonar and optical images.

I. INTRODUCTION

In recent years, there has been an increasing need for au-
tonomous vehicles that operate underwater. AUVs have many
applications as they perform dangerous and monotonous
tasks like ship hull inspection, coral reef monitoring, sur-
veying etc. AUVs should be able to localize itself accurately
in the environment in order to carry out these operations ef-
ficiently and autonomously. However, its autonomy presents
challenges on multiple levels in terms of localization and
navigation.

The existing geometric feature based methods make use
of vision sensors (optical camera or sonar sensor) for 3D
scene reconstruction and ego-motion estimation and have
demonstrated an incredible performance in terms of accuracy.
However, one of the key features still missing from the cur-
rent system is the capability to automatically gain knowledge
and improve performance through end-to-end learning [22].
The current systems heavily rely on manual troubleshooting
to analyze failure cases and refine localization results.

In this work, we propose two end-to-end unsupervised
learning framework for 3D reconstruction and motion es-
timation in underwater scenarios using optical images and
sonar images (images from 2D Forward Looking Sonar)
individually:

1) depth map and pose prediction network using unstruc-
tured sequences of optical images.

2) elevation map and pose prediction network using un-
structured sequences of sonar images in polar form, also
known as SonarNet.

We are particularly inspired by the recent work in [25],
where unsupervised learning is adopted for air images to
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and Systems, Heriot-Watt University, Edinburgh, UK smw2@hw.ac.uk

estimate 3D scene depth and pose. They perform appre-
ciatively compared to established SLAM systems under
similar input settings. Also, unsupervised learning removes
the need for separate supervisory signals or ground truth. To
the best of our knowledge, no previous systems exist that
learns motion estimates and 3D information (i.e. depth map
from optical images and elevation map from sonar images)
in an unsupervised manner from raw image sequences in
underwater environments.

II. RELATED WORK

In this section, we discuss some key state-of-the-art meth-
ods for 3D reconstruction and pose estimation in underwater
scenarios solely based on optical or sonar images. We also
deliberate about deep learning approaches for images on land
as no learning method exist for underwater scenarios.

A. Underwater 3D reconstruction

1) Using Optical Sensors: Sedlazeck et al. in [21] recon-
structs a real 3D scenario using a HD color camera with the
help of features are based on image gradients using a corner
detector. Nicosevici et al. [20] use SIFT features in a robotics
approach, with an average error of 11 mm. Beall et al. [4]
use a wide baseline stereo rig to extract SURF features from
left and right image pairs. After a smoothing and mapping
(SAM) step, they recover structure of the environment by
tracking these features. Negre et al. [6], [5] use a SLAM
approach in a micro AUV equipped with two stereo rigs to
perform 3D reconstruction of underwater environments.

The above methods need correspondence matching be-
tween two views to accomplish 3D reconstruction. Factors
like low visibility and low lighting conditions make the task
of finding correspondences between two underwater optical
views more challenging.

2) Using Sonar Sensors: Negahdaripour et al. in [17]
utilize radiometric information in a sonar image to detect
object and shadow regions, and various geometric cues and
constraints to determine sizes, shapes and spatial distribu-
tions of 3-D objects resting on the sea floor. Furthermore,
in [18], an SfM approach from a set of images taken from
an imaging sonar is used to recover 3D data. Aykin et al. in
[2] estimate the lost elevation angles by first determining the
3-D information at object boundaries based on cast shadow
cues and then employ the proposed image formation model
to obtain the remaining elevation values through each object.
Its main requirement is that the shadow is distinguishable
and that it lays on a known flat surface. In [3], Aykin et
al. propose a novel method of space carving framework for



the 3-D reconstruction of targets from multiple forward scan
sonar images captured at known sonar poses.

Thee methods manually select the features and perform
matching only for the sparse features. Thereby the resultant
3d structure is not dense.

B. Underwater Motion Estimation

Apart from the general Structure from Motion (SfM)
approach, we present some direct methods used to estimate
the motion.

1) Using Optical Sensors: Xu et al. in [24] propose a
direct method for accurate 3-D motion estimation from the
brightness variations in an optical sea bed image sequence.
In [7], Garcia et al. present a mosaicing algorithm, based
on this it is able to provide positional coordinates to an
underwater vehicle. Futhermore, in [8] propose a new method
to improve image matching in underwater image sequences
for estimating the motion of an underwater robot. However, it
has serious limitations when all the correspondence matches
are coplanar.

Based on the above methods, it can be seen that image
registration is a pre-requisite to accomplish motion estima-
tion which is computationally expensive.

2) Using Sonar Sensors: Negahdaripour et al. in [16]
investigate the model of sonar image flow in 2D FLS
by tracking the 2-D images of scene features to enable
automated dense correspondences and 3D motion estimation.
Furthermore in [19], the author present the mathematical
models of sonar image flow for 3-D objects and their cast
shadows and utilize them in devising various 3-D sonar
motion estimation solution.

The above methods are not capable enough to automati-
cally gain knowledge and improve performance of the motion
estimation system.

C. Deep Learning approaches for 3D reconstruction &
motion estiation

Garg et al. in [9], present first unsupervised single view
depth prediction method by using the left-right photometric
constraint of stereo image pairs. This method was further
improved in [10] by wrapping the left and right images across
each other which improve the accuracy of depth prediction.
Li et al. in [13] propose an UnDeepVO architecture to
estimate the 6-DoF pose of a monocular camera and the
depth of its view in an unsupervised fashion by incorporating
spatial and temporal dense information in the loss function
for training the network. However, a number of challenges
such as robustness to image blurs, camera parameters, or
illumination are not addressed. Recently, Zhou et al. in
[25], propose a novel SfMLearner architecture for the task
of monocular depth and camera motion estimation from
unstructured video sequences based on the task of view
synthesis as supevisory signals. This setup is most aligned
with our work as we similarly learn depth/elevation and ego-
motion from optical/sonar image in an unsupervised setting
for underwater scenarios.

III. PROPOSED METHODOLOGY
A. Depth Map and Ego-Motion from Optical Images

In this section, we discuss the proposed framework in
terms of geometry of the problem, network architecture
and then describe the individual loss functions used in the
framework.

Fig. 1: Overview of the supervision pipeline based on view
synthesis. The depth network takes only It as input, and
outputs a per-pixel depth map Dt. The pose network takes
both the target view (It) and the nearby/source views (e.g.,
It−1 and It+1) as input, and outputs the relative camera poses
(Tt→t−1, Tt→t+1).

1) Problem Geometry:
i Given an input image It , we estimate depth Dt and

with the help of nearby source views i.e images It−1
and It+1, ego-motions Tt→t−1 and Tt→t+1 are estimated.
The depth and ego-motion estimations are done using
depth and pose network which is described in the next
section.

ii Using the pixel coordinates (i, j) of image It and esti-
mated depth Dij

t , it is then projected into a structured
3D point cloud Qt.

Qij
t = Dij

t K
−1[i, j, 1]T (1)

where K is intrinsic matrix of the camera (using homo-
geneous coordinates)

iii Given the estimates for camera movement Tt→t−1 and
Tt→t+1, Qt can be transformed to get the estimates for
3D point clouds Q̂t−1 and Q̂t+1.

Q̂t−1 = Tt→t−1Qt (2)
Q̂t+1 = Tt→t+1Qt (3)

iv Q̂t−1 and Q̂t+1 can then be projected onto the nearby
camera frames respectively as KQ̂t−1 and KQ̂t+1.

v Combining this transformation and projection, we obtain
It image’s projected pixel coordinates onto the source
views Ît−1 and Ît+1 at time t− 1 and t+ 1 respectively.

p̂t−1 = KTt→t−1Dt(pt)K
−1pt (4)

p̂t+1 = KTt→t+1Dt(pt)K
−1pt (5)

where,
pt is pixel coordinate of input image at time t



p̂t−1 is pixel coordinates of Ît−1
p̂t+1 is pixel coordinates of Ît+1

Dt(pt) is depth value at pt pixel coordinate
The above formulation allows us to reconstruct the image

frame Ît−1 and Ît+1 by warping input image It based on Dt

and ego-motions Tt→t−1 and Tt→t+1. As the projected pixel
coordinates are continuous values we follow the procedure
given in [25] wherein a soft sampling is performed from the
four pixels in It whose pixel coordinates overlap with p̂t−1
to get Ît−1 or p̂t+1 to get Ît+1 (figure 1).

2) Network Architecture:
i Single-view depth network : We adopt the SfMLearner

architecture [25] which is in turn based on DispNet [15].
It is mainly an encoder-decoder or autoencoders design
with skip connections and multiscale predictions. Given a
single image as input it produces a dense depth estimate
mapping each pixel of the input to a metric depth value.
The network is fully convolutional. All conv layers are
followed by a ReLU activation function except for the
prediction layers where we use, 1/(α ∗ sigmoid(x) + β)
with α = 10 and β = 0.01 for positive depth value
constraints.

ii Pose network : The input to the pose estimation network
is a sequence of three images (e.g. It−1, It and It+1).
We concatenate the target image It with nearby source
images ( It−1 and It+1) along the color channels. The
outputs of the pose network are the relative poses be-
tween the target image and each of the source views (i.e
Tt→t−1 and Tt→t+1). These ego motion predictions are
represented by six numbers corresponding to relative 3D
rotation (Euler angles) and metric translations between
the two frames.

Fig. 2: Network architecture for our depth/pose prediction
modules.

3) Loss Functions:
i Image Reconstruction loss : We use view synthesis

supervision to form the image reconstruction loss. Let
< I1, I2, .....IN > be training image sequence with one
of the frames being target image and the rest being

the source view Is(1 ≤ s ≤ N, s 6= t). The image
reconstruction loss is formulated as:

Lrec =
∑
ij

||Iijt − Îijs || (6)

where, Îs is the source view Is warped to the target
coordinate frame based on the predicted depth Dt, ego-
motion Tt→s and the input source view Is as discussed
in the problem geometry.

ii Structured Similarity loss : This is a metric to evaluate
the quality of image predictions. It measures the similar-
ity between two images patches x and y and is defined
as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σx + σy + c2)
(7)

where µx, σx are the local means and variances [23]. µ
and σ are computed by simple pooling operation, c1 =
0.012 and c2 = 0.032. Since SSIM is upper bounded to
1 and needs to be maximized, we instead minimize:

LSSIM =
∑
ij

[1− SSIM(Îijs , I
ij
t )] (8)

iii Depth Smoothness loss : This incorporates sharp
changes in depth at pixel coordinates where there are
sharp changes in the image. It is a refinement of the
depth smoothness loss defined in Zhou et al. [25].

Lsmooth =
∑
ij

||∂xDij ||e−||∂xI
ij || + ||∂yDij ||e−||∂yI

ij ||

(9)
All the aforementioned loss functions are applied at all
the scales s, ranging from the models input resolution,
to an image that is 1

8 in width and height. The total loss
is defined as:

Ltotal =
∑
s

αLs
rec + βLs

SSIM + γLs
smooth (10)

where α, β and γ are hyper-parameters.

B. Elevation Map and Ego-Motion from Sonar Images

In Forward Looking Sonar (FLS) image formation process,
the elevation angle φ is lost through projection from the 3D
space (R,Θ,Φ) onto the 2D (r, θ) or (xs, ys) sonar image
domain [17]. For accurate 3D scene reconstruction from
2D FLS sonar imagery, we need to compute the unknown
elevation angle from the image data with high precision.
However, an approximate estimation of φ is more than
enough for 3D sonar ego-motion estimation. We propose
an analogous unsupervised learning framework known as
“SonarNet” to estimate elevation map and ego-motion using
sonar video stream.



Fig. 3: Overview pipeline for SonarNet model

1) Problem Geometry:
i Given an input sonar image St, we estimate elevation

map Et and with the help of nearby source views
i.e images St−1 and St+1, ego-motions Tt→t−1 and
Tt→t+1 are estimated. The elevation map and ego-motion
estimations are done using SonarNet architecture which
is described in the next section. Note that the input sonar
image is in polar form (r, θ) as that is the raw image
obtained from the FLS sonar sensor.

ii Sonar being an acoustic sensor, the concept of intrinsic
matrix is not valid. So the pixel coordinates (r, θ) are
linearly scaled to actual (R,Θ) measurements depending
on the window length and FOV of the sonar sensor,
where R is in meters and Θ in degrees.

iii Elevation map is defined as for every (R,Θ) real world
coordinate of an object in the scene, there is a corre-
sponding elevation angle Φ (in degrees) for that object.
The elevation angle range for mostly every sonar sensor
is within −7 deg to +7 deg. The predicted elevation map
(Et) from the network have values in the scale ranging
from 0 to 1 (i.e. linear mapping from [−7 deg - +7 deg]
scale to range [0 to 1] ) which is further linearly mapped
to gray scale intensity range 0 − 255 for visualization
purpose.

Et(r, θ) = φ (11)

where (r, θ) are pixel coordinates of elevation map and φ
is the intensity value of elevation map at that coordinate.

iv A structured 3D point cloud in spherical coordinate
system is formed by linearly scaling the pixel coordinates
(r, θ) and its corresponding intensity (φ) of elevation
map Et to get real world coordinates (R,Θ,Φ). The
azimuth (Θ) and elevation (Φ) angles are converted to
radians for further computations.

v The structured 3D point cloud is converted to Cartesian
coordinate system to get (X,Y, Z) real world coordinates
[17], denoted by Qt.

vi Given the estimates for the sonar sensor movement
Tt→t−1 and Tt→t+1, Qt can be transformed to get the
estimates for 3D point clouds Q̂t−1 and Q̂t+1.

Q̂t−1 = Tt→t−1Qt (12)

Q̂t+1 = Tt→t+1Qt (13)

vii Q̂t−1 and Q̂t+1 can then be projected onto the sonar
image frame at t−1 and t+1 respectively to get (R,Θ)
and then by appropriate linear scaling to get (r, θ) pixel
coordinates.

viii Combining this transformation and projection, we obtain
St image’s projected pixel coordinates onto the source
views Ŝt−1 and Ŝt+1.

The above formulation allows us to reconstruct the sonar
image frame Ŝt−1 and Ŝt+1 by warping input sonar image
St based on Et and ego-motions Tt→t−1 and Tt→t+1 (figure
3).

Fig. 4: Network architecture for the SonarNet mode

2) Network Architecture:
i Elevation Network : It is very much similar to the single

view depth network architecture except here we don’t
have inverse prediction.

ii Pose Network : It is similar to the pose network for
optical images except here we input sequence of three
sonar images in polar form.

3) Loss Functions: Here we only make use of image
reconstruction loss and elevation smoothness loss as sonar
images do not have color, texture etc. features. For smooth-
ness, we minimize the L1 norm of the second-order gradients
for the predicted elevation map.

The learning setup is analogous to setup for optical images
except here β = 0.

IV. EXPERIMENTS AND RESULTS

A. Training Details

1) Depth map and Ego-motion from Optical Images:
We implemented the proposed system using the publicly
available Tensorflow framework [1]. For all the experiments,
as per the learning setup in section 4.2.4, we set the value of
α = 0.15, β = 0.85 and γ = 0.1 for all the scales. During
training, we used batch normalization [11] for all the layers



except for the output layers, and the Adam [12] optimizer
with β1 = 0.9, β2 = 0.999, learning rate of 0.0001 and mini-
batch size of 16. We jointly train the system on modern GPU
TITAN Xp for a maximum iteration number of 200, 000.

We train the system using Universitat de Girona’s publicly
available data set collected with an AUV testbed in the
unstructured environment of an underwater cave complex
[14]. It contains a total of 9774 raw image frames. having a
dimension of 288× 384. Both the depth and pose networks
can be run fully-convolutionally for images of arbitrary size
at test time.

Fig. 5: Our sample depth predictions on the Gironas under-
water dataset using the model trained on the same datase

2) Elevation map and Ego-motion from Sonar Images:
Similarly, we jointly train the SonarNet model. For all the
experiments, as per the learning setup, we set value of α = 1,
β = 0 and γ = 0.25 for all the scales. We set learning rate of
0.00001 and maximum iteration upto 300, 000. Apart from
this, all the details are similar to previous one.

The model is trained using the available underwater sonar
dataset collected in a water tank at Ocean Systems Labo-
ratory, Heriot-Watt University. It contains a total of 21, 348
sonar image frames, having a dimension of 1352× 128. We
resize this image dataset to 467×128 as an appropriate image
size for CNN’s input.

B. Results

In figure 5 we show our single view depth predictions.
As currently we do not have ground truth for the available
dataset, we validate our depth map by reconstructing the
point cloud as shown in figure 7. We see that the depth
predictions are appreciable. As the dataset is limited (9772
sequences of 3) and has artificial illumination in the dataset,
our unsupervised framework has not been able to learn
complete underwater features, thereby the pose predictions
are affected and may not be correct at this point.

Fig. 6: Elevation map predictions

Fig. 7: Reconstructed 3d point cloud of an input image

In figure 6, we show elevation map prediction of SonarNet
model. As we do not have ground truth, we again verify
this by reconstructing 3D point cloud as shown in figure 8
for first image in figure 6. We get appreciable and logical
results at this point. We also plot the pose trajectory for
an example data-set as shown in figure 9. The example
dataset is in cartesian form for easy interpretation of the
motion. We get approximately good estimation of the motion
with little drift as in the example the sonar is rotating
about +z axis with some motion along +y axis. Most
of the sonar images in the dataset are sparse, hence not
significant learning was possible. This can be significantly
improved with more number of dataset which is required for
unsupervised learning.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper, we presented two unsupervised learning
framework for 3d reconstruction and motion estimation us-



Fig. 8: Reconstructed 3d point cloud of sonar image in fig.
6

Fig. 9: Sonar pose trajectory of the sequential sonar frames

ing: 1) Optical and 2) Sonar images respectively. Both the
systems make use of view synthesis as its supervisory signal.
The results of the experiments demonstrate logical results
and showed a great potential in improving the performance
if supplemented with large number of good datasets both for
sonar and optical images.

B. Future Works

In general, unsupervised learning methods have the poten-
tial to improve their performance with the increasing size of
training datasets. In the next step, we will investigate how to
train the proposed networks with large amount of datasets to
improve its performance, such as robustness to illumination
changes for optical images and sparsity for sonar images.
In the future, we also plan to extend our system to a visual
SLAM system to reduce the drift.
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