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Abstract— This work presents a framework for object pose
estimation using 3D data of scene acquired from 3D sensors
(e.g. Kinect, Orbec Astra Pro among others). The 3D data
has an advantage of independence from object texture and
invariance to illumination. The proposal is divided into two
phases : An offline phase where the 3D model template of
the object ( for estimation of pose) is built using Iterative
Closest Point (ICP) algorithm. And an online phase where the
pose of the object is estimated by aligning the scene to the
model using ICP, provided with an initial alignment using 3D
descriptors (like Fast Point Feature Transform (FPFH)).The
approach we develop is to be integrated on two different
platforms : 1)Humanoid robot ‘Pyrene’ which has Orbec Astra
Pro 3D sensor for data acquisition, and 2)Unmanned Aerial
Vehicle (UAV) which has Intel Realsense Euclid on it. The
datasets of objects (like electric drill, brick, a small cylinder,
cakebox) are acquired using Microsoft Kinect, Orbec Astra Pro
and Intel RealSense Euclid sensors to test the performance of
this technique. The objects which are used to test this approach
are the ones which are used by robot. This technique is tested
in two scenarios, firstly, when the object is on the table and
secondly when the object is held in hand by a person. The
range of objects from the sensor is 0.6 to 1.6m. We present
both qualitative and quantitative evaluations on the dataset we
acquired using the 3D sensors.

I. INTRODUCTION

The technology in current research scenario is marching
towards automation for higher productivity with accurate
and precise product development. Vision and Robotics[4]
are domains which work to create autonomous systems and
are the key technology in quest for mass productivity. The
automation[5] in an industry can be achieved by detecting
interactive objects and estimating the pose to manipulate
them. Therefore the object localization ( i.e., pose), which
includes position and orientation, has profound significance.
The application of object pose estimation varies from indus-
try automation to entertainment industry and from health care
to surveillance. The objective of pose estimation of objects
is significant in many cases, like robots manipulating ob-
jects, accurate rendering of Augmented Reality (AR) among
others.

As a part of automation in industries, we use robots to
serve in many tasks which deals with various objects in its
environment. In an industry the arm type robots are common,
which are used to manipulate the objects. So, the robot
should be capable of recognizing the objects and estimating
the pose of them with respect to its location in such a way

that it can do a particular task such as pick and place, parts
assembly, amongst others.

This paper deals with the problem of 3D object recognition
and relative pose estimation using depth information for
object-robot interaction. The combination of position and
orientation is referred to as the pose of the object. This
work on pose estimation is to be integrated on two different
platforms: 1) Robot Pyrene, a humanoid robot for picking
the objects like drill, brick (typically, which are laid on
pavements), small cylindrical object and 2) Unmanned Aerial
Vehicle (UAV) for picking the objects like brick (in shape of
cuboid). This task brings challenges such as, noise in depth
information, occlusion of objects in the scene, message delay
between the robot and a remote system due to communica-
tion lag among others.

The pose estimation stated is a visual-based approach
using a RGB-D sensor, embedded in the robot, which
provides 2D and 3D cues. The conventional RGB or the
mono-color image is a 2D data and 3D data is fetched
from the depth map. In computer vision, a depth map is
a single channel image that contains the distances of the
surfaces of observed objects from a view point. Here, pure
3D information is used to detect and estimate the pose of
the objects in the scene as depth information enhances the
accuracy of pose estimation. The depth- based algorithms
have an advantage of independence from object texture
and invariance to illumination. This approach is tested with
Microsoft Kinect v1 and Orbec Astra Pro 3D sensors.

In order to estimate the pose of an object, first, it is
required to create a 3D model of the target object in an
off-line phase, and second, pose estimation of the object can
be calculated by aligning the current object point cloud to
the model point cloud with initial alignment and refining
the pose with Iterative Closest Point (ICP) technique in an
on-line phase.

This work is in collaboration with other group in the lab
who develop the path planning and control of humanoid that
will interact with the objects. In the context of perception,
this work gives them the best accurate pose of the object to
grasp.

We have tested this approach on the datasets we developed
with different objects (such as drill, brick among others)
recorded with 3D sensors (like Microsoft Kinect). We present
both qualitative and quantitative evaluations of our approach
on these datasets. This paper has the follwoing structure: we



present the related work in Section 2. The formulation of
our methodology for pose estimation is given in Section 3.
Section 4 presents qualitative and quantitative results. Last,
Section 5 describes conclusions and future work.

II. RELATED WORK

The topic of object recognition and pose estimation has
been widely researched in the last decade, but there are
many unresolved issues and challenges. The methods based
on sparse feature[6] have shown good results for accurate
pose estimation. Their popularity declined in the scenario of
robotic applications because they rely on texture. In Hough-
voting based methods, all pixels cast vote into a quantized
prediction space. The cell with majority of votes is taken as
the winner. Hough voting scheme for 2D object detection
and pose estimation is used in [7].

Template based methods [8], [9] are also applied to
estimate the pose. The template is scanned across the image
and a distance metric is computed at each position to find
the best match. A multi-modal template matching approach is
proposed by Hinterstoisser et al. [10] which is able to detect
textureless objects in highly cluttered scenes. A distance
based approach is proposed by Lai et al. [11] for object
classification and detection. Ruotao He et al. [12], proposed a
template matching based on LINEMOD for object detection
and pose estimation.

With the advent of 3D acquisition systems (e.g Microsoft
Kinect), there is a growing interest in 3D object recognition
and pose estimation using depth data. Many advantages,
like easier segmentation, robust pose estimation and new
geometrical features has made the researchers to shift their
focus from 2D approach to the analysis of RGB-D data. A
method for object recognition in cluttered scenes using Point
clouds has been developed by Papazov and Burschka[13].

A lot of work has also been done in head pose estimation.
An approach using key-frames with offline learning and
online pose estimation using ICP is presented in [14]. Li et
al. [15], proposed 3D head pose tracking using ICP with
online face template reconstruction. Generalized Adaptive
View based Appearance Model (GAVAM)[16] presents prob-
abilistic framework which integrates all three pose estimation
paradigms dynamic/motion based approaches, static user-
independent, static user-dependent.

Pose estimation as a energy minimization with global hy-
pothesis is presented in [17]. R. Brigier et al. [18], proposed
symmetry aware evaluation of 3D object detection and pose
estimation. A local bundle adjustment technique based on
key frames and previous frames is proposed to avoid drift
and jitter [19]. Object detection using multimodal point pair
features and geometric edge extractor and pose estimation
using local voting scheme, clustering and ICP is presented in
[20]. W. Czajewski et al. [21], proposed a VFH based object
detection and Camera Roll Histogram (CRH) descriptor
based pose estimation with ICP as pose refinement. Single
image object detection and pose estimation using deformable
parts model classifier based on gPb contours with the help
of superpixel and chordiogram matching is proposed by M.

Zhu et al. [22]. Probabilistic classifier based on maximum
likelihood, by defining Probability Density Function (PDF)
for the pose of the object, given correspondences between
scene and model features is presented in [23].

With the recent trend and its success in the field of
2D image analysis, the deep convolutional neural networks
emerges as a natural consequence in application to 3D
object recognition. Due to the complexity of 3D information,
approaches based on depth data could not tackle all the
challenges although it has been used over its RGB counter-
part. To jointly perform depth prediction and surface normal
estimation, an adaptive multi-scale CNN architecture was
proposed in [24]. The performance of deep learning methods
is better than most of classical approaches in object detection
and model alignment.

Although deep learning methods started to outperform the
conventional techniques, they require very huge data sets
and expensive processing units for computation. Even on
powerful GPUs the training time requires several days for
CNNs. The evaluation of different approaches should not be
based exclusively on their pure performance but also on the
effort put during the training phase and its cost. If the only
goal is accuracy CNNs will definitely be the answer, but for
cost-effective solutions, classical approaches should still be
considered.

Considering the state-of-art techniques, we proceed further
with the pose estimation using the depth data, due to the
fact of it being invariance to illumination and independent
from object texture. We use the classical ICP algorithm to
estimate the pose of objects considering the fact that it does
not require very huge dataset and expensive processing units
like deep learning methods.

A. Framework

RGB-D cameras have been widely used in many computer
vision and robotics applications such as pose estimation
[25], 3D reconstruction [26], visual SLAM [27], amongst
others. We used Microsoft Kinect v1 and Orbec Astra Pro
sensors for this approach and open source libraries such as
OpenCV[28], PCL[29] and ROS[30] to realize this work.

III. METHODOLOGY

This work presents the pose estimation in two folds: 1)
offline phase - to form 3D model of the object and, 2) online
phase - pose estimation by aligning object and model. A
general diagram of the proposed pose estimation system is
shown in Figure 1.

An RGB-D image captured by a sensor is firstly converted
into a point cloud through the camera intrinsic parameters.
Then, the point cloud is filtered and segmented into clusters.
Below is a quick overview of the two steps of our method:

First, in an offline phase, we acquire a set of RGB-D
images of the object in different views. Then, we convert
them to point clouds and perform an initial filtering to
remove those points that have a depth greater than a set
threshold. We place the objects on a rotating platform (a
plane) to reconstruct their 3D model. We can estimate the



Fig. 1: Overview of the proposed vision system

plane and segment the object on the plane. By this way we
could segment it from the scene and acquire the point cloud
of object in different viewpoints by rotating the platform and
performing the steps as described above. As we get point
clouds of object in different viewpoints, we apply Iterative
Closest Point (ICP) over all the point clouds to register them
and then we form a 3D representation of the object, as shown
by the red block in offline phase in Figure 1, which is later
used in an online pose estimation phase . The point clouds
of the object in different views can also be used to create a
part of dataset for object detection. We compute View Point
Feature Histogram (VFH)[31] descriptor for the point clouds
of the object and represent the VFH descriptors as a kd-
tree for efficient search with K-Nearest Neighbors (k-NN),
in online phase for object detection.

Second, in an online phase, we acquire the RGB-D image
of the scene to detect and estimate the pose of the object.
We convert the RGB-D image into a point cloud and then
we apply a pre-processing step that suppress flat areas, i.e.
the table, and segment the objects by clustering them. The
segmented clusters on the planar surface are described with
View Point Feature Histogram (VFH). The VFH descriptor of
the segmented clusters are compared against the descriptors
of the target object using k-Nearest Neighbors. The clusters
are classified according to number of matches and the labels
of the corresponding object is assigned, we choose the 3D
model of that particular object and we proceed to estimate
the pose. We apply an initial alignment between the object
and the model using sample consensus and a 3D descriptor
like FPFH. Finally, we refine the alignment of the object
and model using Iterative Closest Point (ICP) algorithm to
estimate accurate pose of the object.

A. 3D Model Reconstruction - Offline phase

We reconstruct the 3D model of the object by acquiring the
depth frames of the object (placed on a plane) in different
view angles, converting them to point clouds followed by

clustering of object to segment it from plane. Then, we apply
ICP to register all the frames and reconstruct the 3D model
of the object.

1) Plane Segmentation and Clustering: To reconstruct the
3D model, we have kept the objects on a rotating plane
to observe the object from all points of view. In order to
form the 3D model of the object, it is indeed necessary to
remove the irrelevant points from the scene trying to keep
only the points corresponding to the object. This is done by
the plane segmentation and clustering module - the idea is
to form a plane model using RANSAC (Random Sample
Consensus)[32].

2) 3D Model - Registration using ICP: We do pairwise
registration of 3D point clouds, i.e., aligning two point clouds
with overlap by estimating the transformation between both.

The problem of registration tries to find the correspon-
dences between source and target point and estimate a
transformation. The transformation when applied on source
point cloud, aligns all pairs of corresponding points with
target point cloud. Here, the corresponding points are usually
not known and needed to be determined.

Typically, the registration consists as follows :
1) Selection: Sampling of point clouds to speed up the

process.
2) Matching: Estimating the correspondences between

points in subsampled point clouds.
3) Rejection: Filtering the false correspondences.
4) Alignment: Assigning an error metric and minimizing

it to find the optimal transformation.

The ICP algorithm was developed by Besl and Mckay[34]
as an iterative registration method. There, the closest points
in Cartesian space are considered correspondences of each
others. ICP searches the closest point correspondences
(matching) and align the found point pairs (alignment). These
two steps are repeated until convergence thereby iteratively
refining the alignment between source and target point cloud.



If there is perfect overlap1, the alignment converges to global
minimum, i.e., optimal alignment. But the main drawback is
that the algorithm may get caught in local minima if there
is very less overlap or if initial alignment is bad. In order
not to get caught in local minima, we have to suppress the
false correspondences (rejection) as they affect negatively the
registration results.

We used uniform sampling to sample the point cloud as
it preserves the geometry of the object. The correspondence
estimation basing on the normal information is applied in
this approach taking the advantage of normals to correctly
estimate the correspondences. Invalid correspondences can
negatively affect the registration results, therefore correspon-
dence rejection is a vital step in the registration pipeline.
It filters the point pairs, matched in the correspondence
estimation stage, in order to facilitate the transformation es-
timation and improve convergence towards global minimum.
Correspondence rejectors based on distance threshold and
normal compatibility are used in this work. The transforma-
tion estimation is based on minimization of error metrics.
There are two main error metrics to be minimized that have
been considered: point-to-point (Eq. 1) and point-to-plane
(Eq. 2).

Epoint−to−point(T ) =

N∑
k=1

||Tpk − qk||2 (1)

Epoint−to−plane(T ) =
N∑

k=1

((Tpk − qk).nqk)
2 (2)

where (pk, qk) is the k-th of the N pair correspondences
from the source cloud to the target cloud.

B. Pose Estimation - Online Phase

In order to estimate the pose of the object in the online
phase, the RGB and depth image of the scene is acquired
using 3D sensor (e.g., Kinect, Astra Pro). The RGB and
depth images are converted to point clouds. If the object
is placed on a plane surface (i.e., a table), we do the
plane detection and object clustering as described in section
III-A.1. Then the object point cloud is aligned with the
respective model using initial alignment and the pose is
refined by final alignment using ICP.

1) Object Recognition: In this application, we use a
global recognition method based on Viewpoint Feature His-
togram (VFH)[31] descriptor, as global features have the
ability to represent an entire object with a single feature
vector, the recognition process is faster and robust to noise,
which is important for near real-time applications.

We firstly build the training set by acquiring the point
clouds of objects from different viewpoints. We compute the
VFH feature descriptor for every point cloud and convert it to
Fast Library for Approximate Nearest Neighbors (FLANN)
format. As kd-tree is one of the efficient search structures,

1The overlap that has majority of corresponding pairs between source
and target point cloud

we form a kd-tree of the training data and store if for further
testing.

In testing phase, the target object is clustered and its
VFH descriptor is computed, matching is performed using k-
Nearest Neighbor search from the FLANN[35] library with
a Chi-Square metric using the kd-tree built in the training
phase.

2) Initial Alignment: Due to its greedy nature, ICP algo-
rithm requires a reliable initial alignment to avoid converging
to local minima. Therefore, we apply an initial alignment
between the scene and model point clouds before refining
the alignment with ICP.

We use SAmple Consensus Initial Alignment (SAC-IA)
which tries to maintain the same geometric relations between
correspondences without having to try all combinations, it is
limited to set of correspondences. Here we use Fast Point
Feature Histogram (FPFH) descriptor as a similarity metric
for the correspondence pairs. FPFH is a simplified version of
Point Feature Histogram (PFH) to reduce the computational
complexity.
SCA-IA. This approach is more detailed in [36] and it
considers all possible matching pairs for initial alignment.
But in SCA-IA, the matching pairs are sampled and we
follow following scheme:

1) We select p sample points from source cloud with
distance between any pair greater than a distance
threshold.

2) For each of points selected in previous step, we find
a list of points in target cloud whose histograms are
similar to source cloud sample points histogram. Out
of all matched histogram, we select one randomly and
form correspondence.

3) Thus, we define an error metric to compute quality of
transformation and compute the rigid transformation
defined by sample points and their correspondences.

These three steps are repeated until convergence, and the
transformation that resulted is used to roughly align the
source to target cloud.

3) Final Alignment - ICP: With the help of initial align-
ment described in section III-B.2, the scene and model point
clouds are aligned coarsely which are needed to be aligned
finely using ICP.

ICP requires an initial alignment due to its greedy nature,
this is provided by SCA-IA. Now, we can perform ICP on
the initially aligned model and scene point cloud to get the
accurate pose of the object in scene.

As described in section III-A.2, we register (align) the pair
scene-model point clouds.

IV. RESULTS AND DISCUSSION

The process of initial alignment described in Section III-
B.2 is computationally expensive (Table I) , we follow a
strategy described below to estimate the pose of the objects
in real time.

In order to align the model and object, we perform the
SCA-IA method for the first frame, this provides a good



initial guess of object pose which drastically reduce the com-
putational time. The next frames only need a fine alignment,
by ICP, considering the previous estimation. We place our
model cloud at a predefined position and orientation. We
estimate the pose of the object in first frame using SCA-IA
and ICP then we align the model with the object in scene and
leave the model at the aligned place. In the next frame,we
use the previous estimation as the initial guess. This is
based on the assumption that - the movement of objects
between two consecutive frames is small. With this approach,
we are not always required to compute the SCA-IA for
every frame, thereby reducing the computational complexity.
However, we can recover the rigid body transformation
between the initial model and the model aligned to previous
frame using Singular Value Decomposition (SVD) and one-
to-one corresponding pairs of the model.

A. Datasets

The humanoid ‘Pyrene’ is needed to grasp some objects,
like an electric drill, a brick and a cylinder like object as
shown in Figure 2. We acquired our own datasets of these
objects in such a way that we can apply a reconstruction
method that generates 3D models of each object. Those
models are used later to test pose estimation in different
scenarios.

We acquired different datasets of the objects for 3D
reconstruction and pose estimation. We acquired two types
of datasets to test. One, a dataset which had object on
a table with changing poses. Second, a dataset in which
object is held in hand by a person and changing the pose of
object to estimate the pose. For the quantitative evaluation of
pose estimation, we have used a commercial Motion capture
system (Mo-cap) to recover the ground truth data of the pose
of the objects.

B. Qualitative Evaluations

This work of pose estimation is oriented as a module
that is used over two different robotic platforms, each with
a different sensor: 1)Humanoid ‘Pyrene’, which has an
embedded Orbec Astra Pro 3D sensor and 2) UAV which
has a Intel Realsense Euclid sensor on board. We have also
tested this approach on Microsoft Kinect v1, for initial testing
before integrating on the robotic platforms.

1) Results of pose estimation of objects acquired using
Microsoft Kinect v1: The pose of three different objects
(brick, drill and yellow cylinder), acquired using Microsoft
Kinect sensor, is estimated as detailed in Section III-B, by
aligning the respective object models created in Section III-A
to the objects in the scene.

We have tested our pose estimation approach on two
scenarios, viz., 1) the object is placed on a table (a plane)
and 2) the object is held in hand by a person.
Object - Brick. The pose estimation of the brick with partial
occlusion (from a hand) is shown in Figure 3a. We can see
the red color point cloud depicting the 3D model of the brick
which is aligned with the point cloud of brick in the scene.
ICP results in a proper alignment of the model - and the

object in scene, we can recover the final transformation from
the ICP which is the pose estimation of the object.

We had observe during rapid movements of the object in
the scene that the alignment of the model and the object in
scene for pose estimation - takes more time than usual as
the object needed to be initially aligned by SCA-IA.

During the major occlusion of the brick (only small part
of brick is visible) the ICP fails to align the model as shown
in Figure 3c. We can also see in the Figure 3d that the
brick in the scene and the model is realigned after the major
occlusion.

A short video of pose estimation of brick (held by hand)
is provided as supplemental material at this link2.

A short demonstration of pose estimation of brick on the
table is provided as a supplemental material at this link3.
Object - Yellow Cylinder. The proper alignment between the
model and object results in a accurate pose estimation as
shown in Figure 4.

In spite of been occluded with both hands, we can see a
correct alignment of the object with the model in Figure 4.
In the case of the cylinder, when there are rapid movements
of the object, the alignment takes more time than usual as
it needs to undergo the process of initial alignment. We also
observed that the pose estimation of the yellow cylinder is
bad when the object is occluded in majority.

A short demonstration of the pose estimation of the yellow
cylinder is provided as a supplemental material at this link4.
Object - Drill. The pose is estimated when the drill is held
in hand as seen in Figure 5.

We observed some problems with the alignment of drill
with the model when this is viewed with major occlusion
(only some part of drill is viewed in sideways) as shown in
Figure 5.

A short demonstration of pose estimation of drill is
provided as a supplemental material at this link5.

2) Results of pose estimation of objects acquired using Or-
bec Astra Pro: The Orbec Astra Pro 3D sensor is embedded
on the robot ‘Pyrene’ [37], which is connected to a remote
computer on WiFi network. Due to this type of connection,
there is communication latency between robot and computer
to recover the ROS topics related to point clouds. Instead,
we tried to recover the depth image and we convert it into
a point cloud using intrinsic parameters. Due to latency, the
RGB and depth images are not synchronized, so we could
not use the color information in the creating of the point
clouds.
Object - Brick. The pose estimation of a brick held in hand
is shown in Figures 6a and 6b. We observed that, if the brick

2https://www.youtube.com/watch?v=HoIW_qzToWU&
feature=youtu.be

3https://www.youtube.com/watch?v=tJQIqIBMq-4&
feature=youtu.be

4https://www.youtube.com/watch?v=OPh9xTyCC4c&
feature=youtu.be and https://www.youtube.com/watch?
v=L1omC3XFNWA&feature=youtu.be

5https://youtu.be/VY4g3-xFZSM and https://www.
youtube.com/watch?v=ZPO-CSAq5tI&feature=youtu.be

https://www.youtube.com/watch?v=HoIW_qzToWU&feature=youtu.be
https://www.youtube.com/watch?v=HoIW_qzToWU&feature=youtu.be
https://www.youtube.com/watch?v=tJQIqIBMq-4&feature=youtu.be
https://www.youtube.com/watch?v=tJQIqIBMq-4&feature=youtu.be
https://www.youtube.com/watch?v=OPh9xTyCC4c&feature=youtu.be
https://www.youtube.com/watch?v=OPh9xTyCC4c&feature=youtu.be
https://www.youtube.com/watch?v=L1omC3XFNWA&feature=youtu.be
https://www.youtube.com/watch?v=L1omC3XFNWA&feature=youtu.be
https://youtu.be/VY4g3-xFZSM
https://www.youtube.com/watch?v=ZPO-CSAq5tI&feature=youtu.be
https://www.youtube.com/watch?v=ZPO-CSAq5tI&feature=youtu.be


(a) Brick (b) Cylinder
(c) Drill

Fig. 2: Objects for pose estimation

(a) (b) (c) (d)

Fig. 3: Pose Estimation of Brick with hand occlusion(a), Pose Estimation of Brick with ICP before major occlusion (b),
during major occlusion (c) and after major occlusion (d).

Fig. 4: Pose Estimation of yellow cylinder (left and middle), with partial occlusion (right)

Fig. 5: Pose Estimation of drill (left and middle), Improper alignment of drill with the model during major occlusion(right)

is partially viewed the model would not properly align with
the brick, which leads to wrong pose estimation.

A short demonstration of pose estimation of brick is
provided as a supplemental material at this link6.
Object - Yellow Cylinder. The pose estimation of yellow
cylinder is shown in Figures 6c and 6d. When the yellow

6https://www.youtube.com/watch?v=8ptkc-3vFcw&
feature=youtu.be and https://www.youtube.com/watch?
v=R8IOfDtlKPA&feature=youtu.be

cylinder is occluded in majority the model could not align
with the object as seen in this video7.
Object - Drill. The pose estimation of drill held in hand is
shown in Figures 6e and 6f. A short demonstration of pose
estimation can be seen at this link8.

7https://www.youtube.com/watch?v=HcS91xX4Naw&
feature=youtu.be

8https://www.youtube.com/watch?v=Hhuj3Cwn7hs&
feature=youtu.be

https://www.youtube.com/watch?v=8ptkc-3vFcw&feature=youtu.be
https://www.youtube.com/watch?v=8ptkc-3vFcw&feature=youtu.be
https://www.youtube.com/watch?v=R8IOfDtlKPA&feature=youtu.be
https://www.youtube.com/watch?v=R8IOfDtlKPA&feature=youtu.be
https://www.youtube.com/watch?v=HcS91xX4Naw&feature=youtu.be
https://www.youtube.com/watch?v=HcS91xX4Naw&feature=youtu.be
https://www.youtube.com/watch?v=Hhuj3Cwn7hs&feature=youtu.be
https://www.youtube.com/watch?v=Hhuj3Cwn7hs&feature=youtu.be


(a) (b) (c)

(d) (e) (f)

Fig. 6: Pose estimation of brick held in hand (a-b). We use only the depth information to estimate the pose. A color image
of the scene is depicted at the top left. Pose estimation of yellow cylinder held in hand (c-d). Pose estimation of drill held
in hand (e-f)

C. Quantitative Evaluations

The average time taken by the various modules in the
approach is as shown in Table I. The first frame need to
have initial alignment, this takes around 1.3 sec to process
and followed by approximately 2 frames per second (fps)
processing the rest of frames.

TABLE I: Average time taken by each module

Module Time (in ms)

Convert to Point Cloud 10
Table Segmentation 200

SCA-IA 800
ICP 350

Total (with SCA-IA) 1360
Total (without SCA-IA) 560

For the quantitative evaluation of pose estimation, we have
used a commercial Motion capture system (Mo-cap) [38] to
recover the ground truth data of the pose of the objects.
The Mo-cap system provides the pose of the object in its
coordinate reference system. Our algorithm estimates the
pose in 3D sensor coordinate system, therefore, we need
to find the transformation from sensor to Mo-cap frame of
reference in order to compare the estimated pose with the
ground truth data.

We report the errors in roll, pitch and yaw angles of the
pose estimated using our approach and the ground truth in
Table II. The errors are a bit higher than what we visually
see in qualitative evaluations (Section IV-B), because of the
fact that the landmarks are not placed exactly on the object
and also due to ambiguity caused by symmetry of objects.

TABLE II: Root Mean Square (RMS) error of orientation
angles of different objects

Object (Error in degrees)
Roll Pitch Yaw

Brick 12.09 3.12 11.89
Drill 7.93 7.94 5.42

Yellow Cylinder 16.11 13.84 7.64

V. CONCLUSION AND FUTURE WORK

Using a RGB-D camera, an approach for pose estimation
is proposed. This project is aimed to develop a pose estima-
tion module, that is to be integrated on two robotic platforms:
1)Humanoid Robot ‘Pyrene’ and 2)UAV, with two different
depth sensors on board. This brings us the challenges of
communication latency, occlusion and noise in the data. The
humanoid robot is intended to manipulate specific objects
such as drill, brick and a small cylindrical object and UAV
is intended to manipulate brick in the shape of cuboid.

This project solves the pose estimation of object with
a two phase approach: 1)Offline phase - 3D model of the
object is generated using ICP and 2)Online phase - model
is aligned with the scene using an initial guess from SCA-
IA algorithm, then further refined using ICP. Our approach
uses the depth data taking the advantage of invariance to
illumination and independence from object texture. We have
tested this approach, both qualitatively and quantitatively
using Microsoft Kinect v1, before the integration on the
robotic platforms. The results are presented in Section IV.
Our approach works well in case of partial occlusion of the
object, but it is not robust in case of major occlusions of the
object.

The offline phase for 3D model generation can be im-



proved to work online to simultaneously learn the model
and estimate its pose, with a probabilistic pose prediction of
object. We could improve the segmentation of the object and
scene using the color information for more robust alignment
of model and scene. We can improve the object recognition
pipeline for more robust object recognition. We can add more
rejectors (e.g., rejection of self-occluded normals) to reject
the false matching pairs to increase the speed and robustness
of the system.
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Mixed RFID-Vision Architecture for High Precision Free-Flow ETC

Sepideh Hadadi, VIBOT, University Bourgone-Franche Comte

Abstract— Current free-flow Electronics Toll Collection
(ETC) systems may fail or fall out of calibration under certain
circumstances. These failures at crowded highways will cost a
lot for road owners and governments. The author will propose
an architecture based on traditional RFID and imaging sensor
to increase the reliability and the precision of the ETCs. The
vision system employs CCD and IR sensor to grab images and
detect and classify vehicles, extract License Plate(LP), segment
and recognize PL content by the state-of-the-art object detection
algorithm. The configuration of the RFID system including
reader and tag antenna, effective detection range, frequency
bandwidth selection will be discussed. Then, the dedicated
camera module and a algorithm for vehicle detection and
LPs analysis will be presented. Experimental result show high
precision (above 95%) under normal condition and 80%-90%
precision for the worse case scenarios. in addition, the proposed
architecture is able to process incoming images at 30-47FPS on
NVidia GPUs. This result proofs that combination of the vision
system and traditional RFID can solve above reliability issue
and fill precision gap of existing free-flow ETCs.

I. INTRODUCTION

the precision of available ETC systems must be signif-
icantly improved to be deployable in crowded highways
and convince road owners to replace tollbooths with such
a system. On the other hand, recent improvement in image
processing algorithm for unmanned vehicle put forward reli-
able solutions for old problems such as object detection and
classification, tracking, image analysis and so on, which can
be used in road monitoring and surveillance systems as well.
The influence of the algorithms developed based on artificial
intelligence such as neural network is unavoidable because
they can imitate human vision and outperform previous
algorithms in terms of speed and precision. thus constant
improvement of the ETC systems is a routine work.

A. Problems and challenges of current free-flow ETCs

Available ETCs are mainly relaying on RFID tags and
UHF technology for reading these tags. Fig.1 shows an
example of free-flow ETC. There are certain problems in the
RFID-based solution: 1- if due to any reason RFID system
is failed there is no other means to keep them functioning in
full precision 2- there is no way to track down toll evaders
3- the RFID ETCs are working in different wavelength thus
it is hard to embed them in traffic monitoring system 3- a
support team is needed to issue RFID tags and control their
existence constantly, which imposes extra cost.
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gogne Regional Council
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Fig. 1. overhead mounted RFID detector and vision based ETC

B. computer vision solution for ETC improvement

At a furtive glance, vision system is a strong choice to
overcome above problems and increase the precision of the
RFID-based ETCs. The combination of the RFID and vision
system has two advantages: 1- if RFID system fails vision
system will keep identifying vehicles and collecting their
road toll without interruption. 2- it is possible to track down
toll evader easier when ETC is equipped with vision as it
records images, which can be dispatched to toll agent for
further analysis and necessary actions.

the main contribution of the paper is to show how the
ETC architecture can be established using RFID and vision
module and state-of-the-art image processing algorithm. The
paper is organized as follows: in section II, the proposed
architecture will be presented and the RFID and vision
component will be details. the ALPR algorithm based on
YOLO object detection will be explained in section III. then,
some experimental result will be presented and compared
with other available solutions. the paper will end up to
conclusion and proposing future works.

II. PROPOSED ETC ARCHITECTURE USING MIXED
VISION AND RF COMPONENTS

The ETC system must be able to perform following
task as minimum: 1)Vehicle identification, 2)Toll calculation,
3)Bank transaction and messaging, 4)Issuing receipt and
record 5)vehicle registration. among them, Vehicle identifi-
cation plays vital role because without correct identification
non of the above can be completed. Fig. 2 shows the
proposed architecture for ETC system. The ETC system
runs the following sequences as shown in Fig. 2: 1- RFID
transponder initiates the input module and will remain the
main source of vehicle ID 2-ALPR process provides super-
visory system for RFID and will be replaced by RFID if it
fails. The RFID module has 4 main components ((Fig. 3)),
i.e., RFID tag, Antenna, transmitter and receiver, processing



Fig. 2. overall architecture of a complete ETC system

unit. The ALPR module has three components (Fig. 4),, i.e.,
ALPR camera, termination box including processing unit,
and database of interest. A CCD and an IR sensor with
compact laser projector are encapsulated inside a waterproof
and dust tight enclosure. The termination box provides easy
access to all hardware interfaces and power supply to deploy
camera and lighting units. Back office software system and
database of interest are firmly connected together and support
the central repository of all license plates along with tools
to support data analysis, queries and reporting. the ETC
platforms are capable to port data from both source in
parallel.

Fig. 3. example of RFID system used in ETC configuration

A. Vehicle classification and identification by ALPR

Almost all highly cited publications of object detection
adapted approaches based on Faster R- CNN [5], [2], [1].
Finding regions with target object are a corner stone in all
of the above algorithms. However, in YOLO [17], region
finding and classification are integrated into one single
stage.You Only Look Once (YOLO) algorithm is a state-of-
the-art algorithm which uses Convolutional Neural Network
to detect an object. Specific CNNs will be used for each
ALPR stage. Thus, we can tune the parameters separately

Fig. 4. ALPR based ETC system

in order to improve the performance for each task. The
models used are: YOLOv3, Fast-YOLO, YOLOv2 and CR-
NET [16], a CNN architecture trained using Fast- YOLO
algorithm for character segmentation and recognition[16], [7]
.

1) Vehicle and LP Detection: Two CNNs are trained in
this stage: one for vehicle detection in the input image and
other for LP detection in the detected vehicle.The Fast-
YOLO, YOLOv2 and YOLOV3 algorithms were applied
at this stage to be able to evaluate their performance in
more realistic dataset. For simpler scenarios, the Fast-YOLO
is able to detect the vehicles and their LPs correctly in
much shorter time. However, for more realistic scenarios
it might not be deep enough to perform these tasks with
high precision. In order to use both YOLOv2 and Fast-
YOLO, the number of filters in the last convolutional layer
needs to change to match the number of classes. YOLO
uses A anchor boxes to predict bounding boxes (A = 5)
each with four coordinates (x, y, w, h), confidence and C
class probabilities [14], so the number of filters is given
by Filters = (C + 5) × A In the original dataset, only
one class needs to be detected in both vehicle and LP
detection (first the car and then its LP), so the number of
filters in each task has been reduced to 30. On the other
hand, the more complex dataset includes images contains
cars and smaller vehicles such as motorcycles so the number
of filters in the vehicle detection task must be 35 because
the number of class is two (small and big vehicles). The
entire image and the vehicle coordinates are used as inputs
to train the vehicle detection CNN and the vehicle patch
(with a margin) and the coordinates of its LP are used
to learn the LP detection CNNs. By default, YOLO only
returns objects detected with a confidence of 0.25 or higher.
Different thresholds were checked and it turns out that the
threshold can be set any values in 0.2-0.5 intervals in order
to detect all vehicles having the lowest false positive rate. For
LP detection, threshold set equal to 0, as there might be cases
where the LP is detected with very low confidence (e.g., 0.1).
Then, only the detection with the largest confidence will be
kept where more than one LP is detected, since each vehicle
has only one LP.



2) Character Segmentation: Once the LP has been de-
tected, the proposed CNN by Montazzolli and Jung [16] (CR-
NET) for character segmentation and recognition is applied.
However, instead of performing both stages at the same time
through architecture with 35 classes (0-9, A-Z, where the
letter O is detected jointly with the digit 0), we chose to first
use a network to segment the characters and then another
network to recognize them [7]. The character segmentation
CNN is trained using the LP patch as detailed above and
the characters coordinates as inputs. If more than target
characters is detected the selection of the character will be
defined based on confidential score. If there are no overlaps
(Intersection over Union (IoU) > 0.25), the ones with the
lowest confidence levels will be discarded. Otherwise, the
union between the overlapping characters will be performed
to turn them into a single character.

3) Character Recognition: As mentioned in character
segmentation, two networks will be used for character recog-
nition. The characters and their labels are passed to network
as input data during the training. The first four layers of
the character segmentation CNN were removed and the
remaining layers kept for digit recognition, this is because
the test shows with and without them the results are similar.
Since many characters might not be perfectly segmented,
containing missing parts, and as each character is relatively
small, even one pixel difference between the ground truth
and the prediction might impair the character’s recognition.
By evaluation different padding values it turns out that 1-3
pixel length padding leads to high precision.

B. Vehicle identification using RFID tag

1) Principle of remote Radio Frequency (RF) sensing: In
this paper, only Ultra-High Frequency RFID (UHF RFDI)
will be discussed. More detail information in this regard can
be found in the relate literatures. A typical passive RFID
tag is made of a chip and an antenna. The energy needed
to drive such a circuit is obtained from the electromagnetic
wave transmitted by a RFID reader antenna. In a passive
UHF RFID system as seen in Fig. 5, the reader antenna
transmits a modulated signal with periods of un-modulated
carry wave, which is received by the antenna of the tag.
When the chip of the tag is turned on by the power received
from the reader antenna, it will send back its identification
by modulating the ID information into backscattered signal
[4].

One of the most important criteria of performance for
every UHF RFID is the read range. The maximum read range
of the tag can be calculated by eq.1 as detailed in [13].

r =
λ

4

√
PtGtGrτ

Pth
(1)

Where λ is the free space wavelength, Pt is the power
transmitted by the reader, Gt is the gain of the reader
antenna, Gr is the gain of the tag antenna, τ is the power
transmission coefficient between the tag antenna and the
chip, and Pth is the threshold of the chip power-up. When
the power is needed for chip and the power transmitted by

Fig. 5. Principle of passive back-scattered UHF RFID system

reader antenna is equal, Gr and τ determine the maximum
read range of the UHF RFID tag. These two parameters are
determined by the tag design [12]. The power transmission
coefficient τ is determined by the impedance matching of
the chip and the antenna, which can be calculated by eq.2:

τ =
4RcRa

|za + zc|2
, 0 < τ < 1 (2)

Where, Zc = Rc + jXc is the impedance of the tag
chip, Za = Ra + jXa is the impedance of the tag antenna.
When the impedances of the antenna and the chip are
conjugate matching, the transmission coefficient τ could
get the maximum value 1 and the most energy will be
transmitted from the antenna to the chip when the reader
calls the tag. In addition to above parameters, the band-
width and the radiation pattern are also important for UHF
RFID tag antenna design. Wide bandwidth antenna makes
the tag to be read in a required bandwidth and the broadside
radiation pattern makes the tag to be read in a wide direction
scale [11],[9]. For instance, Fig.6 shows an antenna radiation
patterns.

Fig. 6. This is a polar logarithmic plot of the same 10 elements radiation
plot that emphasizes the shape of the major beam while compressing very
low-level (> 30dB) side-lobes towards the center of the pattern.



III. EXPERIMENTAL RESULT

the evaluation of the the ALPR is conducted on two
datasets. The first dataset (dataset I) is adapted from Menotti
et al [6] and the second dataset (Dataset II) was made by
enriching the first dataset further with image selected an
added from CompCars dataset [18], ImageNet 1000-class
[15], ImageNet 2012 [10], PASCAL VOC 2007 and 2012
[8].The dataset is split as follows: 40% to training, 40% to
test and 20% for validation, using the same protocol division
proposed by Goncalves et al. [6] in the original dataset.
Overall results shows that YOLO algorithm is achieved
high speed and at the same time high precision in both
vehicle/LPs detection and LPs segmentation/recognition. 1)
Vehicle Detection: Fig. 7 shows vehicle detection result for
YOLOv3 on an image. The vehicles are classified into 4
main categories, i.e., cars, buses and trucks and motorcycle.

Different confidence thresholds were evaluated for the

Fig. 7. (left) vehicle detection and classification, (right) vehicle image

Fig. 8. (left) original images were taken under poor lighting condition and
(right) high detection rate (99%) were achieved with threshold 0.13

Fig. 9. the license plate of the vehicles were detected and selected by a
small green rectangular bonding box

vehicle detection. The confidence started with 0.7, however
some vehicles were not detected. The threshold was reduced
to 0.25 to detect all vehicles in the validation set. As per
our experiences the threshold values must be kept between
0.2-0.3. For the test set, the threshold value was set to 0.13
and achieved a precision above 99%. Two example images
were presented to the algorithm and the result shown in
Fig. 8 achieved. 2) LP Detection: the LPs were completely
segmented within the predicted bounding box for each ve-
hicle in the validation set. All LPs (100% precision) were
correctly detected in both validation and test sets as expected.
Example of this result is shown in Figure 9. 3) Character
Segmentation: the margin was set to 5%, 8% and 10% of
the bounding box size in the test and the training set of
the character segmentation CNN. The confidence threshold
was changed from 0.5 to 0.1 with step of 0.05, achieved
99.89%, regardless. Therefore, the threshold was set to the
lowest value (0.1) and 99.85% (6,712/6,722) precision was
achieved. 4) Character Recognition: The padding values of
2-pixels and 1-pixel for letter and digit yield the best result.
The result analyzed with and without temporal redundancy
[7], [3].

The algorithm achieved recognition rate of 86.56% with-
out temporal redundancy, all three letters and all four digits
in the LPs were recognized in 86.32% and 98.63% of the
time, respectively. The results are greatly improved with
temporal redundancy information. The final recognition rate
with redundancy is 93.53%, since the digits are correctly
recognized in all vehicles and the letters in 95.75% of them.
This result is given based on the number of frames correctly
recognized versus total frames were processed. The both
result were shown in Table I for comparison. Comparing two
results shows 9.19% improvement with temporal redundancy.
As expected, the commercial solution have achieved great
recognition rates too. The great improvement in the proposed
architecture for character recognition lies on separating the
letter and digits recognition and performing on two networks,
so each one is tuned specifically for its task.

TABLE I
RECOGNITION RATES OBTAINED BY THE PROPOSED ALPR SYSTEM,

PREVIOUS WORK AND COMMERCIAL SYSTEMS ON TWO DATASETS

In Table II, we report the accuracy rate achieved in each
ALPR stage separately, as well as the time required for the
Nvidia Quadro 2000M and Nvidia Titan XP to perform each
stage. The reported time is the average time spent processing
all inputs in each stage, assuming that the network weights



TABLE II
PRECISION OBTAINED AND THE COMPUTATIONAL TIME REQUIRED IN

EACH ALPR STAGE IN DATASET I

TABLE III
RESULTS OBTAINED AND THE COMPUTATIONAL TIME REQUIRED IN

EACH ALPR STAGE IN THE DATASET II.

are already loaded.The average processing time for each
frame was 21.31 seconds, an average of 47 FPS.

The algorithm was trained and evaluated using dataset II.
1) Vehicle Detection: the Fast-YOLO model was first

evaluated, but the recognition rates achieved were not sat-
isfactory. The confidence threshold was modified and the
recognition rate was evaluated, the best precision achieved
was 83.33%. This was expected since this dataset has greater
variability in vehicle types and positions and images were
recorded under more complex scenarios. The YOLOv2 and
YOLOv3 models were tested for vehicle detection. 2) LP
Detection: A small margin from the surrounding region
(10%) of the LPs was selected to keep LPs completely within
the predicted vehicle’s bounding box. The precision attained
by this method is 88.33%. the character segmentation CNN
can be used to perform a post-processing in cases where
more than one LP is detected. Since, the actual LP can
be detected with very low confidence levels (i.e., < 0.1),
many false negatives would have to be analyzed, increasing
the overall computational cost of the system. 3) Character
Segmentation: The precision obtained was 97.59% when
disregarding the LPs not detected in the previous stage and
95.97% when considering the whole test set. 4) Character
Recognition: The best results were obtained with 1 pixel of
padding and data augmentation, for both letters and digits.
The proposed system achieved a recognition rate of 64.89%
when processing frames individually and 78.33% with tem-
poral redundancy. Despite the great results obtained in the
previous dataset, both commercial systems did not achieve
satisfactory results in this dataset. OpenALPR performed
better than Sighthound, attaining a recognition rate of 70%
when exploring temporal redundancy information. Table I
shows all results obtained for the dataset II.

The accuracy rate achieved in each ALPR stage is reported
separately in Table III, as well as the time required for the

proposed system to perform each stage. Despite the fact
that a deeper CNN model is used in vehicle detection (i.e.,
YOLOv2), the ETC system is still able to process images at
35 FPS (against 47 FPS using Fast-YOLO). This is sufficient
for real-time usage, as commercial cameras generally record
videos at 30 FPS.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

An architecture based on RFID and vision proposed to im-
prove the accuracy of traditional RFID ETCs. we presented
ALPR algorithm based on recently proposed YOLOv3 algo-
rithm, which uses neural network to provide real-time object
detection. Evaluation of the algorithm in an experiment
established for more complex scenarios demonstrates very
high precision result for vehicle detection, plate extraction
and segmentation as well and character recognition. Using
appropriate off-the-shelf GPUs can accelerate the algorithm
up to 47FPS while algorithm is still delivering high precision
result, 78% of accuracy in the worse case scenarios. This
result proofs that ALPR based on YOLO algorithm can be
considered as strong alternative to supervise RFID-based
ETCs. Besides, the output of the ALPR algorithm can be
used to validate ID read by RFID antenna and decrease the
overall error of the system.

B. Future Works

The RFID and ALPR section were built and tested sep-
arately. The next step is to assemble a complete free-flow
ETC system using RFID components and ALPR camera
module and test the system under real working condition in
a highway. current datasets are not very well developed and
does not contain more complex scenarios. It seems working
on the datasets and recoding more images will be another
task to accomplish in the near future.

V. ACKNOWLEDGMENTS

REFERENCES

[1] Openalpr cloud api. http://www.openalpr.com/cloud-api.html.
[2] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A

unified multi-scale deep convolutional neural network for fast object
detection. In European Conference on Computer Vision, pages 354–
370. Springer, 2016.

[3] Michael Donoser, Clemens Arth, and Horst Bischof. Detecting,
tracking and recognizing license plates. In Asian Conference on
Computer Vision, pages 447–456. Springer, 2007.

[4] Klaus Finkenzeller. RFID handbook: fundamentals and applications in
contactless smart cards, radio frequency identification and near-field
communication. John Wiley & Sons, 2010.

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.
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Perspective camera models with windshields and polynomial
descriptions for camera calibration

Di Meng and Tomas Pajdla

Abstract— Camera systems used in cars are often used to
detect pedestrians, vehicles and estimate the distance of other
road users from the car. The correction of information collected
by the camera is essential. The cameras are typically mounted
in the car behind the windshield. In this contribution, the
effects of refraction introduced by the windshield are analyzed.
Three types of windshield models are proposed based on the
geometry of optics and integrated with generalized pinhole
camera. The projection equations are derived and polynomial
descriptions are provided for calibration of the camera with
windshields. The three shapes of windshield models are exper-
imentally verified and the projection relations are proved to be
established. The functions of projections of planar windshield
camera models are provided and simulated.

I. INTRODUCTION

Camera in the system is used to achieve functions such
as pedestrian detection, guideboard detection or obstacle
avoidance.[1] For instance, when an event of accident has to
be avoided, the distance to the accident has to be determined
by a camera. In order to achieve this, the relation between
object in space and its matching pixels in image has to be
estimated.

Camera model provides the projection equation which
maps the points in space and the pixels in image. The
initial parameters of the cameras can be obtained from
camera production and then the precise parameters are from
calibration process. Different cameras have different models
for calibration. Unfortunately, the camera for automotive
application is placed inside the car behind the windshield.
The windshield has the effect of distorting the light rays
from its original path. The disparity goes to the camera image
which would influence the functionality of the camera. As
we know, little disparity in pixel wise would cause large
errors meters away. Compared with eliminating the effect of
windshield in the optimization process, it is more necessary
to develop a camera model with windshield which takes the
effects of windshield into account.

The survey[2] shows that as the angle of incidence in-
creased, a number of optical effects occur that are unfa-
vorable to vision. Some of these effects are caused by the
increased thickness of the transparent material through which
the light must pass.
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Assistance systems use in many cases stereo cameras to
observe the environment in front of the car.[3] The influence
of a car windshield on depth calculation with a stereo camera
system is analyzed.[4] The calibration is performed for the
identical stereo camera system with and without a windshield
in between. The base lengths are derived from the relative
orientation in both cased and are compared. Distance values
are calculated and analyzed. It shows that the difference of
the base length values in the two cases is highly significant.

Camera calibration is also important for vehicle cameras
in order to enable reliable results of object detection in
image.[5] Automatic calibration while the car is driven
is often performed by extracting road markings from the
image. [6]use the extraction method to calibrate an embed-
ded camera. Road lanes are detected and road boundaries
derived. Therefore, a flat road is assumed for a plane-to-plane
mapping with projection error minimization.[7] To link the
camera orientation to a car coordinate system, the position of
the car relative to the calibration pattern has to be measured
with high precision.

Generic theory of camera models and projection formation
is presented in [8]. It poses the problem in terms of polyno-
mial equations constraining the image projection and camera
parameters. In order to use this approach, it is important
to develop practical polynomial models of image formation.
A parameter free radial camera distortion calibration is
developed in [9]. It might be used to correct additional local
distortions but we believe that it needs to be combined with
a physically motivated and exact refraction projection model
to be practical.

Multiple flat refraction projection model is developed in
[10]. It deals with multiple parallel glasses and addresses a
calibration rather than projection computation. The resulting
model is close to but still did not bring to a polynomial
system even for a single parallel glass. More advanced
models, e.g. a non-parallel surfaces glass model, are not
considered. In the thesis of David Franklin Neralla,[11] he
presented a flat windshield model for a single parallel glass.
However, the model is only an approximation leading to a
cubic equation solving for a projection. We will show an
exact model, leading to a polynomial of degree four, can be
developed in this thesis.

An iterative procedure for projection computation for
a single parallel glass has been presented in [12]. The
procedure is used in a larger optimization of complete
camera calibration. Our projection model can replace their
procedure by a formula with closed form or by a eigenvalue
computation, which is better understood.



The contribution of this work is introducing different
shapes of windshield models along with generalized pinhole
camera, providing polynomial constraints for camera calibra-
tion in automotive application and formulating the projection
functions.

II. METHODOLOGY

Three shapes of windshields are modeled which are planar
glass, non-parallel surfaces glass and spherical glass. Camera
parameters are not taken into account when describing the
physical nature of optical path of a light ray from object
in space to a camera through a windshield. The windshield
models are described by parameters such as the vertical
distance from the camera origin, the thickness of the glass
and the refractive index of the inner medium. For the planar
glass model, we obtained exact formula of solution for the
forward projection equations. For non-parallel surfaces and
spherical glass models, we provide polynomial constraints
for computing the solutions instead of formulas. Which
means that given the location of the point in space, the
corresponding projection in image can be obtained by further
knowing the camera parameters. The parameters of the
introduced windshield model can be estimated from a sample
set of windshields. With the windshield parameters fixed,
there are only parameters of the perspective camera to be
adjusted.

A. Planar windshield model

Fig. 1: Model of the planar glass and projection geometry

The planar windshield model is a transparent glass com-
posed of two flat surfaces(π1andπ2) parallel to each other.
We assume the inner medium is homogeneous so that its
refractive index is a constant value. The model is proposed
mainly for automotive application which the practical envi-
ronment is in the air. Thus, we set the refractive index of the
outer medium to one which is the refractive index of the air.
Figure 1 shows the sketch of the planar glass. This model is
described by four parameters:
• The vertical distance from camera origin to surface π1:
d (0 < d ∈ R)

• The thickness of the glass: δ (0 < δ ∈ R)
• The normal of the glass:

−→
N (‖

−→
N ‖ = 1)

• The refractive index of the inner medium: n (0 < n ∈
R)

Point C is the camera origin. Point X is the location of
point in space with γ distance far from the plane π2. From
the viewpoint of optics, the light ray starts from object X
going through the glass with two times refraction and then
projects on the camera. It is not doable to derive the forward
light propagation directly. We firstly put effort to express
the Point X by given pixel location. Then formulating the
forward projection equations by solving the back projection
equations. All the expressions are with respect to the world
frame.

1) Derivation of Back projection with planar glass: As
shown in the figure 1, −→u is a unit vector pointing at the
pixel location in the normalized image plane. It goes from
the camera origin and intersects at the point D with plane π1,
the left side surface of the model. Th perpendicular distance
between camera origin C and the plane π1 is d. We assume
the angle between incident vector−→u and the normal vector of
the glass

−→
N is α. The path length from C to D is d

cosα . Since
we know the unit vector(direction) and how far it propagates,
the intersection D can be expressed as

−→
D =

−→
C +

d

cosα
−→u (1)

The projection ray refracts when passing through the plane
π1 from the air into glass medium. The path doesn’t go along
with the direction as from the camera origin. According to
the Snell’s law, the scalar form of the refraction is

sinα = n sinβ (2)

The vector form of Snell’s law is

−→v refract =
1

n
−→u + (cosβ − 1

n
cosα)

−→
N (3)

The restriction of using the vector form of Snell’s law
is that the incident vector −→u and the normal vector

−→
N

should both be unit vectors. To be noticed that, the obtained
refracted vector is also a unit vector.

−→v = m−→u +
−→
N

(√
1−m2 +m2(−→u ·

−→
N )

2
−m−→u ·

−→
N

)
(4)

The refracted vector which goes into the glass medium is
expressed as in equation 4, where m = 1

n for simplicity. We
assume that β is the angle between the refracted vector −→v
and the normal of the glass. The two surfaces of the glass
are flat, the planes π1 and π2 are parallel. The refracted
ray intersects at location E with the second plane π2. Since
the thickness of the glass slab is δ, the path distance from
intersection D to E is δ

cos β . Therefore, the vector from D to
E is represented as

−−→
DE =

δ

cosβ
−→v (5)



Moreover, the intersection E can be derived
−→
E =

−→
D +

−−→
DE =

−→
C +

d

cosα
−→u +

δ

cosβ
−→v (6)

After going through the second plane π2, the projection
ray is again refracted. It is proved that the outgoing ray from
intersection E is aiming at the same direction as the incident
ray of −→u . Thus for the object which is located at X and has
the distance γ from the plane π2, the representation is

−→
X =

−→
E + γ· −→u (7)

Substituting the above equations to 7, we get
−→
X =

−→
C +

d

cosα
−→u +

δ

cosβ
−→v + γ· −→u (8)

which is the relationship between 3D point location and
the 2D image pixel. In the equation, the angles α and β are
not measured and not the parameters of the model. They are
further derived.

cosα =
−→u ·
−→
N

‖−→u ‖‖
−→
N ‖

= −→u ·
−→
N (9)

The denominator in the equation 9 can be removed for
the magnitude of the unit vector is equal to one. cosβ can
also be expressed as −→v ·

−→
N . However, to achieve a simpler

representation of cosβ, we derive it from cosα by the
relationship of Snell’ law(equation 2).

cosβ =

√
1−m2 +m2(−→n ·

−→
N )2 (10)

The equation 8 is extended
−→
X =

−→
C +

d

cosα
−→u +

δ

cosβ
−→v + γ−→u

=
−→
C +

d−→u
−→u ·
−→
N

+
δ√

1−m2 +m2(−→u ·
−→
N )

2
·
(
m−→u

+
−→
N (

√
1−m2 +m2(−→u ·

−→
N )

2
−m−→u ·

−→
N )
)
+ γ−→u

(11)

Moreover, the denominator is eliminated. The complete
equation which links the 3D point and its projection with a
planar glass is

−→u ·
−→
N

√
1−m2 +m2(−→u ·

−→
N )

2
(
−→
X −

−→
C ) =

d−→u
√

1−m2 +m2(−→u ·
−→
N )

2
+ δm(−→u ·

−→
N )−→u+

δ(−→u ·
−→
N )
−→
N

√
1−m2 +m2(−→u ·

−→
N )

2
−

δm(−→u ·
−→
N )
−→
N (−→u ·

−→
N )+

γ(−→u ·
−→
N )−→u

√
1−m2 +m2(−→u ·

−→
N )

2

(12)

2) Formulating the forward projection of planar glass:
Forward projection of the light ray through a planar glass is
necessary and of significance for camera calibration applied
for windshield. Given the 3D point in space, the calibration
of the camera can be done by acquiring the exact pixel
position in 2D image. In order to obtain the pixel coordinate
given the object location in space, the forward projection is
investigated by solving the equation of back projection 12,
since it provides the relationship between 3d point and its
projection.

The aim of this section is to derive −→u which represents
the pixel location in world coordinate from the equation 12.
We observe that each term in equation 12 contains −→u and it
is unachievable to extract it in the vector form. Therefore, to
investigate the solvable possibility, the vectors in the equation
are extended by elements.

We initiate that

−→
C =

0
0
0

 ,
−→
N =

0
0
1

 ,−→u =

u1u2
u3

 ,
−→
X =

x1x2
x3


Here, the camera origin is set as the origin of the world

frame and specialize the normal vector of the planar glass to
[0, 0, 1]′ which is a unit vector along the z axis. −→u and

−→
X

are generic. And let

w =

√
1−m2 +m2(−→u ·

−→
N )

2
(13)

In order to make sure the equations are solvable, new
variable w is involved to make the equation polynomial.

1−m2 +m2(−→u ·
−→
N )

2
− w2 = 0 (14)

By extending the vectors in equation 12, a polynomial
equation set is obtained

−δmu1u3 − γu1u3w − du1w + u3wx1 = 0 (15)

−δmu2u3 − γu2u3w − du2w + u3wx2 = 0 (16)

−γu23w − du3w − δu3w + u3wx3 = 0 (17)

−m2u23 +m2 + w2 − 1 = 0 (18)

By solving this equation set, we saw that there were
several solutions and only one of them is what we are looking
for. There are some solutions containing u1 = 0, u2 = 0
since the equations 15 16 17 are without constant terms. In
equation 17, each term contains u3 and w. We then divide
the equation 17 by u3 and w. w is nonzero value for it is
originally in the denominator. The equation 17 derives as:

−γu3 − d− δ + x3 = 0 (19)



Therefore, the incorrect solutions which contains u3 = 0 are
removed by introducing the equation 19. The process can be
proceeded to this step because the specialization of vector

−→
N .

The equation 17 would be more complicated and not all the
terms contain u3 and w if

−→
N was assigned randomly, which

could not be simplified. Express u3 from equation 19 and
substitute it to equations 15 16 18, we obtain the equation
set

(
(δu1 − u1u3)γ − x1d− x1δ + x1x3

)
w+

δmu1d+ δ2mu1 − δmu1x3 = 0
(20)

(
(δu2 − u2u3)γ − x2d− x2δ + x2x3

)
w+

δmu2d+ δ2mu2 − δmu2x3 = 0
(21)

γ2w2 + (m2 − 1)γ2 −m2(d+ δ − x3)2 = 0 (22)

By solving the above three polynomial equations, two
solution sets are obtained whose w are with different signs.
We know that w = cosβ where β is the angle between the
projection ray and the normal of the plane and is between
0π degrees, so that the constraint w > 0 established. A
unique solution can be computed then. The followings are
the components of −→u which is the formula of the solution.

u1 =
A1

B1
(23)

where

A1 =− (−dx1 − δx1 + x1x3)(d
2m2 + 2dδm2 − 2dm2x3

+ δ2m2 − 2δm2x3 − γ2m2 +m2x23 + γ2)
1
2

(24)

B1 =γ
(
(δ − x3)(d2m2 + 2dδm2 − 2dm2x3 + δ2m2 − 2δm2x3

− γ2m2 +m2x23 + γ2 + dδm+ δ2m− δmx3)
1
2

)
(25)

u2 =
A2

B2
(26)

where

A2 =− (−dx2 − δx2 + x2x3)(d
2m2 + 2dδm2 − 2dm2x3

+ δ2m2 − 2δm2x3 − γ2m2 +m2x23 + γ2)
1
2

(27)

B2 =γ
(
(δ − x3)(d2m2 + 2dδm2 − 2dm2x3 + δ2m2 − 2δm2x3

− γ2m2 +m2x23 + γ2 + dδm+ δ2m− δmx3)
1
2

)
(28)

u3 =
−d− δ + x3

γ
(29)

The vector pointing to the pixel location from camera
origin is formed as −→u = [u1, u2, u3]

′;. It can be further
normalized by dividing the third element u3 to get the pixel
location which is the first two elements.

Moreover, we investigated a way to eliminate the param-
eters γ and d, for the distance between object and the glass
cannot be measured and provided in practical application.
Looking back to the polynomial equation set 15 to 17,
each equation contains parameters γ and d. u1 u2 u3 are
the unknowns we are aiming to solve. Hence, the skew-
symmetric cross-product matrix of −→u is applied here to
eliminate γ and d.

[u]× =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


Multiplying the polynomial equations 15 16 17 by [u]×,

the parameters γ and d are eliminated and we got a new
polynomial equation set. 0 −u3 u2
u3 0 −u1
−u2 u1 0

−δmu1u3 − γu1u3w − du1w + u3wx1
−δmu2u3 − γu2u3w − du2w + u3wx2
−γu23w − du3w − δu3w + u3wx3



=

 δmu2u3 − δu2w + u2wx3 − u3wx2
−δmu1u3 + δu1w − u1wx3 + u3wx1

u1x2 − u2x1

 (30)

The newly obtained polynomial set contains three equa-
tions but two of them are linearly independent. Since we
have three unknowns, one more equation is needed to solve
u1 u2 and u3. As we know, −→u is a unit vector. By adding one
more equation that the norm of −→u is equal to one, we got a
new polynomial equation set to describe our glass model.

δmu2u3 − δu2w + u2wx3 − u3wx2 = 0 (31)

−δmu1u3 + δu1w − u1wx3 + u3wx1 = 0 (32)

u1x2 − u2x1 = 0 (33)

u21 + u22 + u23 − 1 = 0 (34)

−m2u23 +m2 + w2 − 1 = 0 (35)

After setting up the equations, we solve them using the
Groebner Basis algorithm.[13] The monomials of unknowns
are ordered as u3 > u2 > u1 > w, which means after
Gaussian elimination w is solved firstly and been substituted
to the equation of u1 to further solve u1 and so forth for the
u2, u3.

P (a1)w
8 + P (a2)w

6 + P (a3)w
4 + P (a4)w

2 + P (a5) = 0
(36)



P (b1)w
7 + P (b2)w

5 + P (b3)w
3 + P (b4)w + P (b5)u1 = 0

(37)
P (c1)w

7 + P (c2)w
5 + P (c3)w

3 + P (c4)w + P (c5)u2 = 0
(38)

P (d1)w
7 + P (d2)w

5 + P (d3)w
3 + P (d4)w+ P (d5)u3 = 0

(39)
The above equation set illustrates the form of Groebner

Basis. P (xi) represents polynomials including parameters δ
and m. As we noticed, the equation 36 contains only one
variable w. The highest degree of w is 8 but the w only
has even degrees. Hence the degree of the equation is four,
there are four solutions for w. From the computation, two
of the solutions for w can be removed for they are complex
numbers. The solutions of w which are real numbers are kept
and then substituted to the equations 37 to 39 to derive u1 u2
and u3. We got two sets of solutions of −→u , one is of positive
elements and the other one is of negative elements. They
are the vectors lying on one straight but point to opposite
directions. Our vector−→u is always point to the camera origin,
so that the positive one is the unique solution we are looking
for.

B. Non-parallel surfaces windshield model

In reality, it is possible for the windshield not to be as
planar as ideal. The surface from each side of the glass may
be uneven or vary in angles. For that case, the projection
rays do not exactly follow the path as we modeled in the
last section. Thus, a glass model with non-parallel surfaces
is introduced. Similar with the planar glass model, it consists
of two flat surfaces. The two surfaces are with a certain angle.
The inner medium is homogeneous.

Fig. 2: Model of the non-parallel surfaces glass and projec-
tion geometry

This model is described by five parameters:

• The normal of the first surface:
−→
N1 (‖

−→
N1‖ = 1)

• The normal of the second surface:
−→
N2 (‖

−→
N2‖ = 1)

• The vertical distance from camera origin to the first
surface: d1 (0 < d1 ∈ R)

• The vertical distance from camera origin to the second
surface: d2 (0 < d2 ∈ R)

• The refractive index of inner medium: n (0 < n ∈ R)
1) Derivation of Back projection with non-parallel sur-

faces glass: We use the same method to derive the back
projection equation as we did for planar glass. The difference
is that the length of propagation path inside the glass is not
given, we introduce a parameter τ representing the length of
vector

−−→
DE.

−→
E can be expressed with τ . The equation of the

tilted plane can be formed by knowing a in-plane point E
and the normal

−→
N2 of the plane. The second plane π2 is

π2 :
−→
N2

T (
−→
D + τ−→v )− d2 = 0 (40)

The unknown parameter τ can be computed from equation
(40) and point E is derived.

τ =
d2 −

−→
N2

T ·
−→
D

−→
N2

T · −→v
(41)

−→
E =

−→
D + τ−→v (42)

Then the projection ray is refracted the second time after
intersection E. The outgoing vector from second surface is

−→z = n−→v +
−→
N2

(√
1− n2 + n2(−→v ·

−→
N2)2−n−→v ·

−→
N2

)
(43)

Combining the above equations, a long single equation is
obtained to represent

−→
X . After eliminating its denominator,

we obtain

(−→u ·
−→
N1)(

−→
N2 · −→v )(

−→
X −

−→
C ) = d1(

−→
N2 · −→v ) · −→u

+
(
d2
−→u ·
−→
N1 −

−→
N2

(
(−→u ·

−→
N1)
−→
C + d1

−→u
))
· −→v

+γm(−→u ·
−→
N1)(

−→
N2 · −→v ) · −→v + γ(−→u ·

−→
N1)(

−→
N2 · −→v )

−→
N2

(√
1− n2 + n2(−→v ·

−→
N2)2 − n−→v ·

−→
N2

)
(44)

where

−→v = m−→u +
−→
N1

(√
1−m2 +m2(−→u ·

−→
N1)2 −m−→u ·

−→
N1

)
(45)

2) Formulating the forward projection of non-parallel
surfaces glass: The relationship of the −→u and

−→
X through

non-parallel surfaces glass model is provided by the equation
44. The goal of this section is to investigate solutions for
deriving −→u from back projection equation.

The vectors in equation 44 are extended by elements,



−→
C =

0
0
0

 ,
−→
N1 =

0
0
1

 ,
−→
N2 =

n1n2
n3


−→u =

u1u2
u3

 ,
−→
X =

x1x2
x3


With the same principle of extending strategy as we did
in planar glass modeling, the camera origin is set to world
origin. The normal of the plane which first intersects with
the back projected ray is specialized to [0, 0, 1]′. The rest
vectors are generic. By adding new variables, the format of
square root is removed.

Here, −→u and two normal vectors
−→
N1
−→
N2 are unit vectors.

Let
m2u23 −m2 + 1− a2 = 0 (46)

1− n2 + n2(mn1u1 +mn2u2 + an3)
2 − b2 = 0 (47)

to make equations polynomial by adding more variables.
Then a equation set is derived from (44)-(47),

d1(mn1u1 +mn2u2 + an3)u1 + (−d1n1u1 − d1n2u2
− d1n3u3 + d2u3)mu1 + gm2u3(mn1u1 +mn2u2 + an3)u1

+ gu3(mn1u1 +mn2u2 + an3)(−mnn1u1 −mnn2u2−
ann3 + b)n1 − u3(mn1u1 +mn2u2 + an3)x1 = 0

(48)

d1(mn1u1 +mn2u2 + an3)u2 + (−d1n1u1 − d1n2u2
− d1n3u3 + d2u3)mu2 + gm2u3(mn1u1 +mn2u2 + an3)u2

+ gu3(mn1u1 +mn2u2 + an3)(−mnn1u1 −mnn2u2
− ann3 + b)n2 − u3(mn1u1 +mn2u2 + an3)x2 = 0

(49)

d1(mn1u1 +mn2u2 + an3)u3 + (−d1n1u1 − d1n2u2
− d1n3u3 + d2u3)a+ gmu3(mn1u1 +mn2u2 + an3)a

+ gu3(mn1u1 +mn2u2 + an3)(−mnn1u1 −mnn2u2
− ann3 + b)n3 − u3(mn1u1 +mn2u2 + an3)x3 = 0

(50)

1− n2 + n2(mn1u1 +mn2u2 + an3)
2 − b2 = 0 (51)

m2u23 −m2 + 1− a2 = 0 (52)

mn− 1 = 0 (53)

t1u3 − 1 = 0 (54)

The useless solutions whose u3 is equal to zero are removed
because of the adding equation 54. Above is the polynomial

equation set developed to solve u1, u2 and u3 with degrees
greater than four. There is usually no formula for the solution
of a polynomial equation whose degree is greater than four.
For our case, There are eight solutions from equation 48 to
54 and only one is selected and correct. Therefore, for the
forward projection with non-parallel glass model, polynomial
equations and the solver are provided.

C. Spherical-shape windshield model

Fig. 3: Model of the spherical glass and projection geometry

In the previous sections, we saw the glass models which
surfaces are flat shaped. As we know, the windshield for
automotive application is the front window that consists of
two curved sheets of glass. Apart from the glass models with
flat surfaces, it is necessary to model a curved shaped glass
to approximate the real windshield as much as possible.

The model is described by three parameters:
• The thickness of the glass: δ (0 < δ ∈ R)
• The refraction index of the material: n (0 < n ∈ R)
• The radius of the sphere: r (0 < r ∈ R)
1) Derivation of Back projection with spherical glass:

w2−→X = γ

(
nw2

(
m−→u +R(d−→u +

−→
C )
(
w −m−→u · (R(d−→u

+
−→
C ))

))
+ S

(
wd−→u + w

−→
C + δ

(
m−→u +R(d−→u +

−→
C )
(
w

−m−→u · (R(d−→u +
−→
C ))

)))(
w2 −

(
n
(
m−→u +R(d−→u +

−→
C )

(w −m−→u · (R(d−→u +
−→
C )))

))(
S
(
wd−→u + w

−→
C + δ

(
m−→u

+R(d−→u +
−→
C )(w −m−→u · (R(d−→u +

−→
C )))

)))))
+ w2d−→u

+ w2−→C + δw
(
m−→u +R(d−→u +

−→
C )(w −m−→u · (R(d−→u +

−→
C )))

)
(55)

where

w =

√
1−m2 +m2(−→u · (R(d−→u +

−→
C )))2 (56)



2) Formulating the forward projection of spherical glass:
The vectors are extended to a generic form

−→
C =

c1c2
c3

 , −→u =

u1u2
u3

 ,
−→
X =

x1x2
x3


A polynomial equation set can be obtained by substituting

the above vectors into the equation (55).
The polynomial equations are of high degree. The solu-

tions can be investigated by substituting numerical values.
However, for the spherical glass model, we just provide the
polynomial equation set. There is no formula solution for
high degree polynomial equation in this case.

D. Perspective camera model behind windshield

The process of camera calibration with a windshield also
requires the properties of optical system. In other words,
given a point in space, our model has to provide the pixel lo-
cation of the corresponding point in the image of the camera.
To approach this, the camera model has to be integrated with
the glass model. Here, we choose the generalized pinhole
camera. With the parameters of the camera, we can further
know the location in image where emergent ray projects. The
perspective camera model is generally expressed as

ũ = K[R t]X̃ (57)

In our case, t is considered to be zero since there is no
translation. R is the rotation matrix with respect to the
world frame. K is the intrinsic matrix transferring the point
between 3D camera frame and 2D image frame. In the
previous sections of this chapter, R and K are assumed to be
3× 3 identity matrices when deriving the path of projection
through glass model. To approach a generic pinhole camera
model with windshield, R and K are considered generic.

When deriving the forward projection equations of the
planar glass model and non-parallel surfaces glass model,
we specialized the normal of the glass as

−→
N = [0, 0, 1]′

which implies that the normal of the glass is along with the
z axis of the coordinate. The glass model is applied for the
situation when glass is perpendicular to the z axis.

However, we are aiming to achieve a camera model with
glass that is generic for any configuration of the glass. In
other words, the camera model is always applicable even the
glass is of any angle with the reference plane. Therefore, we
define a coordinate system called Model System which its
z axis is of same direction as the normal of the glass. This
newly introduced system is dedicated for the glass models
which the surfaces are flat shaped since their normal vectors
are specialized. For spherical glass model, this system is not
necessary. Moreover, R′ is the rotation matrix of the Model

system with respect to the world coordinate. The contribution
of this section is figuring out the transformation between
world frame, Model frame, camera frame and the image
frame and deriving the relationship of pixel location in image
and the point in space through glass with generalized pinhole
camera.

There are four coordinate systems to be considered:
• The world frame W
• The camera frame C: Rotation matrix R w.r.t W
• The Model frame M: Rotation matrix R′ w.r.t W
• The image frame I Intrinsic matrix K w.r.t C
There is a transformation between camera frame and

Model frame. We say S is a 3 × 3 matrix which rotates
the axes of camera coordinate system C onto axes of Model
system M. The z axis of Model system is known which is
the normal vector of the plane. S can be computed by two
vectors of z axes provided by two coordinate systems, R and
R′. For camera coordinate, z axis is the last column of the
inverse of the rotation matrix R. Firstly, let’s see the format
of two rotation matrices of two frames.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

R′ =
r′11 r′12 r′13
r′21 r′22 r′23
r′31 r′32 r′33


The following is the equation that links the camera coor-

dinate system and Model system.

R′−1 = S·R−1 (58)

Transformation matrix S can be computed with two vec-
tors extracted from matrices R and R′. As we know, the
only known vector to represent the configuration of the
rotation matrix R′ is its third column which is

−→
N = [0, 0, 1]′.

Therefore, we extract the corresponding vector in R which is
also the third column of the matrix, [r13, r23, r33]′ to compute
S. Let

−→a =
−→
N = [0, 0, 0]′,

−→
b = [r13, r23, r33]

′ (59)

After a and b are normalized into unit vectors, let
−→r = −→a ×

−→
b (60)

Then the transformation matrix S can be computed from
the existing formula, Then the rotation matrix S can be
obtained

S = I + [r]× + [r]2×·
1−−→a ·

−→
b

‖r‖2
(61)

Knowing the transformation between different frames and
the camera parameters, we can describe the projection of the
camera model with windshield which is to obtain the pixel



location in image given a point in space on the other side
of the windshield. The unique corresponding projection is
provided.

Given a 3D point
−→
X in world frame, it is firstly transferred

to the frame centered at the camera origin.
−→
X ′ =

−→
X −

−→
C (62)

Then it is transferred from world frame to the Model
frame, −→

X ′′ = R′·
−→
X ′ = R·S−1·

−→
X ′ (63)

Further, the pixel location in Model coordinate
−→
u′′ can

be obtained by inputting the
−→
X ′′ into the function of glass

model, −→
u′′ = M (

−→
X ′′) (64)

where M represents the function of the glass model. In
general,

ũ = M (d1, d2,
−→
N1,
−→
N2, n, X̃) (65)

The obtained pixel location is transferred into camera
frame from Model frame by using camera extrinsic parame-
ters, −→

u′ = R·R′−1·
−→
u′′ = R·S·R−1·

−→
u′′ (66)

By applying the intrinsic parameters of the perspective
camera, the projection of 3D point in image is

−→u = K−1·
−→
u′ (67)

In summary, the projection equation through camera model
with windshield is

−→u = K−1·
(
R·R′−1

(
M
(
R′· (
−→
X −

−→
C )
)))

(68)

So that the equation 68 links the point in space and its
projection through a glass. Given the parameters of the glass
model and the parameters of the generalized pinhole camera,
the corresponding pixel location can be obtained knowing the
location of the object. To be noticed that, the glass model
parameters solely explain the refraction introduced by the
windshield. With the windshield parameters fixed, our new
model has only the parameters of the perspective camera to
be adjusted.

III. EXPERIMENT AND EVALUATION

The projection equations for each case are experimentally
verified by substituting numerical values in Maple software.
The validation of three glass models is performed by check-
ing the consistency of the input and output through the
glass models. Given a input pixel location, the output point
location in space can be obtained through the back projection

functions. Again input the result to the forward projection,
the output is as the same as the input pixel location. More-
over, in particular, the generalized pinhole camera model
with planar glass is implemented in Matlab software and
simulated. The projection rays are visualized passing through
the planar glass. The back projection and forward projection
equations integrated with camera parameters are proved to
be valid. The camera model with glass is able to further be
experimented through real windshields.

Then, a virtual image of size 100× 100 is created. Every
pixel location is imported into the back projection function.
We can see the performance in the figure 4.

(a) Top view

(b) Side view

Fig. 4: Simulation of perspective camera model with planar
glass

As shown in figure 4, two blue planes represent the
planar glass. The projection rays are in green color. All
the projection rays pass through the glass with two times
refraction and intersect at one single point which is the
camera origin.

We then extended the refracted rays(upper side of the
glass) to the reverse direction(camera side of the glass). The
incident rays are parallel to the emergent rays after refraction
introduced by the planar glass. However, we noticed that the
reverse extensions of the refracted rays are not intersecting
at one single point but a circle area(Figure 5). This phe-
nomenon further remarks that the significance of modeling
the geometry of how light rays project through a glass with



a certain thickness.

Fig. 5: The intersections of the reverse extension of the
refracted rays

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Finding the precise mapping between points in space
and pixels in image is essential for automotive application.
However, the windshield has effects on the projection of
the object outside the car. We analyzed that the refraction
introduced by the windshield matters significantly on the path
of light ray and camera image. Hence we narrow down our
focus on the refraction effect of windshield and proposed
three types of windshield models.

The newly introduced windshield models are planar glass
model, non-parallel surfaces glass model and spherical glass
model. The relation of correspondences between three di-
mension and two dimension is found and projection equa-
tions of three models are provided. For planar glass model,
the polynomial descriptions are developed as well as the
formula for projection equation. Moreover, the parameters
of the planar windshield model are reduced by the distance
from object to glass and the distance from camera to glass.
For non-parallel glass model, the polynomial equations are
derived and the solutions can be calculated. For spherical
glass model, only polynomial description is provided. What’s
more, a whole process of projection of generalized pinhole
camera is developed and illustrated integrated with wind-
shield models.

The proposed three types of windshield models are ex-
perimentally verified with numerical values. The functions
of back projection and forward projection of planar glass
model is implemented. And a simulation is performed with
planar glass model.

B. Future Works

Three types of windshield models are proposed in this
paper. As we have seen, the planar windshield model is rel-
atively fully developed. The other two models, non-parallel

surfaces glass model and spherical glass model are not able to
provide functions to be directly used for camera calibration.
For spherical glass model, the solution should be derived
from the polynomial equations. For non-parallel surfaces
glass model, a solver needs to be developed for solving the
polynomial equations whose degrees are greater than four.
Both of them have one more issue to consider which is
eliminating the parameters γ and d, the distance from object
and camera to the windshield respectively.

Further, the windshield models will be tested with real
set up and data. By experimenting with cameras and wind-
shields, the parameters can be estimated. Bundle adjustment
could be involved to optimize in the process of calibration.
At the same time, we will find out which model fits the best
for this application. Our aim is to provide windshield camera
models and highly parameterize them in car industry before
selling out. It works to perform a better and more precise
camera calibration for automotive application.
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Abstract— In this work, we applied machine learning tech-
niques to common problems in industrial visual inspection. We
first addressed a classification problem by developing a pipeline.
This pipeline can handle the data on one hand and classify this
data on the other hand. For choosing the appropriate classifier,
we first started by experimenting with HOG features with SVM.
After analyzing the results, we decided that the next logical step
to improve the accuracy would be to use a bag of visual words.
We chose ORB features detector for extracting features that
were lately used for building our dictionary of visual words.
We were able to improve the accuracy by a large margin. We
then tried a mixed of deep learning and SVM. The solution
we proposed for classification tasks was to use better features
that were extracted by passing an image through a pre-trained
convolutional neural network. We used Inception network to do
this. Using these features we trained a SVM and we obtained
very high accuracies. We also worked on an object detection
problem where we developed a machine learning agent that
could detect 7 different types of objects (7 classes). In industrial
setups, both accuracy and speed are important. Therefore, for
this detection task, we chose to work with SSD (Single Shot
Multibox Detector) with Inception v2 as a feature extractor.
We also made use of data augmentation techniques to generate
more images from a small set of images by applying different
transformations such as zooming and shearing. We obtained
some very promising results in both classification and object
detection tasks.

I. INTRODUCTION

In industry, we are often faced with classification and
object detection problems. In most of the cases, we don’t
have enough data to solve our problems. In this work, we
will present some of the approaches to tackle classification
and object detection tasks while having few data to start
with. We will show in the next section, how we solved some
common classification problems. We will discuss how we ex-
perimented with multiple solutions to develop a classification
pipeline. We will also show how we used data augmentation
techniques to generate new images from a small data set. In
the same section, we will show how we solved an object
detection task by using deep learning techniques.

II. METHODOLOGY

In this section, we have 2 parts : the first part is for
demonstrating how we solved common classification tasks
found in industry. The second part is dedicated for an object
detection task. For both parts, we will examine real cases
found in industry. We will show the difficulties that came
with every task and how we overcame them by proposing
different and more powerful techniques.

A. Classification

To address common classification tasks in industry, we
followed a pipeline scheme. Part of the pipeline is to handle
the data, another part is to train a classifier and the last part
is for using trained classifiers for prediction. We chose this
scheme because it allows us to try different classifiers and
test them. To start off, we tried a commonly used technique
for classification, namely : SVM with HOG descriptor. We
chose this as our first approach to the classification problem
because it has been a popular solution to such tasks [1], [2],
[9] and [10].

SVM with HOG

We performed many tests by changing the SVM param-
eters and testing on a dataset of 285 images where there
are 142 images with screw, 127 images without a screw and
16 unknown cases. To evaluate the trained models we used
accuracy as a metric. Accuracy is defined as the number of
correctly classified cases over the number of all the cases.
For SVM classifier, we have 2 main parameters that we can
change to adjust the performance.
• C : a parameter that controls overfitting for SVM.

A high C aims at classifying all training examples
correctly by giving the model freedom to select more
samples as support vectors. A low C makes the decision
surface smooth.

• γ : defines how far the influence of a single training
example reaches, with low values meaning far and high
values meaning close.

To choose the best parameters C and γ for our classifier,
we used cross-validation. In cross-validation we split our
data set into 2 subsets, usually into 80% for training and
20% for testing, or 90% for training and 10% for testing.
We train the bigger subset with our chosen parameters and
then we test the trained classifier on the test set (the smaller
set). This approach helps us determine the parameters C and
γ that maximize both the training accuracy and the testing
accuracy. It also helps us address the over-fitting problem,
since we are testing the trained classifier on a subset that was
not seen before. Which will subsequently give us a good idea
on how well our classifier will perform on new data in the
future. The tests are listed in the tables I and II.

In the table I we were changing the SVM parameter C
while fixing γ to 1. In the table II we were changing γ while
fixing C to 16. Then we do cross validation. We realized that



SVM parameters Accuracies (for train set and test set)
C = 0.1 train set = 48.62% test set = 56.52%
C = 0.5 train set = 50% test set = 50%
C = 1 train set = 100% test set = 50%
C = 2 train set = 100% test set = 60%
C = 4 train set = 100% test set = 43.48%
C = 8 train set = 100% test set = 45.65%
C = 16 train set = 100% test set = 50%

TABLE I
DIFFERENT TESTS USING SVM WITH HOG (C IS VARIABLE, γ IS FIXED)

SVM parameters Accuracies (for train set and test set)
γ = 0.1 train set = 100% test set = 58.69%
γ = 0.5 train set = 100% test set = 56.52%
γ = 1 train set = 100% test set = 50%
γ = 2 train set = 100% test set = 52.17%
γ = 4 train set = 100% test set = 41.3%
γ = 8 train set = % test set = 32.61%
γ = 16 train set = 100% test set = 54.35%

TABLE II
DIFFERENT TESTS USING SVM WITH HOG (γ IS VARIABLE, C IS FIXED)

there is a certain accuracy threshold that we just couldn’t
surpass which is around 60%. When we see the images that
contain screws and the ones that don’t contain screws we can
understand why the features descriptor is not discriminating
enough, since both classes look the same, they both look like
they have a small circle surrounded by a bigger circle and
HOG descriptors rely on the gradient which means that there
won’t be a big difference between the gradients of a circle
and those of a hexagone.

What we started to think of next is, we either need
to look for a better features descriptor or we can try to
improve the way we are using these features descriptors.
Since, we tried one of the best features descriptors that is
used in state of the art classification tasks, we thought it’s
better to try the latter approach, that is, we try to improve
on the way we are using features descriptors, the way to
do this is by using an algorithm called : Bag of visual words.

Bag of visual words with SVM

Introduction

Bag of visual words [3] is a famous unsupervised machine
learning technique. In unsupervised learning, our data set
is comprised of data points and no labels. The bag of
visual words technique constructs a visual dictionary from
features that were extracted from images. The way to use
this algorithm for classification tasks is by following these
steps:
• We first extract features from images. These could be

any good features such as SIFT, HOG, SURF, ...etc. In
our case we used ORB features (Oriented FAST and
Rotated BRIEF). The reason we used ORB features is
because they are very similar to SIFT features and they
are free to use unlike SIFT and SURF.

• We use a clustering algorithm to construct a bag of
visual words or a dictionary. In our case we used k-
means algorithm.

• Then, for every image (in the training set) we construct
a histogram. This histogram is not for pixel intensities.
It actually represents the frequency of occurrence of
each entry in the dictionary in an image. This works by
computing distances of each features vector extracted
from the image to each cluster’s centroid (visual word)
in the dictionary.

• We then train a classifier using the constructed his-
tograms. In our case we chose SVM.

The previous steps could be summarised in diagram 1.

Fig. 1. Bag of visual words with SVM

The implementation of the bag of visual words algorithm
can be summarized in the following manner :

• Extracting features from an image Ii that belongs to a
set of N images (we used ORB features in our case):

Xi =


...

...
...

...

f1i f2i
... fNi

i
...

...
...

...


d×Ni

Ni : number of descriptors in image Ii.
So for image Ii we have a matrix Xi associated with it

which represents a set of column vectors, these vectors are
ORB descriptors. d represents the dimension of the ORB
features vector (in our case d = 32) and Ni represents the
number of vectors.
• For all the images we have :

X =
(
X1 X2 ... XN

)
d×M

which can then be written as :

X =


...

...
...

...

f1 f2

... fM

...
...

...
...


d×M

; M =
N∑
j=1

(Ni)

Now, to find the dictionary we minimize the following
quantity:

min
D

M∑
m=1

min
(k=1...K)

‖fm − dk‖2



D = [d1, . . . , dk] is the visual dictionary. K : number of
clusters centers to be found.
• For every image, we encode the local features by

assigning them to their closest word in the dictionary:

A =


...

...
...

...

a1 a2

... aNi

...
...

...
...


K×Ni

K : number of clusters.
The final representation of image Ii is :

X̃i =
1

Ni

Ni∑
l=1

al

So for every image we will have a histogram that represents
the frequency of occurrences (X̃i). We can then train a SVM
with X̃i from every image.

It makes sense to use bag of words as a next step because
we are not just extracting features from the image, but
we are actually trying to find among these features, which
ones are similar to each other and which ones are not, by
constructing the visual dictionary. This additional step made
a big difference and we will show some results a little
later. In order to create a good visual dictionary we had to
augment the dataset.

Data augmentation

Data augmentation is a technique that has the purpose of
creating new data from an already existing dataset. Many
machine learning algorithms require a good amount of data
to train a good classifier. To generate more data from existing
data, what we do is apply different transformations on the
pre-existing data. These transformations could be : rotation,
translation, skewing, zooming, shearing, cropping...etc. We
can also have a combination of these transformations so we
can easily imagine how powerful this technique is. Some
examples of images before and after data augmentation are
shown in the following figures.

Fig. 2. Example with a screw
(before augmentation)

Fig. 3. Example with a screw
(after augmentation)

Fig. 4. Example without a
screw (before augmentation)

Fig. 5. Example without a
screw (after augmentation)

Fig. 6. Example of unknown
case (before augmentation)

Fig. 7. Example of unknown
case (after augmentation)

We went from a dataset of 381 images to a dataset of
1826 images (672 images that contain a screw, 673 that
don’t contain screws and 517 images where it’s an unknown
case). The transformations that we applied were mainly a
combination of zooming (to account for scale), skewing (to
account for different camera poses) and cropping. Most of
these transformations are affine transformations which means
we used the following equations :

x′ = ax.x+ bx.y + cx

y′ = ay.x+ by.y + cy

Where x and y are coordinates of the pixel from the input
image and x′ and y′ are the coordinates of the output
pixel (the transformed pixel). It is also important to note
that when doing data augmentation we often end up with
some bad images that do not belong to the right class. An
example of this would be an image with a screw. If we
want to create more images from this image using cropped
parts then we might crop an area of the image that doesn’t
contain a screw, so it is important to clean the data set after
data augmentation.

Experimentation

For experimentation, we changed some parameters and
computed a new prediction model every time and then we
computed training and testing accuracies to see how they
change with respect to those parameters. The parameters that
we can change are :
• For clustering (k-means algorithm):

– K : the number of clusters. When we run k-means
algorithm to cluster our extracted feature vectors



into different groups, we can provide the number
of these groups as a parameter.

– max iter : the number of iterations that k-means
algorithm will use.

– epsilon : the error tolerance allowed for the algo-
rithm.

• For SVM classifier, we have as previously the parame-
ters C and γ. We also have another parameter :

– max iter : maximum number of iterations that SVM
will take while training.

We will mainly focus on two parameters because they have
the most influence on the results. These parameters are : C
and K. We will use the same cross-validation approach to
choose the best parameters. We will split our data set into
2 subsets. 80% of the data is for training and 20% is for
testing. The tables III, IV and V show some results before
and after data augmentation when using bag of visual words
with SVM.

Clustering(k-means) SVM
Accuracy(80% train /

20% test)

K=75
max iter=150

epsilon=1

C=1
γ = 1.3

max iter=2000
kernel=gaussian

on training set=95.59%
on testing set=92.86%

K=90
max iter=200

epsilon=1

C=1
γ = 1.3

max iter=2000
kernel=gaussian

on training set=95.59%
on testing set=91.07%

K=50
max iter=200

epsilon=1

C=1
γ = 1.3

max iter=2000
kernel=gaussian

on training set=95.15%
on testing set=94.67%

TABLE III
BEFORE DATA AUGMENTATION (WHILE CHANGING K)

We can notice from the table IV that changing the number
of clusters affects the accuracy. It’s not about choosing a
large or small number of clusters. It’s about finding the best
value for a specific application. For our case, with K = 50
we see that we get the best results in terms of both training
and testing accuracies. In the table V, we fixed the number
of clusters to 50 and changed the parameter C for SVM
and we saw that it affected the accuracy as well. As we can
see, both the number of clusters and the SVM parameter C
can have a major impact on our final model.

CNN features with SVM
Introduction
Using the bag of visual words, we were able to improve

the results significantly. But as we can see from the previous
results, we are still making false predictions 6% to 10%
of the time. This means that in every 1000 images we
have 60 to 100 misclassifications which is a lot, especially
by industry standards. This led us to think about using
something more powerful such as deep learning. In the paper
[7], they reported that using pre-trained networks such as

Clustering(k-means) SVM
Accuracy(80% train

/ 20% test)

K=10
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=83.88%
testing=82.97%

K=30
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=86.71%
testing=90.33%

K=50
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=88.56%
testing=87.81%

K=60
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=86.16%
testing=85.43%

K=80
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=88.55%
testing=86.81%

K=100
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=88.41%
testing=87.36%

TABLE IV
AFTER DATA AUGMENTATION (WHILE CHANGING K)

Clustering(k-means) SVM
Accuracy(80% train

/ 20% test)

K=50
max iter=700
epsilon=0.01

C=1
γ = 1

max iter=2000
training=88.56%
testing=87.81%

K=50
max iter=700
epsilon=0.01

C=2
γ = 1

max iter=2000
training=90.34%
testing=90.91%

K=50
max iter=700
epsilon=0.01

C=4
γ = 1

max iter=2000
training=91.91%
testing=89.83%

K=50
max iter=700
epsilon=0.01

C=10
γ = 1

max iter=2000
training=92.19%
testing=92.01%

K=50
max iter=700
epsilon=0.01

C=20
γ = 1

max iter=2000
training=92.67%
testing=92.54%

K=50
max iter=700
epsilon=0.01

C=30
γ = 1

max iter=2000
training=94.03%
testing=90.93%

TABLE V
AFTER DATA AUGMENTATION (WHILE CHANGING C)

VGG and Inception to extract features from images and then
apply some traditional classifier such as SVM, they were able
to achieve state of the art results in both classification and
object detection. This approach seemed very promising and
especially for our case because we don’t have a lot of data
for training a convolutional neural network from scratch even
with data augmentation. The working model of our approach
is demonstrated in the figure 8.



Fig. 8. Our scheme at training time

The figure 8 can be summarized in the following points:
• We pass the images through a pre-trained network such

as Inception or VGG.
• We extract the output of the bottleneck layer, also called

the transfer layer (referring to transfer learning). This
layer is different from one network to another depending
on the network architecture. For example it has a size of
4096 in VGG network and 2048 in Inception network.

• We collect features vectors from all the images and use
them in training a SVM classifier.

At test time we do as the figure 9 shows. We first need
to pass the test image through the network, extract the
transfer layer output and then pass it through the trained
SVM classifier and get the corresponding prediction.

Fig. 9. Our scheme at test time

Experimentation

We used a linear SVM with the extracted features and we
obtained the results shown in table VI.

SVM Accuracies
C=1
γ=1

training=100%
testing=99.73%

C=5
γ=1

training=100%
testing=100%

TABLE VI
INCEPTION V1 AND LINEAR SVM

As we can see from the table VI, the accuracies are
very high and the classification is excellent. This is the best
classifier that we used for our pipeline and the efficiency of
this classifier comes first and foremost from the pre-trained
convolutional neural network Inception v1. The reason that
the extracted features are very discriminative is because the
network has been trained on millions of images (ImageNet

data set [8]) and it has learned to extract the most relevant
parts from the image. Most relevant in the sense of distin-
guishing between different classes.

B. Object detection

Introduction

In this section we will show how we used deep learning to
solve a difficult object detection task. The problem that we
tried to solve is the following : We need to detect 7 different
types of objects in an image. The objects that we tried to
detect are shown in the figure 10.

Fig. 10. Different objects that we need to detect

We need to detect 7 different classes, in the figure 10 we
have :
• Blue labels : there are 3.
• White labels : there are 4.
• Yellow labels : there are 2.
• White ties : there are 11.
• Black ties : there are 19.
• Black cable : there is only one.
• Green cable : there is only one.
Data

To tackle this object detection problem we first needed
to collect data i.e : images of the cable that contains labels
and ties and create a data set. We first started by making
acquisitions which looked like the previous figure 10. Other
examples are shown in figures 11 and 12.

We acquired around 130 images and then we did some
data augmentation (same as the previous section) to get
a total of 310 images. For the acquisition part, we took
different images at different times of the day to have
different lighting conditions.

SSD with Inception v2

When we started looking into state of the art object
detection using deep learning, we found that there are a lot
of possibilities because a tremendous amount of work has
been done in the field. In industrial setups there is always a
tradeoff between accuracy and speed. In this paper [4], they



Fig. 11. Acquisition in low light conditions

Fig. 12. Acquisition in good light conditions

discussed many experiments that used deep learning tech-
niques for object detection and they reported the results of
their experiments and what are their recommendations with
regards to which networks to use and what speed/accuracy
tradeoff is expected. They also reported in this paper that
among all the fastest models, the most accurate one is the
one using SSD (single shot multibox detector) with Inception
v2 feature extractor. So we chose this model for our tests.

The SSD [6] approach is based on a feed-forward con-
volutional network that produces a fixed-size collection of
bounding boxes and scores for the presence of object class
instances in those boxes, followed by a non-maximum sup-
pression step to produce the final detections. The CNN looks
like figure 13.

Fig. 13. SSD network with VGG as a features extractor

For training the network we used tensorflow object detec-
tion API. Before we trained the network, we had to annotate
our images i.e : we needed to give a reference to ground

truth bounding boxes. The way we do this is by specifying
for every image the coordinates of the rectangles that bound
our objects, we also need to specify the class that corresponds
to that bounding box. To achieve this, we used an annotation
tool which looks like figure 14.

Fig. 14. Annotating images

In the middle of figure 14, we see the image that we are
currently annotating. We can notice those green dots around
some of the objects in the image, those dots highlight the
corners of the bounding box that we consider as ground truth.
On the right, we see the names of the classes associated with
every bounding box. The output of our annotation process
is a xml file that contains the coordinates of the bounding
boxes and the classes, it looks like figure 15.

Fig. 15. XML file containing coordinates and classes

So our data set is comprised of 2 things : Images and
files containing the coordinates of the bounding boxes and
their corresponding classes. The bounding box coordinates
in the xml file represent the top left corner of the box and
the down right corner. For training our model we used
tensorflow object detection API which takes care of most of
the complexities that come with training the SSD network.
To train the network we needed to provide parameters that
correspond to our specific task. The parameters we used are
:
• Training images sizes : 600× 600.
• Classification loss function : softmax loss.

Lc(x, c) = −
N∑
i≥0

xpij log(c̃
p
i )−

N∑
i≥0

log(c̃0i )

where c̃pi =
exp(cpi )∑
p exp(c

p
i )



• Localization loss function : smoothL1 based loss.

|d|smoothL1
=

{
0.5d2 if |d| ≤ 1

|d| − 0.5 otherwise

Then we use it as such:

Lloc(x, l, g)
N∑
i≥0

∑
m∈{cx,cy,w,y}

xkij .smoothL1(l
m
i − g̃mj )

g̃cxj =
(gcxj − dcxi )

dwi
; g̃cyj =

(gcyj − d
cy
i )

dhi

g̃wj = log
gwj
dwj

; g̃hj = log
ghj
dhj

And the total loss :

L(x, c, l, g) =
1

N
(Lc(x, c) + αLloc(x, l, g))

xpij = {0, 1} : an indicator for matching the i-th default
box to the j-th ground truth box of category p.
g : the ground truth box.
l : the predicted box.
d : the default box.
cx, cy : the coordinates of the center of the box.
w, h : respectively the width and the height of the box.
N : the number of matched default boxes. If N = 0 we
set the loss to 0.

• For non-maximum suppression we used : iou = 0.6.
• For optimization we used RMSprop (a derivative of

gradient descent).
• Batch size is : 2.
• Training images : 90.
• Testing images : 10.
The training process took around 6 hours on a machine

that contains NVIDIA Quadro M620 2Gb GPU. We obtained
some very promising results with only 90 images for training.
The reason why we didn’t use more images is that the
annotation process takes a long time, we spent an average
of 1h for every 7 images. So based on this, we decided to
work in an incremental way : We train the model using 100
images (90 for training and 10 for testing) and based on the
results, we decide if we need to annotate more images and
then run the training again. The plot in figure ?? shows how
the total loss was decreasing during the training:

Fig. 16. Total loss

The figure 16 shows the progress of the total loss with
respect to global steps (one global step is equivalent to

finishing one batch). We notice that it’s decreasing over time
which shows that our network is learning to localize and
classify better our data. We obtained some very good results
from our first test so we decided to move forward with the
trained model. The figures 17 and 18 show some of our
detection results.

Fig. 17. Detecting objects in low lighting conditions

Fig. 18. Detecting objects in good lighting conditions

As we can see, we have some very good results but there
is still room for improvements. To quantify the detection
results we used a metric called : mean average precision
(mAP). To compute mAP, we first need to compute the
average precision (AP) for each class.

The values of AP for each one of the 7 classes are:
• White labels : 0.64
• Yellow labels : 0.83
• Blue labels : 0.78
• White tie : 0.26
• Black tie : 0.36
• Black cable : 0.97
• Green cable : 0.79

Which yeilds mAP=0.66

To give an intuitive sense of how good this result is, we
can compare with object detection tasks done on famous data
sets such as COCO [5]. In the paper [4] they showed the best
results their trained models achieved on the COCO data set
have mAP ≤ 0.4. In our case mAP = 0.66. Of course, this
comparison is not fair, because for our case, we only trained
the model on 90 images while COCO data set has around
330K images and also, we are only detecting 7 different
types of objects while they are detecting thousands. Still,
this gives us an idea about how well our object detection
is. We also notice that there are classes with low AP such
as white tie and black tie. This is because these objects are



the hardest to detect. If we look at figure 10 for example,
we can see that these objects are very small. Moreover, in
many instances, they are very close to each other. This leads
the model to detect only one object where there are actually
two.

III. CONCLUSION

In this work, we presented some machine learning tech-
niques to tackle industrial visual inspection problems. We
mainly worked on 2 problems : classification and object
detection. For classification, we developed a pipeline. Part
of this pipeline includes a classifier to distinguish between
different classes. We experimented with some techniques. We
first started by using SVM with HOG descriptor. This method
was not very successful. In all the tests we conducted, the
accuracies were low. We then experimented with another
technique called bag of visual words. We used this technique
with SVM and we noticed some significant improvements.
Although this method was successful, it was still making
false predictions 6% to 10% of the time. To push the accuracy
higher, we used a mixed of deep learning and SVM. We used
a CNN called Inception v1 as a feature extractor. We then
used the extracted features to train a SVM. This approach
gave impressive results that are very close to perfect. Another
problem we worked on is : object detection in an industrial
setup. We used SSD with Inception v2 as a feature extractor
to detect 7 different types of objects in an image and we
obtained some very good results. This work has shown how
deep learning can dramatically improve the performance of
industrial visual inspection systems.
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Real-time perception for motion planning of Jaco2 Kinova with
Multiple Kinects

Avinash Narayana

Abstract— In future industries and factories we will have
robotic arms working autonomously,by using visual feedback
to recognize or to localize. My thesis analyzes the capability
of Microsoft kinect V2 sensor to act as real time perception
for robotic arm path planning. Kinect V2 sensor contains a
rich array of sensors for grabbing 3D scene information.we
will present our work in situations in which we have multiple
kinect sensors system ,multiple kinect sensors may serve as low
cost and affordable means to track ArUco markers postion
information across a large space applications.We focused on
the calibration of the system,Interference and the network
requirements to link and synchronize the multiple data-streams
together to a common reference point.

I. INTRODUCTION

In this work, we mainly focus on the Jaco2 kinova percep-
tion with multiple kinects. From inside the industrial revolu-
tion to now robotics evolution has grown rapidly . In the last
few years we are seeing the evolution of robots in different
applications and many fields of the human life. Human-
Robot collaboration, which is unpredicted until few years
ago, now a days trending topic of research field in many areas
such as industrial, medical and assistive and service robotics.
An explanatory evidence is the industrial field. During 70’s
and 80’s robots were mainly used for difficult situations
where humans take more time and repetitive jobs but they
were used just to work in safety surroundings, avoiding the
cooperation between human operators and robots for safety
issues. During the years robots have gained more and more
capabilities and features, due to several technologies and the
falling of electrical and sensor goods prices, the increase in
development and the spread of the open-source resources.
All this resources allowed the spread of a new paradigm for
the manufacturing industry based on the cooperation between
human and robots [1]. In this perspective acquires a major
importance the problem of the safety of the operations [2],
[3]. Robotic manipulators are often required to perform tasks
in the operational space, such as to move the end-effector at
a certain position and/or orientation. However, a number of
additional tasks have to be taken into account.All these robots
are working blind with hard coded trajectories.

The use of vision systems is the most common and intelli-
gent approach for this problem.In industries and factories of
the future, most of the tasks will be done autonomously by

*This work was done at University of Cassino,Lai Robotics Lab.
1Avinash Narayana research masters student in Computer vi-

sion and robotics from Universtiy of Bourgogne, Le Creusot,France.
avi.avinash015@gmail.com

2This thesis work is supervised under Dr. Gianluca Antonelli Associate
Professor in University of Cassino, Italy. antonelli@unicas.it

the robotic arms that need the visual source to move around
and to complete the required task in work space by avoiding
obstacles [5] and to work collaboratively with humans to
identify and localize the working parts and objects, to com-
plete the information provided by other sensors to improve
their precise positioning accuracy, etc. Depending on the
objective, the vision system can be scene-related or object-
related. In scene-related tasks the camera is usually mounted
on a mobile robot[6] and applied for mapping, localization
and obstacle detection. In object-related tasks, the camera is
usually attached to the end-effector of the robot manipulator
(eye-in-hand configuration)[4] or fixed somewhere in the
workspace, so that new images can be acquired by changing
the point of view of the camera. Vision and perception,
mobility, grasping, ease of use will ensure that robotics will
meet the promise of easing the burden of labor in terms of
physical activity or decision making.

Vision systems can also be used to determine the location
of the object that needs to be grabbed with the exact location
of the object does not need to be programmed manually.
This gives less constraints to surroundings, as it is then not
necessary to design a visual system to put a product precisely
in a spot so that the robot can grab it. By using vision systems
the object can be in any different location and in any different
orientations. This makes the system a lot more flexible also
more accurate. However for both of these objectives the
location of the camera needs to be known to get a precise
location of the scene or objects. Therefore it is necessary
to calibrate the location of the camera. Manual calibration
is a tedious procedure. So it should also be automatic so
that this part can also increase the flexibility of the robot
system.In this paper you will see an approach for automatic
calibration and you will also see the vision technique for
using multiple kinect with multiple sensor system. The out
comes of these works are used in may applications such as
obstacle detection.

The paper is organised as follows:

• Section II Describes the method of sensor calibration
with the available ROS packages with Linux operating
system and Accuracy analysis.

• Section III Describes the Multiple kinect sensor systems
and problems of interference with multiple kinects.

• section IV Describes Muliple ArUco markers detection
and the common reference frame Method when we use
multiple kinects.



II. ACQUISITION AND CALIBRATION

A. Kinect V2

In our research we use low cost kinect V2 sensor [7],
kinect V2 is a RGB-D sensor used for acquisition designed
by Microsoft. In addition to the color camera kinect v2 is also
composed of depth camera(including infrared camera(IR)
and IR projector) which allows to find out both color
and spatial information about filmed scene. Kinect can be
connected to computer using USB 3 connection and used as
input for 3D modeling(Reconstruction) task. It is also used
to interact with out physical contact (contact free) but just
by using hand gestures and voice commands.

B. Principal of Kinect V2

1) Time of Flight: The main components of time of
flight[8] are namely lens, integrated light source, sensor and
a signal processor. This kind of system is able to capture
both depth an intensity information simultaneously for every
pixel in the image. These cameras depends on pulsed light
sources have high potential in machine vision applications.
The working of ToF[16] is as follows, a continuous emitting
laser source sends out a pulse, and a sensor detects that pulses
reflection from the target object(scene) to record its time
of flight. Knowing that and the constant speed of light, the
system can determine how far away the target object(scene)
is placed. Illustration is shown in the figure 1.

Fig. 1: Illustration of Time of flight.

C. Setup and calibration

Calibration means making sure that our kinect V2 is giving
high level of accuracy and reliability. The system needs a
kinect v2 sensor, tripod and a plane surface to paste the
checker board pattern.The setup is shown in the figure 2

D. Calibration Checkerboard

The checkerboard contains 7 by 9 squares, each one of
0.025m by 0.025m size, printed on a A4 sheet and glued it
to a plane object in our case it is white board, or for a good
method you can take another tripod for the checker board.
The intrinsic and extrinsic calibration procedure works by
using a calibration pattern. One of the side squares of the
pattern are modified to be hallow [20] is shown in the figure
3, is used to detect the correct orientation.

Fig. 2: Setup of kinect V2 during calibration.

Fig. 3: Hallow square in topleft for orientation detection.

E. Software

In the course of work, we have used open-source kinect
v2 driver by Blake et al and its associated with ROS package
contributed by Thiemo Wiedemeyer [9], [19] which uses
OpenCV calibration [18]. This package is built specifically
for the kinect V2 that we will be using in the project, kinect
V2 integrating with ROS [17] and other binaries has been
initiated for ubuntu 16.04 LTS.

The main feature and advantage of using ROS is its mod-
ular design allowing the algorithm to be shared into separate
smaller nodes performing individual tasks and sharing the
results over the network. Since the Kinect v2 camera need a
separate USB3 controller for connecting to PC, here we are
using two PC’s connected in ROS network.

F. Calibration Method

The proposed automatic calibration method consists of
different modules working together to get a good calibration
accuracy. In our case calibration for RGB-D cameras are
calibrated for intrinsic and extrinsic parameters in order to
compensate for the following systematic errors:

1) Color camera lens distortion.
2) Infrared (IR) camera lens distortion.
3) Reprojection error, or color to depth image offset.
4) Depth distortion.

The presented calibration process was successfully per-
formed provided that the checkerboard was detected by



the 3D camera to be calibrated. The calibration pattern is
overlaid on the detected checkerboard is shown in the below
figure 4.

Fig. 4: Calibration pattern overlay-ed on detected checker
board pattern.

1) Method: The pattern has to match exactly the
dimensions that we set. Before calibrating any sen-
sor(RGB,IR,Sync) firstly we have to create directory for
respective sensor and save images in the respective sensor
folder while you start recording the images. The kinect fixed
with the tripod is moved and can be locked easily while you
take an image. It is very important to stabilize the kinect
before taking image to avoid blur in the image.

Placing of the pattern is very important, in which less
images, or more number of images of a similar view to the
pattern you can get a good re-projection error, but a bad
calibration. I took around 0 - 200 images by following these
steps:

1) Place the position of the camera in the top left corner
of the image.

2) Move the camera along that row and take the images.
3) After the first row go to the next row and repeat step

2 until the last corner of the image.
4) place the pattern further away from the camera and go

to step 2. Do this for different distances, near (<= 1m),
middle range (> 1m, < 2.5m) and far (>= 2.5m). (The
possible distances depend on the chess board size.)

5) When recording images for all the sensors indicated
above (RGB, IR, SYNC), start the recording node, then
press space bar to record each image. The calibration
pattern should be detected indicated by color lines
overlay-ed on the calibration pattern, and the image
should be clear and stable as shown in figure 4

6) once you calibrated the respective sen-
sor(RGB,IR,SYNC) you will find the re-projection
error on the terminal. Higher the re-projection error
lower the calibration accuracy. Make sure that you
have less than 1cm re-projection error for good
calibration accuracy.

For every Kinect there will be a serial number by looking
at the first lines printed out by the kinect2 bridge node. We
can find the serial number of respective kinect the line looks
like this: device serial: 012526541941

Create the calibration results directory in
kinect2 bridge/data/serial: The directory should be in
the name of the serial number. we should copy all the
calibrated files from each sensor directory and place it in
the kinect serial number directory.

Restart the kinect2 bridge and run the image viewer for
better view of the scene, the kinect view before calibration
and after calibration can be seen in the figure 5.

Fig. 5: Before and after calibration.

G. Calibration Error

Calibration is not completely robust operation, i.e that the
calibration performed above we will have an error between
estimated and actual values this is called as calibration error
or re-projection error. An estimate of any calibration is very
important since we may get good accuracy and precision of
our applications.

H. Experiments and Analysis of Calibration Accuracy

We have undergone some investigation to find out mini-
mum number of images for a good calibration. For this we
did few experiments by taking different number of images in
each sensor and calibrated with less no of images and took
those parameters for accuracy testing therefore the change in
re-projection does not show much difference between more
number of images or less number of images can be seen in
the plots figure

TABLE I: Experiments with Color Frames

Experiment color frames reprojection error time in milli seconds
Exp1 5 0.134 454.7
Exp2 10 0.140 1393.81
Exp3 15 0.138 3928.83
Exp4 20 0.1404 9655.78
Exp5 25 0.143 16300.2
Exp6 30 0.145 27552.9



TABLE II: Experiments with IR frames

Experiment ir frames reprojection error time in milli seconds
Exp1 5 0.104 429.781
Exp2 10 0.101 1224.79
Exp3 15 0.1028 3393.64
Exp4 20 0.103 10301.8
Exp5 25 0.1029 14823.1
Exp6 30 0.1016 26808.3

TABLE III: Experiments with Synchronized frames

Experiment sync frames reprojection error time in milli seconds
Exp1 5 0.120 270.794
Exp2 10 0.130 270.794
Exp3 15 0.1333 614.283
Exp4 20 0.1333 1006.24
Exp5 25 0.1435 1755.25
Exp6 30 0.1420 2692.47

I. Accuracy Plots with respect to number of images and time
in Milliseconds

The tests has been plotted between increasing number of
images from 1 to 30 with respective to time and re-projection
error is shown in figure 6 and 7

III. MULTIPLE KINECT V2 SENSOR SYSTEM

Multiple kinects systems is main To increase the field of
view, quality of measurements, and improving the system for
high level applications. In addition, it also solves occlusion
problems. Object occlusion is the big research field in the
computer vision field. Most of the scenes in which an object
is cover fully or partially of another object. By using another
camera or number of cameras in the workspace, it is possible
to capture the blind spots that other camera cant see. The

Fig. 6: Plot between number of images and re-
projection error.

Fig. 7: Plot between number of images and time.

range of vision of the system is the limitation of kinect
that multi-sensor system can solve this problem. The normal
range of the Kinect v2 is from 0.7m to 3.2m, if this coverage
have to be increased its accuracy have to be increased, we can
place a second sensor and combine both streams, obtaining
a single point cloud with larger coverage area.

The main objective is to achieve a multi-sensor
system[10], which should be robust and resistant to changes
in the scene conditions such as light, irregular shapes,
occlusions and so on. Adaptability is also a desired char-
acteristic, since the location of the sensors de-pends on the
scene, thus an optimum coverage can be achieved. They
evaluate different angular settings for the multiple sensors
but interestingly conclude that the orientation significantly
improve the resolution quality. Multiple kinects are evenly
placed in a virtual circle around the scene.

A. Interference

In kinect v2 point of view interference comes when there
are multiple cameras[12], cameras can see each other when
we place one in front of the other but laser cannot see they
collide each other. The problem here is more a matter of
sensor setup. In my research we found that for two Kinects
v2 is [0, 45) and (45, 60] degrees. At that range you can
have the minimal interference.

B. Investigation of Kinect v2 Interference

To characterize the interference between multiple kinect
v2, we have placed both the kinects facing each other.The in-
frared pattern emitting from both the kinects can interfere and
hit each other,causing holes noise or artifacts which is loss of
information from the scene to acquired point clouds. Figure
8 shows the image with and with out interference shows that
a lot of information is lost when interference occur. Finally
with the test of the kinect interference data revealed that the
angle between kinect sensors has significant influences [11]
on the kinect data resolution. A good placement of cameras

Fig. 8: Image with and without interference.

has to take into account to reduce camera interference’s, one
way to avoid the interference is not making the kinects field
of view touching each other. so we can connect as shown in
the figure 9 and figure 10.

IV. COMMON REFERENCE FRAME

The main goal is however, is to use the output from mul-
tiple cameras. By combining the information from multiple
cameras to scan the surroundings of the robotic arm for
obstacles in a safe manner and to prevent occlusions for
robotic arm Jaco2 kinova. To be able to detect an object
from different directions and to reconstruct a model from
point cloud we need multiple kinects.



Fig. 9: setup-1.

Fig. 10: setup-2.

In order to have common point(world) of view or coordi-
nate system for multiple kinects we have done some research
and found a solution with multiple marker cube. Cube with 6
faces, each face is sticked with the ArUco marker generated
from ArUco marker generator.

A. Pipe Line of The method

One of the most popular approach is the use of binary
square fiducial markers[13] as shown in the figure below. To
determine the position of the known or unknown environ-
ment or to localize something we use fiducial markers. An
ArUco marker is a synthetic square marker[15] composed by
a wide black border and a inner binary matrix which deter-
mines its identifier (id). The main benefit of these markers
is that a single marker provides enough correspondences (its
four corners) to obtain the camera pose. The black border
make it easy for its fast detection in the image and the binary
codification allows its identification and the application of
error detection and correction techniques. The marker size
determines the size of the internal matrix. For instance a
marker size of 4x4 is composed by 16 bits. We have gener-
ated five markers from Aruco marker generator where we can
choose specific marker id, marker size(edge size of the black
box containing the marker) and marker padding(thickness of
the white boarder surrounding the marker). We generated 5
markers of id: 250,300,350,400,450, glued each marker to
each face of the cube which we prepared can be seen in the
below figure 12.

A reference frame provides a relationship in pose between
one coordinate system and another. Every reference frame
can relate back to a universal coordinate system. All positions
and orientations are referenced with respect to the universal
coordinate system or with respect to another Cartesian coor-
dinate system.

Initially we set the position of the marker cube in the work
space as seen in the figure 12. The pose of the marker cube is
coded manually with respective to the robotic arm as world
frame(reference frame)[14]. Now when the kinect v2 seeing
the work space and when the markers cube is in the field of
view of kinect, since the cube is glued with markers, kinect
detects multiple markers as shown in the 12, so we cant get
the transformation of the kinect since it sees multiple markers
at a time, the pipeline of algorithm shows in figure 11.

For this we have calculated the distance from each marker.
When ever the kinect dectects multiple markers it calculates
the distance from each marker to kinect and marker with the
minimum distance is used for the transformation. The goal of
this method is to obtain a transformation matrix able to unify
successfully the measurements of two Kinect cameras under
a common coordinate system. A common reference frame
usually placed on the work space called world arm frame.
This is usually done when we are working with multiple
frames(stereo).

Fig. 11: Pipe Line for common reference frame.

Fig. 12: Transformations.

V. RESULTS

To test the implemented work we connected multiple
kinects in a ROS network with the help of multiple PC’s
the node structure of camera network is shown in figure 13.



Figure 14 shows the tf topic visualized in RVIZ. Figure ??
shows the point clouds from kinect2 1 and kinect2 2. Figure
17 shows the aligned point clouds with respect to common
reference point.

Fig. 13: Node structure with respect to camera network.

Fig. 14: All the transformations with respect to common
reference frame..

Fig. 15: Point cloud from Kinect2 1.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this thesis a vision technique for robotic arm path
planning have been implemented. The results we see are,
it is possible to overcome occlusion problems, increase the
area, the field of view of coverage and improve the quality
of the data.

Fig. 16: Point cloud from Kinect2 2.

Fig. 17: Aligned point clouds with respect to common
reference frame.

Tests were made with the of setup of multiple kinect
V2 sensors in which object is illuminated from different
directions which shows some blind spots that other kinect
cannot see. Multiple sensor setup method shows the potential
of high resolution, compared by using one kinect. In addition
to this, industrial environments conditions also need to be
considered. Each application and each type of robotic arm
need a specific vision solution. There is no universal vision
technique to perform several tasks. .

B. Future Works

Future woks may focus on multi-tasking or multi-purpose
vision systems and their integration with other sensor types
and systems.
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Abstract

Objectives: The aim of this paper is to compare the spatial
glandular tissue distribution of DBT against FFDM as well as
the density grade estimation provided by commercial software
namely Volpara and Quantra 3D, and BI-RADS density grade
from Radiologist.
Materials and Methods: The dataset composed of 241 pairs of
FFDM and DBT from 61 different women (aged 38-81 years)
with moderate/high of risk of developing breast cancer. All
participants underwent a two-view (craniocaudal and medio-
lateral oblique) FFDM and DBT of both breasts using Hologic
Selenia Dimensions which took the projections in a single breast
compression.
Results: Global assessment obtained from Volpara show high
correlation between FFDM and DBT data. Pearson’s correla-
tion coefficients of 1, 0.92 and 0.93 were obtained for breast
volume, glandular tissue volume, and volumetric breast density,
respectively. Breast density assessment obtained substantial
agreement between VDG estimation and BI-RADS density
grade (κ = 0:61) and moderate agreement between QDC esti-
mation and BI-RADS density grade (κ = 0:55), and substantial
agreement between VDG estimation and QDC estimation (κ =
0:68). Local assessment regarding glandular tissue distribution
also show high similarity between FFDM and DBT density
maps computed by various similarity metrics.
Conclusions: There is a high similarity of density maps
provided by Volpara between FFDM and DBT acquisition.
Although divergences arise due to different breast size of both
acquisition technique.

Keywords: Breast cancer, Breast Density, Image analysis, Mam-
mography, Tomosynthesis, Quantra, Volpara.

I. INTRODUCTION

Breast cancer is one of the leading causes of death among
the women worldwide. It has become the second leading
cause of death from cancer in women [1]. At the same time,
it is also among the most curable cancer types if diagnosed
in an early stage [2]. In order to detect breast cancer in an
early stage, and increasing the survival rates, breast screening
programmes are performed in many countries.

The gold standard technique used in breast cancer screen-
ing procedures is full field digital mammography (FFDM)
[3]. However, in FFDM, breast tissue 3D structure is pro-
jected into a 2D image resulting in tissue superposition which
may lead to reduce lesion’s visibility and loss the third
dimension information where it can be overcome by digital
breast tomosynthesis (DBT). DBT is basically a modified
FFDM technique, which acquires projection images within

a limited angular range [4], producing a set of reconstructed
images that can be viewed individually or sequentially in a
cine loop and provide 3D information for the reader, over-
coming many of the interpretation difficulties associated with
FFDM [5], [4]. These reconstructed images are projected at
different breast’s depths, for example, if a 60 cm compressed
breast is reconstructed at 1 mm slice thickness, there will be
60 slices to review.

Volumetric breast density (VBD) has consistently been
one of the strongest risk factors for breast cancer [7] and
represents the amount of glandular tissues in a breast.
Automated breast assessment software represents promising
method of evaluating VBD such as Volpara (Volpara So-
lutions; Wellington, New Zealand)1 and Quantra (Hologic;
Danbury, Connecticut, USA)2. Since two breast of the same
VBD can have different spatial distribution of the dense
tissue, a deeper examination of information of the dense
tissue distribution called density maps is needed.

The main objective of this work is to evaluate the dis-
tribution of the glandular tissue in FFDM and DBT. This
comparison is aiming to see the similarity of the density
maps measures provided by the commercial software named
Volpara (v.1.5.4). Volpara uses the physics-based model to
extract pixel-wise information from the FFDM and DBT [3].
Various studies reported promising results using Volpara for
the assessment of breast density. Garcia et al. [3] concluded
that Volpara is reliable in estimating the local glandular tissue
distribution and can be used for its assessment and follow-
up. Complemented by Gubern-Merida et al. [6] evaluated
automatic volumetric breast density assessment in FFDM
with Volpara which resulted to be very accurate with the
potential to be used in objective breast cancer risk models
and personalized screening. In addition, Quantra 3D (v.2.1),
run at the colaborated hospital, will also be used to compare
global measurement results, i.e. breast volume, glandular
tissues volume and VBD with Volpara global measurement
results. Furthermore, the density grade between radiologist,
Quantra 3D and Volpara will also be investigated. The aim
of this comparison is to try to correlate the qualitative
assessment of the radiologists with the quantitative measure
of the automated sofware tools (i.e. Volpara, Quantra 3D).

In order to simplify these objectives achievement, the
comparison is divided into two, ie: global assessment and
local assessment. Whereas global assessment covers the com-

1http://volparasolutions.com/
2http://www.hologic.com/



parison of global measurement results and local assessment
covers the comparison of glandular tissue distribution.

II. MATERIALS AND METHODOLOGY

The dataset consists of 61 patients data out of 68 patients
data, whereas 7 of them are excluded due to corrupted data,
mastectomy and prosthesis. The age of the screened women
ranged from 38 to 81 years old with most of the patient
are in range of 45-49 years old. Each patients underwent
mammography and tomosynthesis image acquisition that
consists of 4 views, ie. right breast CC, left breast CC, right
breast MLO, and left breast MLO, which produce a total
of 482 mammograms (241 FFDMs and 241 DBTs). Some
views were not available and were not computed in some
cases.

The dataset was acquired between November 2017 and
December 2017 at the Hospital Universitari Parc Tauli
(Sabadell, Spain) where it was acquired for screening pur-
poses of high-risk women, i.e. high familiar or genetic
risk in standard clinical settings or some with symptoms
regarding their breast. The devices used for acquiring the
dataset is Hologic Selenia Dimensions system (Hologic;
Massachusetts, USA) which took both of FFDM and DBT
image projection in a single breast compression for each
breast/patient. Therefore, the two images were in perfect
conditions to compute, and compare, the glandularity of the
breast obtained using Volpara.

A. Data Validation

Fig. 1. Schematic overview of the validation process.

Fig. shows an overview of validation process from the
dataset. 241 FFDM and 241 DBT images were validated
for being processed using Volpara and Quantra 3D. Both
processes calculated the dataset which provided a value
breast volume (cm3), glandular tissue volume (cm3), and
volumetric breast density (%) which are being compared
in global assessment. Moreover, Volpara also processed the
so-called density maps, which is being compared in local
assessment regarding the glandular tissues distribution.

B. Image Registration

FFDM and DBT density maps have different size being
DBT larger than FFDM. Hence, a direct subtraction of both
images is not a feasible way to compute the similarity
between them. These misalignments can be minimize by
performing image registration. The registration is done using

intensity-based image registration in Matlab called imregis-
ter.

The function transforms the 2-D or 3-D image, placed in
variable moving, so that it is registered with the reference
image, in variable fixed. The metric used in the registration is
Mean Square which is computed by squaring the difference
of corresponding pixels in each image and taking the mean
of the squared differences. The mean squares metric is
an element-wise difference between two input images with
ideal value of zero. Affine transformation is applied in this
registration since it consist of translation, rotation, scale, and
shear, and is considered enough for registering FFDM and
DBT images’ from different sizes. Affine transformation is
also the most popular used transformation in registration
applications due to the rigid body constraint found in many
common medical images [8].

C. Evaluation

In order to evaluate density maps between FFDM and
DBT, global and local assessment are analyzed. Global
assessment is performed after obtaining global measures
from Volpara, complementing by Quantra 3D which run in
hospital, comparing the breast volume (cm3), glandular tissue
volume (cm3), and volumetric breast density (%) between
FFDM and DBT images. In addition, local assessment is
performed after obtaining density maps DM(x, y) generated
by Volpara with following equation:

DM(x, y) =
ln(P (x, y))/Pfat

µfat − µdense

where P (x, y) corresponds to the grey level intensity at pixel
(x, y) in the raw mammogram, which is proportional to the
X-ray energy absorbed at the image receptor and (Pfat) as
mean intensity value of this area.

Key acquisition parameters from the meta-data of the
image (e.g. kVp, X-ray tube anode material, filter material,
compressed breast thickness) are read from the DICOM
header to use the appropriate X-ray linear attenuation coeffi-
cients (µfat and µdense). hfat is directly computed while
hdense is computed as the difference between the breast
thickness (H) and the adipose tissue thickness.

Local assessment is done by calculating various similarity
metrics. One approach is by direct comparison based on
histogram, in particular the mutual information (MI) to
measure of the mutual dependence between the two vari-
ables, Kullback-Leibler to measure of how one probability
distribution diverges from another, Euclidean distance to
computes the similarity between the intensity distributions
of the two images, and histogram intersection to calculates
the similarity of two discretized probability distributions,
where various bins range from 8-64 are proposed. A unitary
bin size, where each bin represents 1 mm glandular tissue
thickness also calculated for a fair comparison.

Another metrics proposed in this work are statistic of
difference image to determine changes between images by
finding the difference between each pixel in each image,
mean absolute error (MAE) to measure of absolute difference



Fig. 2. Comparison of the global measures obtained by Volpara when analysing FFDM and DBT: (a) overall breast volume (R= 1), slope m =1.02), (b)
glandular tissue volume (R=0.92), slope m= 0.91), and (c) volumetric breast density (R=0.94), slope m= 0.82).

between two continuous variables, mean square error (MSE)
to measures the average of the squares of the errors or
deviations, intensity correlation to compute the average of
maximum value from normalised cross-correlation of both
image, structural similarity (SSIM) to measure the similarity
between two images based on an initial uncompressed or
distortion-free image as reference, and dice similarity coef-
ficient (DSC) to compare the similarity of two samples by
calculated overlapped pixel.

D. Implementation Details

Affine transformation registration and the functions to
estimate global and local features were implemented in MAT-
LAB v.2017b (The MathWorks Inc., Natick, MA, USA).
Meanwhile, data analysis and statistical tests were carried
out using the statistical software R (v.3.0.3).

III. RESULTS

IV. GLOBAL ASSESSMENT

Firstly we evaluate global measurement obtained from
Volpara. Fig. 2 shows the dispersion plots of the obtained
breast volume, glandular tissue volume, and volumetric
breast density, where each point represents the values ob-
tained in the two image acquisition techniques (x-axis repre-
sents value obtained in the FFDM while the y-axis the value
obtained in DBT). In all the cases, the Pearson’s correlation
coefficients are R ≥ 0.92, while the slope of the linear models
are m ≥ 0.82. In particular, the glandular tissue volume (Fig.
2(b)) obtained correlation coefficient R = 0.92 and slope m
= 0.91.

In addition, global measurement from both software, Vol-
para and Quantra also being evaluate. Since the data we have
is coming from Quantra 3D, we compare it only with DBT
images for fair comparison. Fig. 3 shows the dispersion plots
of the obtained glandular tissue volume between DBT images
computed in both software. Overall, the Pearson’s correlation

coefficients, respectively for breast volume, glandular tissue
volume, and volumetric breast density, are R ≥ 0.9, while
the slope of the linear models are m ≥ 0.51.

Fig. 3. Comparison of the glandular tissue volume obtained between DBT
images by Volpara and Quantra 3D (R=0.9), slope m= 0.51).

Knowing the global measurement value, it is also inter-
esting to compare breast density grade estimation between
Volpara, Quantra 3D and radiologist. Kappa value obtained
for each comparison, Quantra 3D and radiologist (κ = 0.62)
shown in Table I, Volpara and radiologist (κ = 0.58) shown
in Table II, and Quantra and Volpara (κ = 0.64) shown in
Table III.

TABLE I
DENSITY GRADE COMPARISON (RADIOLOGIST - QUANTRA)

Radiologist

Quantra

A B C D Total
A 2 2 0 0 4
B 1 23 3 1 28
C 0 5 18 3 26
D 0 1 1 1 3
Total 3 31 22 5 61



TABLE II
DENSITY GRADE COMPARISON (RADIOLOGIST - VOLPARA)

Radiologist

Volpara

A B C D Total
A 0 1 0 0 1
B 3 21 2 1 27
C 0 8 12 1 21
D 0 1 8 3 12
Total 3 31 22 5 61

TABLE III
DENSITY GRADE COMPARISON (QUANTRA - VOLPARA)

Quantra

Volpara

A B C D Total
A 0 1 0 0 1
B 4 21 1 1 27
C 0 6 15 0 21
D 0 0 10 2 12
Total 4 28 26 3 61

Cohen’s kappa measures the agreement between two raters
who each classify N items into C mutually exclusive cate-
gories. The definition of κ is defined as follows:

κ =
p0 − pe
1− pe

= 1− 1− p0
1− pe

where p0 is the relative observed agreement among raters
(identical to accuracy), and pe is the hypothetical probability
of chance agreement, using the observed data to calculate the
probabilities of each observer randomly seeing each category.

V. LOCAL ASSESSMENT

The local comparison between density maps is performed
by using various similarity metrics. One approach depicted
in Fig. 4 are a direct comparison based on histogram, i.e
mutual information (MI) given similarity value of 0.20 ±
0.07 [0.06, 0.39], Kullback-Leibler given similarity value of
0.09 ± 0.15 [0, 1.26], Euclidean distance given similarity
value of 0.66 ± 0.44 [0.13, 3.03], and histogram intersection
given similarity value of 0.77 ± 0.12 [0.28, 0.95].

Another metrics proposed in this work, such as statistic
of difference image, mean absoluter error (MAE), mean
squared error (MSE), intensity correlation, structural similar-
ity (SSIM), and dice similarity coefficient (DSC) is compared
between before registration and after registration. Mean of
difference image has a statistically significant value corre-
spondence to MAE (Fig. 5), before and after registration
respectively, 3.77 ± 2.10 [1.04, 14.05] and 2.22 ± 1.08 [0.81,
9:80]. This result shows that registration methods produced
an improvement with respect the original comparison of the
density maps.

Fig. 5. Plot showing mean of difference image and MAE obtained by
Volpara density maps when analyzing FFDM and DBT.

MSE mean value also benefits image registration which,
resulting MSE a statistically significant value of 11.04 ±
12.02 [0.99, 118.90] from 31.72 ± 37.39 [1.86, 284.67]. Yet,
MSE calculation is too disperse and is not showing great
value even after registration, where value near 0 is showing
better similarity. Moreover, DSC analyzed overlapped area
between both density maps with various threshold ranging
from 1 until 10 (measures on mm, based on glandular
tissue thickness). Fig. 6 shows the trend from DSC. As the
threshold increases, the area of the breast with respective
glandular tissues thickness decreases, reducing the likelihood
of overlap, and therefore the DSC value. Average DSC value
for each threshold after registration respectively from 1 until
10 mm, are defined as follow: 0.94, 0.91, 0.87, 0.83, 0.80,
0.79, 0.79, 0.78, 0.78, and 0.77. It should be noted that
in general a value of 0.7 or higher is often regarded as a
satisfactory similarity. Meanwhile, SSIM metric only show
non statistically significant value of 0.52 ± 0.17 [0.14, 0.88].

Fig. 6. Plot showing DSC trend from various threshold value ranging from
1 until 10 (measures on mm, based on glandular tissue thickness).



Fig. 4. Direct comparison of the local measures obtained by Volpara density maps when analyzing FFDM and DBT: (a) average of mutual information (0.21
(0.20, 0.23)), (b) average of Kullback-Leiber (0.09 (0.08 - 0.09), average of Euclidean distance (0.57 (0.24 - 0.92), and average of histogram intersection
(0.79 (0.75 - 0.86).

VI. DISCUSSION

In this work, we evaluated the volumetric density measures
and local glandular tissue density map provided by Volpara
Density Maps between FFDM and DBT images acquired
using the same device and without decompression between
both acquisition techniques.This date ensures that the glandu-
lar information in both modalities will be the same. Hence,
we can evaluate how similar is the information from both
images acquisition.

Global assessment is performed after obtaining global
measures from Volpara, complementing by Quantra 3D
which run in a colaborating hospital, comparing the breast
volume (cm3), volume of glandular tissue (cm3) and volu-
metric breast density (VBD) (%) between FFDM and DBT
images. The results show a high correlation. Observed from
VBD measurement, the correlation and Bland-Altman plots
show that Volpara tends to underestimate breast density in
dense breasts compared to Quantra 3D. Volpara is based on
a physics-based image model and it use a set of pixels of the
breast that belong to fatty tissue as an internal reference to
predict glandular tissue thickness. Gubern-Merida et al. [17]
stated that the selection of the internal reference is more
complex in dense breasts than in fatty breasts, which affects
the calibration of fatty tissue attenuation and leads to breast
density underestimation.

The breast density grade is compared between Volpara
density grade (VDG), Quantra density category (QDC) and
BI-RADS density grade provided by radiologist. The results
show a clear association and substantial agreement calculated
using weighted kappa with quadratic weights coefficient
from the confusion matrix. VDG estimation and BI-RADS
density grade (κ = 0:61), QDC estimation and BI-RADS
density grade (κ = 0:55), and VDG estimation and QDC

estimation (κ = 0:68) was found. In general, VDG estimation
tends to be higher than the BI-RADS density estimation
and QDC estimation, specifically in higher density grade.
For instance, 9 studies that were estimated with BI-RADS
density grade C obtained a VDG estimation of D and 9
studies that were estimated with QDC estimation C obtained
a VDG estimation of D. These results are in contrast with re-
sults of volumetric breast density underestimation in Volpara.
However, the volumetric breast density underestimation in
Volpara does not seem to affect the final VDG categorization
as observed both automated software has different algorithm
and thresholds, used to estimate the density grade.

In order to do local comparison to evaluate the similarity
of density maps between FFDM and DBT, a direct compari-
son based on histogram, in particular the mutual information
(MI), Kullback-Leibler, Euclidean distance and histogram
intersection are performed. MI resulted a low value of 0.20
comparing to MI result between left and right breast from
FFDM and DBT with average value of 0.615. Where other
metrics computed for Kullback-Leibler, Euclidean distance
and histogram intersection has a value of 0.09, 0.66 and
0.77, respectively. Specifically, lower Kullback-Leibler and
Euclidean distance and higher histogram intersection imply
a better similarity in both density maps. However, many
outliers are seen, showing a big range in the results and
decreasing the significance level.

On the other hand, another metrics proposed in this work,
such as statistic of difference image, mean absoluter error
(MAE), mean squared error (MSE), intensity correlation,
structural similarity (SSIM), and dice similarity coefficient
(DSC) showed a high divergence when comparing FFDM
and DBT density images directly. Presumably, this is caused
by different size of both density maps where DBT size is



bigger than FFDM density maps size. However, a registration
algorithms allowed us to overcome this issue. The affine
registration transformation with mean square metric used in
this work, have shown a statistically significant improvement
compared to no registration. This is proved by the mean of
difference images result which coincides with MAE, showing
an improvement before and after registration, respectively
3.77 and 2.22. MSE results is improve from 31.72 to 11.04
after registration. Complemented by intensity correlation and
DSC results, respectively 0.94 and 0.83, where value near
1 shows better similarity. Meanwhile, SSIM results shows a
moderate similarity with an insignificance value of 0.52 after
registration.

Differences in both image acquisition techniques have
been studied considering Pearson’s correlation of the global
measurement results and results from various similarity met-
rics between corresponding density maps. To conclude, there
is a high similarity of density maps provided by Volpara
between FFDM and DBT acquisition. The main divergences
between the density maps computed from both acquisitions
are mainly due to the different size and it can be minimized
by doing an image registration.
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CNN for SfT - 3D Reconstruction from a Single Image without
Ground-Truth

Anneke Annassia Putri Siswadi1 and Adrien Bartoli2

Abstract— The Reconstruction of 3D models of deformable
objects from a monocular data (Single 2D image) is still being
a fundamental problem in computer vision. SfT is a promising
method with which 3D shape of a deformable object can be
recovered by comparing the object in the input image and
the objects template before deformation. However, SfT has
its limitations; it fails when the texture is homogeneous. To
overcome this issue, SfT can be integrated with deep learning
approaches. Yet deep learning technique mostly needs Ground-
truth data which cannot be provided all the time. An alternative
way is to implement CNN without ground-truth which was
also successful in few other approaches. In this research, we
propose a CNN Network that can reconstruct a 3D model
of a deformable object in an input image using SfT without
providing any ground-truth data.

I. INTRODUCTION

The Reconstruction of 3D models from a monocular data
(Single 2D image) has been an interesting research area over
decades [1]. This is a quite challenging task when it comes
to deformable objects which are still being a fundamental
problem in computer vision. The 2D image lacks essential
data to reconstruct a 3D model as it can not provide the depth
information from its pixel correspondence. A solution to this
problem is to provide additional information of the object
present in the 2D image such as its volume of weighted
minimal surfaces [14], contours topology [11] or its template
(Shape from Template - SfT) [1].

The solution proposed by Toeppe et al. [14] focuses on
predicting the depth values of the input image. It can be
done by providing the minimal surfaces of the object volume
with considering its silhouette consistency but this method
requires the user interaction because the volume should be
increased or decreased manually to get the better result. In
contrast, in Mukta et al. [11] approach, the solution is to look
at the object contour’s topology. The 3D reconstruction of
a deformed object can be build by knowing the information
about its contour’s topology map. However, this method fails
provided incorrect edge detection of the object. The other
solution is SfT approach Adrien et al. [1]. Instead of using
the edge information, SfT method uses the points information
for 3D reconstruction which is more flexible to be used in
case of 3D modeling of deformable object [5].

Among these solutions, SfT is better one which can
provide the fundamental result in 3D reconstruction as men-
tioned in [1] so that 3D shape of a deformable object can be
recovered by comparing the object in the input image and
the object’s template before deformation. Most of the SfT

1University of Burgundy
2Institut Pascal, EnCoV - UMR 6602 CNRS (ex-ISIT)

technique use feature matching algorithm which is not so
efficient and hence deep learning techniques can be applied
which is proposed in [16].

There are many researchers who implement the CNN for
reconstructing the 3D model of an object from monocular
image by considering some other object information, such as
object’s volume with 3D geometry of input image [5], depth
image with 3D voxel [7], depth image with 3D geometry
[17][12], object’s appearance and object’s silhouette of the
input data [19] [10] [15] [18]. Most of these implementations
require the ground-truth data to acquire the better result for
reconstruction.

In the real-life implementation, ground-truth cannot be
provided all the time, since it is difficult to generate it.
However, it is possible to build a CNN that doesn’t re-
quire ground-truth (unsupervised CNN). There are a few
researchers who succeeded in implementing this concept for
other computer vision problems like depth estimation [8] and
optical flow estimation [9].

The aim of our research is to build a CNN for reconstruct-
ing the 3D model of a deformed object from a 2D image
without any ground-truth data. In SfT concept, as the object’s
template is sufficient to reconstruct the 3D model, no further
information about the deformed object is necessary. The idea
is to train the CNN with the input images of some deformed
objects and corresponding template. Our research focuses
on using the 3D geometry of the object to avoid ground-
truth. Some constraints are provided for simplification of our
research:

• The object is flat: The object used in our research is a
rectangular flat object with known texture.

• The object is isometric: The deformation of the object
is predictable since the object in the template is the same
as the object in the input image.

• The input is a real image: The input data for the
CNN is the 2-Dimensional real image without any
supervision.

• The object exists in the image: The object always
exists in every input image.

• object is in same conditions in input and template:
The input images are taken in the same time with the
same illumination conditions as of the template.

• The template data are provided: The template is the
object information before deformation.



II. BACKGROUND

A. Shape from Template (SfT)

The idea of SfT is to fit the object in the input image
with its template (before deformation) by computing the
deformation parameters of the 3D surface template in a way
that the appearance of the projective deformation (warped
with the template’s texture) will match the appearance of the
object in the input image [1][2][6]. Most of SfT techniques
implement the features matching algorithm for selecting the
pixel correspondence between the object in the template
and input image [1]. These algorithms fail when the texture
template is homogeneous or has too many repetitions. To
overcome this issue researchers began to adopt the deep
learning technique in 3D reconstruction [16].

B. CNN with Ground-Truth

Convolution Neural Network (CNN) is a kind of ANN
which consists of some convolution layers before entering
the interconnected neurons. Like other ANNs, CNN also
adopts the forward propagation and backward propagation
algorithms for training. CNN uses the advantages of image
pixels to extract its feature information for learning the
pattern [13].

In some research approaches like 3D-Recurrent Recon-
struction Neural Network (3D-R2N2) [3], Appearance Flow
Network (AFN) [19] and Transformation-Grounded Image
Generation Network (TVSN) [10], 3D reconstruction is
mainly focused on the object’s appearance. The targets for
these approaches are rigid objects. The main idea behind
the CNN implementation in these approaches is to learn the
structure of the 3D object by reconstructing its appearance
from multiple views. This approach requires a 3D CAD
model of the object as the additional information for recon-
struction.

Besides the object’s appearance, some research approaches
like 3PointOutNet [5], T-Network [7] and SurfNet (Surface
Network) [12] makes use of 3D geometry of the object in the
scene for reconstruction. The targets for these approaches are
the deformable objects. The main idea of the CNN imple-
mentation in this approach is producing the 3D geometry of
the input object and compute the difference error between
the predicted 3D geometry and 3D geometry provided in
ground-truth.

In our research, we adopt the SurfNet architecture for our
network. SurfNet predicts the 3D surface of an object based
on its 3D geometry. This network implements the CNN for
producing the geometry of the object in three different axes
(x, y and z). The main concept in SurfNet is to combine all
the three coordinates of the object and merging it with the
basic shape which is already computed analytically [7][4].

C. CNN without Ground-Truth

Implementing CNN without any ground-truth has been
successful in some methods like depth estimation [8] and
optical flow estimation [9]. In [8], Godard et al. proposed the
CNN implementation for estimating the depth of the image
by generating its disparity map. They provides an idea to

train the network by computing its loss appearance instead
of computing the distance between the network output and
the ground-truth data. The similar strategy has been used
in UnFlow to train the network without ground-truth [9].
UnFlow network implements CNN for estimating the optical
flow from two input images and warps its output with
the next input image, considering the pixel consistency. It
is possible to reach our goal by computing the loss cost
of object’s appearance to make it trained without ground-
truth and to generate its appearance by processing the 3D
geometry from CNN layers based on SfT.

III. RESEARCH METHODOLOGY

Our research is based on implementing the CNN without
ground-truth for reconstructing the 3D model of a deformable
object from a 2D image by employing the 3D geometry data.
The main goal is to generate 3D geometry with the strategy
of CNN without ground-truth. Like other CNN process flow,
our research methodology has been classified into three
stages: data preparation, training and testing.

A. Data Preparation

1) Input Image: The input of our network is RGB images
with the deformed object overlay in. The input images are
captured with a normal camera. In contrast to the existing
networks in 3D reconstruction which uses the image without
background, we use input images containing both the object
and its background. The size of the input image is 128x128.

2) Template: The template data in our case is the object
data before deformation. The object data holds in it the
texture images and 3D elements of the object in the scene.
Texture images are the captured images with actual texture
of the object. The texture images and the input images are
captured at the same time in order to keep the environment
stable. These images are RGB images with the size of
195x130 pixels, approximately. The actual size of the texture
image is 20.3x14.2 cm. The 3D object elements are the
3D geometry data of the object in the template (See Fig.
1). It consists of 3D vertices topology and points with face
correspondences.

Fig. 1. Object Vertices Topology



B. Training
The strategy of our network is to train without ground-

truth for estimation of 3D geometry (Fig. 2). The training
phase implements two algorithms in the sequence, forward
propagation and backward propagation. We adopted forward
propagation in which the input image is processed through
the CNN layers for producing the 3D geometry images of
the deformed object. These geometry images contain three
different vertices in three axes (x, y and z). The SfT concept
is applied in the next process for calculating the loss costs
of the network.

Fig. 2. Training Strategy

1) CNN Architecture: In our network, we adopt the CNN
architecture for the non-rigid object in Surfnet in order to
estimate the 3D geometry images of the deformed object.
Our network architecture is shown in Fig. 3.

Fig. 3. CNN-based SfT Architecture

To simplify the network process, we convert the input
RGB image as grayscale image. Like the Surfnet, Our
network architecture also implements the resnet model. In
encoder architecture, the first layer in our network is a pure
convolution layer. Instead of using the multiple convolution
layers, it continues with five down-residual block which
consists of convolution layers, batch normalization layers and
activation layers (ReLu).

The down-residual block is a combination of downsam-
pling block and residual block. The projection shortcut is

applied in the downsampling block. In this block, the 1 x
1 convolution with 2 strides are performed to match these
dimension. On the other hand, the identity shortcut is applied
performed in residual block. The 3 x 3 convolution with 1
stride is performed for this block. The last layer in encoder
architecture is a fully-connected layer. Our network uses
1024 connected-neurons for learning the pattern of the input
object.

The decoder architecture in our network is responsible
for the reconstruction process. This decoder implements
five up-residual blocks which is the combination of the
upsampling block and residual block. In contrast to most
of the CNN architecture, this decoder uses the convolution
transpose layer (transpose the gradient) for 2 x 2 filter
and 2 strides instead of deconvolution layer. The residual
upsampling block consists of convolution transpose layer,
convolution layers, batch normalization layers and activation
layers (ReLu). Same as the residual downsampling block,
this block also applies the projection shortcut. A convolution
layer is added at the end of the network for producing the
three geometry images in the different axes (x, y and z). The
size of these output images are 64 x 64. These three geometry
images contain the vertices in 3D system coordinate. In other
words, this network produces 4096 vertices for each axis.

2) SfT for CNN: In the training phase, calculation of loss
function is important. CNN (with ground-truth) calculates
the loss function between the ground-truth and the output
from the network, whereas in our network loss function is
calculated between the generated appearance of the deformed
object with its appearance in the input image (appearance
loss function) or the difference of the geodesic distance
between deformed object mesh and template mesh (defor-
mation loss function).

The object’s appearance is generated by implementing SfT
concept to the 3D geometry output of the CNN layers (con-
sidering the geodesic distance consistency). There are on the
whole of 4096 vertices, out of which 16 vertices are taken for
processing since the number of vertices used in 3x3 template
is 16. These vertices are already in synchronization with the
template’s vertices topology. The process for generating the
appearance of the input object is is performed in three stages,
representation of the vertices in mesh form, projection of the
vertices and warping the image.

Mesh Representation: The deformation loss is computed
as the difference of geodesic distance between the template
vertices and object vertices. Since the object vertices are
already in the same order with the template vertices topology,
both vertices will also have the same mesh order. The mesh
for object vertices is represented in the same manner with
the template mesh representation.

Vertices Projection: Camera calibration is applied before
projecting the object vertices in order to get the camera
intrinsic parameters. However, this camera matrix can’t be
used for projecting the object vertices because of the different
image size between the calibration image and input image.
The equation (1) is computed in order to have the right
projection matrix.



K
′
(3×3) = S(3×3)×K(3×3) (1)

where:
• K : Camera matrix from calibration camera
• K

′
: New camera matrix

• S : Scale vector
The vertices are projected by multiplying the 3D vertices

with the parameters of the projection matrix (Equation (2))

( fx
px

pz
+ cx, fy

py

pz
+ cy) (2)

where:
• (px, py, pz) : Input coordinates
• ( fx, fy) : Focal length
• (cx,cy) : Image center
By assuming that the object exists in the input image, we

can define that the maximum area of the deformed object
in the input image is 128x128. The synthesized data are
used for checking and visualizing the process of generating
appearance. The mesh representation of these synthesized
data can be seen in Fig. 4.

Fig. 4. Mesh Representation

Normalization is applied for projected vertices in order to
handle the outlier. The aim of this normalization is to overlay
the 2D object vertices into the image (128x128). In this
process, the minimum and maximum threshold are initialized
to be 0 and 127, respectively. If the projected object vertices
have the coordinates below minimum threshold, by default
it will become 0 whereas for those with maximum threshold
by default it becomes 127.

Image Warping: To generate the object appearance one
requires all points coordinate which is filled inside the object
mesh. To obtain all these filled-points we need to find the
pixel correspondences of the template’s filled-points which
is already provided.

The affine transformation is applied for defining the trans-
formation of these different coordinates. The transformation
matrix is computed in each face with three connected vertices
between object vertices and template vertices. Once the trans-
formation matrix of two faces is defined, all correspondence
points in the object can be calculated. Finally, the object’s
appearance for a face can be generated by copying the pixel
intensity from pixel correspondences to the texture image.
The warping result of a single face is shown in Fig. 5.

Fig. 5. Single Face Warping (a) Face Template, (b) Face Object

After warping gets completed in all the faces of the mesh,
the object’s appearance is generated as shown in Fig. 6. Both
texture image and object’s appearance are converted into gray
image in order to get the appearance loss cost which is more
accurate than using RGB image.

Fig. 6. Object Appearance (a) Template, (b) Object

Loss Function There are two kinds of loss functions
applied in our network, appearance loss (La) and deformation
loss (Ld). Like the other CNN implementation without
ground-truth, we also apply the loss appearance. Since the
target object is deformable and isometric, we also apply the
deformation loss in our network.

The appearance loss is applied for computing the dif-
ference between the generated object appearance and the
object’s appearance in the input image. The generated ob-
ject’s appearance is the appearance retrieved by warping the
filled-points object with the texture image while the object
appearance in input image is the result of warping the filled-
points object with the input image. The appearance loss is
computed as sum square error by considering the Brightness
Constancy Assumption (BCA) which is shown in equation
(3).

La = min
n

∑
i=0

n

∑
j=0
||I(i, j)− I

′
(i, j)||

2 (3)

In contrast, the deformation loss is applied for computing
the difference of the distance between each vertices which
is connected by the edges between 3D mesh of input object
and 3D mesh of template. This loss function is computed as
sum square error by considering the isometric consistency
(see equation (4)).



Ld = min
n

∑
i=1

(||p′i+1− p
′
i||2−||pi+1− pi||2)2 (4)

C. Testing

The testing phase is to perform the evaluation of the net-
works. Since the goal of our network is to reconstruct the 3D
shape from a single image, the testing phase in this network
is to evaluate the result of the 3D reconstruction. Comparing
to the training architecture, the network architecture in the
testing phase consists of CNN layers without performing
some SfT process. The input image of this testing phase is
the RGB image which is fed into the testing network with the
updated value of weight and bias parameters after training.

IV. IMPLEMENTATION

A. Training

We implemented both forward propagation process and
backward propagation algorithms in training phase. The
network is executed using the real images and shows how
the training strategy handles the real environment. In training
phase, forward propagation is executed once at the beginning
of training. In forward propagation, the task is to allocate the
memory of all commands and variables of training thereby
executing the input images until the network computes the
loss cost, whereas in the backward propagation, the task is
to calculate the gradient of the loss cost and to minimize it
while the network learns for the exact value of its weights.

In the SfT for CNN process, the loss functions are calcu-
lated through sequence of processes: Mesh Representation,
Mesh Projection and Warping the Object’s Appearance. The
Fig. 7 below is one case of the SfT for CNN implemented
in the real data.

Fig. 7. Handling Real Data (a) Input Image, (b) Object

We can infer that with SfT, our network can generate the
object’s appearance if the triangular object face is less than or
equal to the triangular template face. In contrast, our network
fails to perform well when the triangular object face is greater
than the triangular template face. This is a normal behaviour
since the warping function creates a duplicate appearance
from the specific image. However, both deformation loss and
appearance loss are successfully calculated. The training is
executed with 50 epochs and 8 batch size. The optimization

algorithm used in our network is Adam optimizer with
0.001 learning rate. However, the training process is still
not completely successful. The forward propagation does
its job well but the back propagation fails to compute the
gradient between the loss costs and the weight variables in
CNN layers.

B. Testing

Due to the issues encountered in training phase, we
couldn’t test the network with real data. However, the works
are continuing to reach the main goal of reconstructing a 3D
model of a deformed object from a single 2D image without
any ground-truth data.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

SfT based CNN without ground truth can be a boon in
3D reconstruction since it can aid in the 3D modeling of a
deformable object. The main advantage of this technique is
that it needs only one template for reconstruction and the
same template can be used for more than one input images
provided the object in the input image and template are
same. The challenges we faced in this research is the back-
propagation which fails to compute the gradient of loss cost.
However, we are continuing the research to figure out this
issue and optimize the process.

B. Future Work

In order to evaluate the network, all process need to
be executed both training and testing. Since the failure in
training process is in the backward propagation, the next task
to do is to optimize the code by performing the custom layer
for ’SfT for CNN’ process for taking care of the gradient of
the loss costs, and testing.
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