
Vision Based Control of Unmanned Aerial Vehicles Using Deep
Learning

Mohit Kumar Ahuja∗,†, Guillaume Allibert† and Cédric Demonceaux∗

Abstract— The current research on using DNNs (Deep Neural
Networks) to autonomously control UAVs (Unmanned Aerial
Vehicles) is limited. The present paper details CNN (Con-
volutional Neural Network) architectures used to predict the
movement of a billiard ball on a billiard table. Two different
architectures are proposed which will directly process raw
visual inputs. The first proposed architecture uses Frame-
centric (FC) prediction based on visual glimpse centered on
the frame, while the second proposed architecture uses Object-
centric (OC) prediction based on visual glimpse centered on the
object. Further, the future velocities and angles of the moving
ball provided by the CNNs is used to control the UAV. It is
demonstrated that the proposed model is able to predict the
future velocities and angles of a billiard ball with high accuracy.

I. INTRODUCTION

Deep learning is becoming popular nowadays as it has
significantly improved the state-of-the-art of many problems
that Machine Learning and Artificial Intelligence (AI) com-
munity faced for a long time. The present work studies the
control of a UAV using Deep learning [7], [8], [9], [10]. In
the past two years, some works demonstrated autonomous
control of UAV using deep learning. To the best of our
knowledge, all of them have implemented deep learning al-
gorithms for solving a classification problem, where accord-
ing to the situation, the UAV is capable of taking decisions
like moving right/left/straight/backward/stop. However, very
few works can be found which shows the study of regression
used for autonomous control of UAV.

After an extensive literature review, it was decided to
work on a project in which a UAV, hovering over a billiard
ball will have the capability to predict the future velocities
and trajectory of that ball if it gets hit. Also, the UAV
will autonomously follow the ball even if the ball is hit
with a huge force. We have improved the results of the
previously designed architectures as well as designed our
own Convolution Neural Network (CNN) which predicts the
future velocities and trajectories of the ball and let the UAV
follow the ball autonomously.

We decided to work on deep learning due to its advantages
over traditional machine learning algorithms. Traditional
machine learning algorithms give better results with small
data-sets. However, machine learning algorithms are not
capable of coping with big data sets and give unsatisfactory

This work was supported by CNRS-I3S Lab, Sophia Antipolis, France.
∗,†Mohit Kumar Ahuja and ∗Cédric Demonceaux are with the Uni-

versity of Burgundy, France. Mohitkumarahuja@gmail.com,
cedric.demonceaux@ubfc.fr
†Guillaume Allibert is with the Université Nice Sophia Antipolis, Biot,

France. allibert@i3s.unice.fr

performance. Whereas deep learning algorithms provides
accurate results with big data-sets.

The rest of this paper is organized as follows. Section II
explains system descriptions used for training and testing
our architecture. Section III explains the previous works and
the state of the art. Section IV explains the methodology,
in which architecture of FC based CNN is proposed for
predicting the future movements of the ball on a billiard
table which takes an input of visual glimpse centered on
the frame. It also explains a novel model (BRNET-Billiard
Network) which is used to control the UAV by processing
two consecutive frames (centered on the object) of a camera.
The camera is mounted on a quadcopter that uses the object-
centric (OC) approach to predict the future velocities and
angles of the moving ball. And simulated results are shown
in Section V. The conclusion is explained in Section VI.

II. SYSTEM DESCRIPTION

The model was trained on a Tesla K40c GPU with 57,935
simulated images and tested on a Jetson-TX2 with 6400
simulated images. The setup for the quadrotor is ready as
shown in Figure 1. After collecting real time data of billiard
board, the model will be trained again and tested in real
time. The hardware includes a quadcopter with open source
Pixhawk autopilot, and NVIDIA Jetson TX2 with orbitty
carrier board. The vision processing uses a single down-
facing Basler acA640-120gc GigE camera with a gimbal,
which run in 720p mode at 30 fps. All processing is done
on the Jetson TX2. The quadcopter can also be replaced
by a similar 450-550 drone, such as a DJI Flame Wheel, if
desired.

The output of the network will provide high-level com-
mands for pixhawk controller, such as velocities to control
the platform. Velocity commands are produced by our net-
work running on Jetson-TX2 which is mounted on the quad-
copter and uses Mavros ROS package for communication.

III. PREVIOUS WORKS

In the last decade, plenty of research has been carried
out for autonomous control of UGV’s [11], [12], [13], using
DNN but there is limited research on autonomous control of
(UAV) using deep learning [14], [15], [16].

As our task is to predict future velocities and angles and
use those predictions to control the UAVs, previous works
tried to predict the moving object parameters by just using
the image sequence. Some others presented a completely new
approach to predict the future velocity of the ball by taking
previous some images as an input. We will discuss some

Fig. 1: The hardware which will be used for real time pre-
dictions, which contains quadrotor, jetson-TX2, and Pixhawk
autopilot controller.

of the related approaches proposed previously and will also
discuss the limitations of those approaches.

In [4], Wu et. al. have proposed a generative model for
solving the problems of physical scene understanding from
real-world videos or images. But this approach will give us
the displacement of any moving object from a set of images.
It can be used to predict the current velocity of the ball which
might have some error. Due to this fact, this network can not
be used for predicting future velocities of the moving object.

In [1], Katerina et. al. proposed an approach that takes
input as a group of 4 frames (In FC: centred at frame.
In OC: centered at object), velocity of the moving object
and the information stored in previous Long Short Term
Memory (LSTM) units. Their main objective was to predict
the future frames of the ball. Since our work concerns about
the applicability of self-governing control of a UAV to follow
a billiard ball, their proposed model poses some limitations
like manual interventions. Also, their model doesn’t have a
satisfactory prediction accuracy.

Some architectures proposed to make real time decisions
like following a road and taking emergency actions [7],
[8], [9], and [10] such as stopping if a dynamic obstacle
comes in the frame of quadcopter camera. And other similar
architectures are presented and all of them are related to
classification problem. Some have also used Model Predic-
tive Control(MPC) to improve the accuracy of the system
[14], [15], and [16].

IV. METHODOLOGY

The learning approach aims to predict future velocities and
angles of a moving ball on a billiard table. These predicted
velocities and angles are later converted into control flying
commands which enable a UAV to safely follow the moving
ball. Two different CNN architectures are proposed, which
improved the state of the art.

A. Frame-Centric Approach

This proposed architecture is based on architectures ex-
plained in [1] and [6]. The complete model is shown in
Figure 2. The improved architecture takes an input of just
one FC image, its current velocity, angle and predicts a norm
of future velocities and angles for 5 future frames. It uses the
first four hidden layers of the CNN proposed in [1] followed
by three fully connected layers. The output of the network
provides the velocity and angle of the ball movement for the
next five frames.

Fig. 2: Proposed CNN for FC images which takes a frame
centric image of a billiard ball and current velocity and angle
information and predicts future velocities and angles of a
moving ball for 5 future frames.

The predicted velocity and angle can be modified to
predict for as much future frames as required. But some
modification at the output layer is required to provide that
particular number of variables. In our case, the future ve-
locity and angle have been predicted till 5 future frames
i.e for coming frame at time(t+1), (t+2), (t+3), (t+4), and
time(t+5). The input and output (Ŷ) of the network can be
seen in Figure 3. The resulting vector representing the data
for future velocities and angle is shown below:

Ŷ =
[
Vt+1, . . . , Vt+5, Θt+1, . . . , Θt+5

]>
(1)

Where Vt+x and Θt+x , for x = 1, ..., 5, represents the
velocities and the angles, respectively. When training the
model, the velocities and the angles were normalized to avoid
biasing problem as the values should be in a scaled format.
The limitation of this architecture is, it requires velocity and
angle of the ball in current frame to be provided manually
for each prediction.

B. BRNET-Billiard Network

In order to overcome the limitations in the previously
proposed FC architecture, an Object-Centric (OC) based
architecture has been designed by considering the fact that
it should be capable of following a ball by taking just
the images. No external input should be provided to the
network. This network is inspired from Siamese network
[5]. A number of image sequences were gathered with

Fig. 3: Input and output of FC-Based architecture.

different locations of the ball on a billiard table. Unlike the
previous model, the new designed model (named as Billiard
Network(BRNET)) takes an input’s of first two images from
the camera (1st image at time(t) and 2nd at time(t+1)) and
outputs the future velocities and angles of the ball. While
training this network, optical flow was used to compute
the displacement of ball from one image to the other. The
computed displacement and frame rate of the camera was
then used to compute the velocity of the ball in current frame.
The complete architecture of BRNET is shown in Figure 5.

Fig. 4: Image showing input and output of BRNET

As the model inputs images centered at the object and
not on the frame, the model became generic to handle
environments which were never encountered during training,
therefore it can be used for planning actions in novel environ-
ments without the requirement of task-specific supervision.
Figure 4 shows the input and output of BRNET. It was
discussed that the direction of learning to predict the effect
of the ball’s movement on the world directly from visual
inputs is an important direction for enabling robots to act in

previously unseen environments.

V. SIMULATION RESULTS
A. FC Approach

1) Dataset: In the present work, Matlab 2016b was used
for generating the dataset. As this architecture deals with
FC images, the requirement was to generate a sequence of
simulated images of the complete billiard table. A box of size
100x100 pixels was created and filled with green color. On
the same box, another circle was generated however filled
with red colour. The whole image has a resemblance of a
billiard table consisting of a red ball and now the task is to
move the ball.

Simple laws of physics were used to move the ball and
also to decide the angle of rotation after hitting the edge of
the table. The velocity of the ball was also reduced after
every frame which represented the friction caused by table
to the moving ball. The ball was placed on coordinates
(10,10) and moved in 24 different direction starting from
0 degree and moving with some velocity. The frames of the
board were saved with the corresponding velocity and angle
information till the ball stand still. After that, it started again
with an increment of 15 degree in the angle and the process
was repeated till 24 possible directions were covered. After
the ball covered all 24 angles on location (10,10), it was
incremented by 10 in x-axis. After completion of different
angle movements in 10 different locations in x-axis starting
from (10,10) till (90,10), it was increment by 10 in y-axis.

And this continues in y-axis from (10,10) till (10,90),
by doing so the images were generated from 81 different
locations with 24 angle movements. The total trajectories
produced were 1944. On complete generation of the
data-set with different angle movements and locations
of the ball, 64,365 images were obtained. After data
generation, we resized all the images to match with the
improved architecture. The original size of each image was
434x344x3 and after resizing it became 127x127x3.

2) Training: Deep neural nets with large number of pa-
rameters are very powerful but over-fitting is a serious prob-
lem in such networks. To reduce over-fitting, training data
along with its labels was shuffled and then it was divided into
three parts Training-Validation-Test. After division, training
set had 57,935 images, validation set had 3,215 images and
test set had 3,215 images.

The whole network was implemented using TensorFlow
deep learning library. During training the model on the
training dataset, the code was designed in a manner that in
a single iteration the network is applied to the validation
set as well. On completion of 5 iterations, the result of
train accuracy1 and validation accuracy were printed. If

1accuracy means the % of data which is correctly predicted after
training with a threshold of ±1%. The threshold of ±1% means the
prediction of 344 will be considered as correctly predicted if ground
truth label is 345.

Fig. 5: BRNET Architecture for OC Images which takes two consecutive frames of a camera and predicts future velocities
and angles of a moving ball for 5 future frames.

the difference between the training accuracy and validation
accuracy was huge, it meant the network was overfitting.
And the training was started all over again with different
parameters. So the training of the model was stopped after
achieving 95% 2 training and validation accuracy. The model
was saved after every 5 iterations.

After training, the predicted output was multiplied with
the maximum velocity and angle. The final accuracy was
computed by comparing the actual values of velocities and
angles not the normalized ones. This has been done to get
the network in one scale since, the velocities can range
from 20 to 50 and angles value can range from 0 and 345.

3) Results: The latest model was loaded in which train-
dev accuracy was more than 95%. The trained model was
used to predict outputs for test set and 94% test accuracy3

was achieved. To be clear, the test set was an unknown
dataset (never encountered while training) for the model.

Afterwards, a new dataset was generated with ball
located on coordinates (15,25) and many more coordinates
which were not used while training. The size of the new
dataset was 6400 images of size 127x127x3. And after the
generation of completely new dataset, it was tested using
our trained model and obtained a test accuracy of 91.3%,
which is 31% more than the state-of-the-art4.

2Training and validation accuracy of 95% means 95% of training and
validation labels are correctly predicted as the ground truth labels.

3Test accuracy of 94% means that 94% of test labels are correctly
predicted as the ground truth labels

4The accuracy mentioned in [1] is 60%. Which is 31% less than our
obtained accuracy

4) quadcopter Control: The control of quadcopter using
FC images was a daunting task as the camera needs to be
fixed on a particular height from the billiard table to get the
whole frame of the billiard board. As shown in figure (6a)
and in Figure (6b), the camera is fixed in both the figures
and the quadcopter is following the ball from a larger height
than the camera. Because if the quadcopter will follow the
ball with a lesser height than the camera, it will be captured
in the frame of the camera and the predictions will be spoiled
for next frames. One more drawback of this architecture is
that we have to feed the velocity and theta of the moving
ball manually.

B. BRNET

1) Dataset: With some minor changes, the data was
generated for BRNET as it was generated for FC-approach.
Since, it deals with OC images, the requirement was to
generate a sequence of simulated images centering billiard
ball. The only difference while saving the frames in OC
case is, from the whole image, only the patch of 100x100
pixels which was centering the ball will be saved. And
the images were saved with their corresponding velocity
and angle information till the ball stands still. But while
saving the image, it is saved with a size of 434x344x3 due
to Matlab’s image saving function properties. After that, it
started again with an increment of 15 degree in the angle and
the process was repeated till it covered 24 possible directions.

The dataset for this model was generated from very less
coordinates. After the ball covers all 24 angles on location
(10,90), it was then relocated at coordinates (20,80), (20,90),
(10,80), (50,90), (50,80), and (50,50). After completion of

(a)

(b)

Fig. 6: Figure shows: (a) Quadcopter Control in FC ap-
proach at time(t), (b) quadcopter Control in FC approach
at time(t+1).

different angle movements in 7 different locations, the dataset
was ready for augmenting the data. Training data collected
from point(10,90) was inverted vertically and the image patch
looked like the ball was at (10,10) and the angle value was
increment for the same.

Out of all the 7 points, the trajectories generated from the
ball being in the center of the table were not augmented.
But rest all images collected from 6 points mentioned above
were rotated by 90, 180 and 270 degrees. By doing so, the
dataset generated from rotation of the images covered all
corners and edges of the table. So, images were augmented
for 34 different locations with 24 angle movement. The
total trajectories produced were 816. On completion of data
augmentation, 26,112 images were obtained.

After data generation and augmentation, images were
resized to match with the designed architecture. The original
size of each image was 434x344x3 which reduced to
127x127x3 on resizing.

2) Training: Training of BRNET architecture is being
performed in the same manner as it was for FC-approach.
But in BRNET, before training the architecture, Lukas-
Kanade optical flow method was used to compute the norm
of velocity and angle of the ball between two images to
create ground truth velocities of ball. But Lucas-Kanade
with multi-resolution method worked better to detect the
right motion in right direction. It was coded in such a
manner that it will only compute the mean of vectors
greater than 1 or less than one. So, it neglects small motions
and only the accurate velocities were obtained. The velocity
and angle data saved while generating the dataset will not
be used for training but it will be used to compare with

(a)

(b)

Fig. 7: Figure shows: (a) Quadcopter Control in BRNET at
time(t), (b) Quadcopter Control in BRNET at time(t+1).

optical flow output. The purpose of doing so is to check the
accuracy of optical flow predictions for ball displacement
because in real world, the ground truth velocity are not
known. Rest of the training procedure is similar in this
architecture as it was followed in previous architecture.

3) Results: The goal is to load the latest model in which
the train-dev accuracy will be more than 98%. And test our
trained model on the test set to get more than 95% accuracy.
To be clear, the test set will be an unknown dataset (never
encountered while training) for the model.

Afterwards, a new dataset will be generated with ball
located on coordinates (15, 25) and many more coordinates
which were not used while training. And after generation
of completely new dataset, it will be tested on our trained
model.

4) quadcopter Control: The control of quadcopter using
OC images will be a very easy task as the camera will be
mounted on the quadcopter and it will only capture the
view of ball centered in the image as shown in figure (7a)
and in Figure (7b). The major advantage of this architecture
is no manual feeding of velocity and angle of the moving
ball is required. It will be autonomously computed in the
architecture.

VI. CONCLUSION

A. Conclusion

This research work demonstrated the applicability of deep
learning for accurate prediction of future velocities and
trajectories of a billiard ball. We have presented two different
CNN architectures to predict the future velocities and angles

of the moving ball using deep learning. An improved frame-
centric (FC) architecture based on visual glimpses centered
on the frame of the billiard table was proposed. Also, a
novel model (BRNET-Billiard Network) was proposed which
processes two consecutive frames of a quad-copter camera
and uses an object-centric (OC) approach to predict the
future velocities and angles of the moving ball using deep
learning. Further, it is shown that these predicted outputs
can be used to control the UAV to follow the ball. The
accomplished studies and experiments performed showed
significant improvement in the state-of-the-art.

It is shown through experiments that the proposed model
is able to predict the future velocities and angles of a billiard
ball with high accuracy.

B. Future Work

As part of the future work, the proposed models will
be trained on real data collected from camera mounted on
a quadcoptor. The trained model will then be tested on a
Jetson-TX2 mounted on a quadcopter to follow the move-
ments of billiard ball in real time. Once it starts following
the ball accurately, the same model will be trained on human
image data and then tested to see whether the UAV follow
humans or not.

REFERENCES

[1] Katerina Fragkiadaki, Pulkit Agarwal, Sergey Levine, and Jitendra
Malik. ”Learning Visual Predictive Models of Physics for Playing
Billiard”. arXiv preprint arXiv:1511.07404, Jan 2016.

[2] Pulkit Agarwal, Ashvin Nair, Pieter Abbeel, Sergey Levine, and
Jitendra Malik. ”Learning to Poke by Poking: Experiential Learning
of Intuitive Physics”. Advances in Neural Information Processing
Systems, 5074-5082, NIPS 2016.

[3] Agrawal Pulkit, Carreira Joao, and Malik Jitendra. ”Learning to
see by moving”. IEEE International Conference on Computer Vision
(ICCV),pages = 37 - 45, 2015.

[4] Wu, Jiajun, Yildirim, Ilker, Lim, Joseph J, Freeman, Bill, and Tenen-
baum, Josh. ”Galileo: Perceiving physical object properties by inte-
grating a physics engine with deep learning”. Advances in Neural
Information Processing Systems 28, pp. 127135. Curran Associates,
Inc., 2015.

[5] G Koch, T EDU, R Zemel, and R Salakhutdinov. ”Siamese Neural
Networks for One-shot Image Recognition”.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ”ImageNet
Classification with Deep Convolutional Neural Networks”. Advances
in neural information processing systems, 1097-1105, 2012.

[7] Antonio Loquercio, Ana I. Maqueda, Carlos R. del-Blanco, and
Davide Scaramuzza. ”DroNet: Learning to Fly by Driving”. IEEE
ROBOTICS AND AUTOMATION LETTERS. PREPRINT VER-
SION. ACCEPTED JANUARY, 2018.

[8] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodrguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza,
and L. M. Gambardella. ”A Machine Learning Approach to Visual
Perception of Forest Trails for Mobile Robots”. IEEE Robotics and
Automation Letters, 2016.

[9] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birch-
field. ”Toward Low-Flying Autonomous MAV Trail Navigation using
Deep Neural Networks for Environmental Awareness”. arXiv preprint
arXiv:1705.02550.

[10] Dhiraj Gandhi, Lerrel Pinto and Abhinav Gupta. ”Learning to Fly by
Crashing”. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), arXiv preprint arXiv:1704.05588, Sep 2017.

[11] Pulkit Agarwal, Joao Carreira, and Jitendra Malik. ”Learning to See
by Moving”. Computer Vision (ICCV), IEEE International Conference
on 37-45, 2015.

[12] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon, Lawrence D. Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Karol Zieba, and Jake
Zhao. ”End to End Learning for Self-Driving Cars”. arXiv preprint
arXiv:1604.07316v1.

[13] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choro-
manski, Bernhard Firner, Lawrence Jackel, and Urs Muller. ”Explain-
ing How a Deep Neural Network Trained with End-to-End Learning
Steers a Car”. arXiv preprint arXiv:1704.07911v1, 2017.

[14] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee,
Lorenz Meier, Petri Tanskanen, and Marc Pollefeys. ”Vision-Based
Autonomous Mapping and Exploration Using a Quadrotor MAV”.
IEEE International Conference on Intelligent Robots and Systems,
October 2012.

[15] Ian Lenz, Ross Knepper, Ashutosh Saxena. ”DeepMPC: Learning
Latent Nonlinear Dynamics for Real-Time Predictive Control”.

[16] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel.
”Learning Deep Control Policies for Autonomous Aerial Vehicles with
MPC-Guided Policy Search”. arXiv preprint arXiv:1509.06791v2. Feb
2016.

 1

Abstract The spin-out company MicroSense Technologies Ltd (MTL) has invented a new microwave sensor system that enables

the detection of concentration of water and ingredients in processed foods, which is an indicator of the quality of the product. The

sensor systems relies on the measurement of the dielectric permittivity of the product. For example water has a high permittivity,

the microwave signal reflected from the product induces a shift which can be correlated of the content of water in the product. The

purpose of the project is to be able to link this change of signal to different products, and for a given product to different

concentrations of water, indicative of its quality by constructing a machine learning classifier. In this project the Artificial Neural

Networks were selected to perform the classification due to their robustness and accuracy.

Index Terms— Artificial Neural Networks – Machine Learning – Microwave Sensor – Principal Component Analysis

I. INTRODUCTION1

he quality and composition of food products are of

significant importance during the stages of a food

production flow line. Marie Ferrie [1] defines quality as “The

distinctive trait, characteristic, capacity or virtue of a product

that sets it apart from all others”. Food manufacturing

companies must have great standards regarding the quality

of their products because the consumer’s awareness and

knowledge is high in today’s social and economic

environment. Hence the microwave sensors is an accurate

technology to fill this need. Many researches on microwave

techniques were performed throughout the last years,

resulting in practical implications in pharmaceutical, oil and

food industries. [2], [3], [4], [5]

This technology offers real-time monitoring, is non-

destructive, contactless and non-invasive, in contradiction to

other complex chemical procedures. A statement of the basic

principle behind this kind of sensor was given by the authors

of this article [6], “Depending on the type and amount of a

chemical ingredient in the product under test, a variation of

the complex dielectric permittivity is produced. This

perturbation of the dielectric permittivity affects the

electromagnetic response of the sensor, thus allowing to

obtain information about the composition of the solution.”

Frequency and time domain measurements are the two main

categories of measuring microwaves. The first method

determines the permittivity by calculating the transmission

or reflection coefficient. The second method that uses time

domain frequencies, traces the time domain waveform and

then can either compare it with the one before the

measurement or apply Fourier-Transform (FT) and follow

the frequency domain method. [7]

II. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Development of Neural Networks (NNs) date back to the

early 1940s. It experienced an upsurge in popularity in the

late 1980s. This was a result of the discovery of new

techniques and developments and general advances in

computer hardware technology. Some NNs are models of

biological neural networks and some are not, but historically,

much of the inspiration for the field of NNs came from the

desire to produce artificial systems capable of sophisticated,

perhaps intelligent, computations similar to those that the

human brain routinely performs, and thereby possibly to

enhance our understanding of the human brain. [8]

The basic unit of a neural network is the neuron. It receives

input from some other neurons, or from an external source

such a feature and computes an output. Each input has an

associated weight w, which is assigned on the basis of its

relative importance to other inputs. The node applies a

function f to the weighted sum of its inputs as shown in the

below Fig. 1.

Fig. 1: A single neuron

The above network takes numerical inputs X1 and X2

and has weights w1 and w2 with those inputs. There is

another input 1 with weight b (called the Bias) associated

Machine Learning Algorithm for

novel microwave sensor systems

Stefanos Athanasiadis

T

with it. The Bias provides every node with a constant value.

The output Y from the neuron is computed as

shown. The function f is non-linear and is called activation

function. The purpose of the activation function is to

introduce non-linearity into the output of a neuron. This is

important because most real world data is non-linear and the

neurons need to learn these non-linear representations. [9]

III. PROCESSING OF SENSOR RAW DATA

The first step is to process the raw data gathered from the

FoodSense microwave sensor by selecting the correct

features to classify the data to their corresponding class /

recipe. The number of features for each observation is 1500,

that is the frequency readings gathered from the sensor. PCA

finds the most important feature, [10], [11] , [12]which is the

one with the largest variance. The dimension with the largest

variance corresponds to the dimension with the largest

entropy and thus encodes the most information. Fig. 2

illustrates the variance of all 1500 features, where a pinpoint

on the 8th component has been placed, showing the middle

ground. The first 8 to 12 features are the most significant

components in descending order. The rest features, the

smaller eigenvectors, represent noise components.

Fig. 2: Feature Extraction based on the variance

IV. IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS

Following the results of PCA, the data from all the recipes

were combined together in one data matrix with rows as

many as the different sensor readings called observations and

columns the number of features selected in the PCA analysis

(8 and 12 Features). Then another matrix with the same rows

as the data matrix and 6 columns, one for each class (recipe),

was constructed as a label matrix that contains information

of the class each observation has. For example, the rows of

the matrix that contain the measurements from recipe 26, are

labeled at the label matrix as a unique binary combination:

100000. Recipe’s 51 unique combination is 010000 and so

on. Fig. 3 gives another correlation between recipes and class

number, where this number system is used in the following

evaluating confusion matrix.

Fig. 3: Mapping between labels/class and recipes

A. A sample architect of a Neural Network

The following Fig. 4 demonstrate one of the training session

of the Neural Network It gives detailed information

regarding the architecture of the network, such as the number

of neurons in the input, hidden and output layers, the training

algorithm, and some parameters that update throughout the

session like the gradient.

 Fig. 4: Neural Networks training session using Matlab’s

B. Classification Accuracy - Confusion Matrix

The following Fig. 5, the confusion matrix, is plotted when

the training phase is completed and the model is tested on the

test set of the data. In the confusion matrix the rows

correspond to the predicted class (Output Class) and the

columns correspond to the true class (Target Class). For

example cell (3, 6) shows that 122 observations were

supposed to be classified as class 6, but instead they were

incorrectly classified as 3. The diagonal cells correspond to

observations that are correctly classified. The off-diagonal

cells correspond to incorrectly classified observations. Both

the number of observations and the percentage of the total

number of observations are shown in each cell.

 3

The column on the far right of the plot shows the percentages

of all the examples predicted to belong to each class that are

correctly and incorrectly classified. These metrics are often

called the precision (or positive predictive value) and false

discovery rate, respectively. The row at the bottom of the plot

shows the percentages of all the examples belonging to each

class that are correctly and incorrectly classified. These

metrics are often called the recall (or true positive rate) and

false negative rate, respectively. The cell in the bottom right

of the plot shows the overall accuracy.

Fig. 5: Confusion Matrix

Observing the results of Fig. 5, the accuracy of the classifier

is the most optimal, though some misclassified data were

observed between the classes 3 (recipe 39) and 6 (recipe 37).

122 observations were misclassified as class 6 instead of 3

and similarly 46 observations were classified as class 3

instead of 6. In most of the experiment runs the

misclassification occurred between these recipes.

V. RESULTS

The total number of test runs that have been conducted are

24. It is the amount of different training and testing sessions.

The experiment is divided in two large categories depending

the number of neurons in the input layer, meaning the

number of features that where selected in the feature

selection section mentioned previously. Then each category

was subdivided into another 2 categories, depending on the

learning rate parameter. The following 4 tables show the 4

aforementioned categories. In every category 6 experiment

runs have been executed, 2 of these based on the training

method and 3 different number of neurons in the hidden

layer, making total of 6 unique combination. Each one of the

6 cells display 3 numbers, the percentage of the correct

classification of the test set of data, the number of epochs /

iterations and finally the time that the neural network

required to train the data.

TABLE 1

1.1 category - 8 Features, Learning rate = 0.05

Percentage of correct classification

/ No. of iterations / time of training

(mm:ss) No. of Features = 8 -
Learning rate = 0.05

Number of Neurons in the

hidden layer

8 16 20

Training

Method

Levenberg -

Marquardt

Algorithm

95.10%

/ 72 /

00:30

97.90%

/ 107 /

02:15

98.20%

/ 236 /

05:32

Scaled conjugate
gradient algorithm

94.50%

/ 488 /

02:17

97.00%

/ 757 /

03:39

97.30%

/ 1000 /

06:07

TABLE 2

1.1 category - 8 Features, Learning rate = 0.25

Percentage of correct classification

/ No. of iterations / time of training
(mm:ss) No. of Features = 8 -

Learning rate = 0.25

Number of Neurons in the

hidden layer

8 16 20

Training

Method

Levenberg -

Marquardt
Algorithm

94.50%

/ 56 /
00:23

98.00%

/ 89 /
01:52

98.60%

/ 96 /

2:21

Scaled conjugate

gradient algorithm

96.00%

/ 392 /
00:18

96.80%

/ 781 /
04:00

98.10%

/ 934 /
03:27

A. Comparison of results in category 1.1

The classification accuracy and execution time give

reasonable results, according to the theory that was

mentioned earlier. Almost in every execution The Levenberg

– Marquardt [13] gave better results than the Scaled

conjugate gradient algorithm [14]. The latter algorithm

iterates quicker than the former due to the reduction of the

number of computations, hence the bigger number of epochs

(iterations). The second algorithm is considered to be faster,

but it doesn’t give better results.

It is observed over the 6 cases that the more neurons the

hidden layer has the more accurate results give, but the

training time that is required is also getting bigger. Having

more neurons the network executes more computations

resulting in a more time consuming training. The number of

the neurons in the hidden layer that give the biggest accuracy

98.20% in both training methods is 20. Though having more

neurons doesn’t necessarily means that is the optimal

solution. For example the execution time of the first training

algorithm using 20 neurons in the hidden layer is 05:32,

while in the previous testing it is only 02:15 which gave

accuracy of 97.90%. Having a system that requires real time

decision makings such as the production line of the Food

industry, it is more optimal having a quicker method that

would require less computation time.

B. Comparison of results between categories 1.1 and 1.2

In this occasion, the results are also reasonable. As

mentioned before the learning rate is responsible for the

weight adjusting at the end of each iteration. Having a very

small learning rate it results in a very slow update thus

making the training process very slow, that’s why the

training time in the category 1.1 is much bigger than in the

category 1.2. Though because of bigger value of the learning

rate in the category 1.2 it results in a less accurate

classification. In conclusion, the most optimal classification

between these 2 categories is the one in the category 1.2 with

accuracy 98.60% and execution/training time of 2:21.
TABLE 3

2.1 category - 12 Features, Learning rate = 0.05

Percentage of correct classification
/ No. of iterations / time of training

(mm:ss) No. of Features = 12 -

Learning rate = 0.05

Number of Neurons in the
hidden layer

8 16 20

Training

Method

Levenberg -
Marquardt

Algorithm

97.50%
/ 143 /

01:37

99.00%

/ 49 /

01:12

99.00%
/ 66 /

02:15

Scaled conjugate

gradient algorithm

96.60%
/ 480 /

02:18

98.10%
/ 717 /

03:11

98.70%
/ 1000 /

04:32

TABLE 4

2.2 category - 12 Features, Learning rate = 0.25

Percentage of correct classification
/ No. of iterations / time of training

(mm:ss) No. of Features = 12 -

Learning rate = 0.05

Number of Neurons in the
hidden layer

8 16 20

Training

Method

Levenberg -
Marquardt

Algorithm

97.20%
/ 95 /

00:55

98.70%
/ 84 /

01:54

99.20%
/ 101/

03:41

Scaled conjugate

gradient algorithm

96.00%
/ 761 /

03:17

98.40%
/ 760 /

02:45

98.80%
/ 716/

02:06

C. Comparison of results in category 2.1

It is worth mentioning that the accuracy between 16 and 20

neurons in the first training method didn’t change, because

having too many neurons resulted in overfitting, also the

training process was longer due to more computations as

expected.

D. Comparison of results between categories 1 and 2

In category 2 the number of the input of the Neural Network

is altered from 8 features to 12, thus resulting better accuracy

overall. That means that during the feature selection

technique the following 4 features had critical information

that could be used for the classification process. Using 12

features as input, the Levenberg – Marquardt Algorithm, 16

neurons in the hidden layer and the learning rate parameter

having the value of 0.05 resulted in the best optimal

classification accuracy of 99.00% and 1:12 execution time.

VI. CONCLUSION

The quality and composition of food products are of

significant importance during all stages of a food production

flow line. Food manufacturing companies must have great

standards regarding the quality of their products. Thus a

technology is required to offer real-time monitoring, non-

destructive, contactless and non-invasive, in contradiction to

other complex chemical procedures. The technology of

microwave sensors is an accurate fit to fill this need. The

purpose of this thesis is to implement a machine learning

algorithm to the sensor to recognize successfully the

productions through the processing line. PCA extracted the

correct features was the first step of processing the data that

was implemented. PCA has allowed the implementation of

the Neural Networks to classify. Following 24 different

experiment classification training executions, it is concluded

that a unique combination of some parameters such as

number of neurons in the input and hidden layer give the

optimal classification accuracy of 99.00% with an execution

time of 1:12. Ultimately, the selection of an architecture for

the neural network came down to trial and error.

ACKNOWLEDGMENT

I would like to thank my supervisors, Prof. Marc Desmulliez,

Assistant Prof. Yoann Altmann and Dr. Sumanth Kumar

Pavuluri for giving me an opportunity to work under their

guidance and providing continual support throughout my

thesis. I also want to thank all the professors and teachers in

University of Burgundy and the coordinators of VIBOT and

MsCV program for making this course possible. I also wish

to acknowledge the MsCV students who helped me during

the masters program and the love and support of my friends

and family.

References

[1] M. Ferree, "What is Food Quality," Food Distribution

Research, pp. 36-39, February 1973.

[2] O. L. Bo and E. Nyfors, "Application of microwave

spectroscopy for the detection of water fraction and

water salinity in water/oil/gas pipe flow," Non-

Crystalline Solids, vol. 305, pp. 345-353, 2002.

[3] K. Saeed, A. .. Guyette, I. C. Hunter and R. D.

Pollard, "Microstrip resonator technique for

measuring dielectric permittivity of liquid solvents

and for solution sensing," in Proc. IEEE Int. Microw.

Theory Tech.Soc. Symp., 2007.

[4] K. Joshi and R. Pollard, "Sensitivity analysis and

experimental investigation of microstrip resonator

technique for the in-process moisture/permittivity

measurement of petrochemicals and emulsions of

crude oil and water," in Proc. IEEE Int. Microw.

Theory Tech. Soc. Symp. Dig., 2006.

[5] K. H. Theisen and T. Diringer, "Microwave

concentration measurement for process control in the

sugar industry," Proc. SIT, vol. 60, pp. 79-92, 2000.

[6] S. Trabelsi and S. O. Nelson, "Microwave sensing of

quality attributes of agricultural and food products,"

IEEE Instrumentation & Measurement Magazine, pp.

36 - 41, 21 January 2016.

[7] Z. Meng, Z. Wu and J. Gray, "Microwave Sensor

Technologies for Food Evaluation and Analysis –

Methods, Challenges and Solutions," Transactions of

the Institute of Measurement and Control, 20

September 2017 .

[8] B. C. M., "Neural Networks for Pattern Recognition,"

Oxford University Press , 1995.

[9] L. Fausett, "Fundamentals of Neural Networks:

Architectures, Algorithms, and Applications,"

Prentice Hall, no. ISBN 0-13-334186-0, 1994.

 5

[10] K. Potter, "Methods for presenting statistical

information: The box plot," 2006 .

[11] B. Xiao, "Principal component analysis for feature

extraction of image sequence," IEEE Xplore, no.

10.1109/CCTAE.2010.5544358, 2010.

[12] T. S. Ruprah, "Face Recognition Based on PCA

Algorithm," Special Issue of International Journal of

Computer Science & Informatics, vol. 2, no. 1, p.

2231–5292.

[13] S. S. D.Pham, "Training multilayered perceptrons for

pattern recognition: a comparative study of four

training algorithms," International Journal of

Machine Tools and Manufacture, vol. 41, p. 419–430,

2001.

[14] Moller, "Neural Networks," vol. 6, p. 525–533, 1993.

Human hand gesture recognition and tracking to control a robotic arm
and a collimator

Muhammad Zain Bashir and Gert Behiels

Abstract— This study is conducted to investigate the fea-
sibility of using hand gestures to provide touch-less control
for a digital radiography modality with special focus on two
parameters; x-ray tube positioning and collimator (a device that
narrows down the beam of x-rays) dimensions. For safety and
testing purposes the task at hand is carried out on a robotic arm
acting as the x-ray tube and a square box drawn on the screen
acting as the actual collimator. Data filters have been applied to
minimize the affect of unwanted hand movements resulting in
a smooth robot trajectory because it allows the user to perform
a more relaxed hand movement (i.e. the human hand will likely
have slight movements in two axes while trying to move only
in one.). The results observed how high promise for using such
control in a real x-ray room setting.

I. INTRODUCTION

Healthcare equipment manufacturers these days are trying
to provide modality controls with minimum human interac-
tion (MHI). One possibility to achieve this is by making use
of Human computer interaction (HCI) and a Digital radiogra-
phy modality control is one potential area of HCI application.
To test its feasibility, a Universal robots UR3 robotic arm
and a virtual collimator (box drawn on the screen) was
used to test the quality and precision of control that hand
gesture recognition and tracking could offer. This involved
designing control gestures, filtering of hand tracking data and
calculation of robot control commands. To recognize human
hand gestures and track human hands in a video stream, an
Intel depth camera, SR300 was used with its tracking and
gesture recognition module.

II. METHODOLOGY

This section is divided into three subsections; State ma-
chine for gesture design, Filtering of tracking data and Robot
and collimation control, each describing the major tasks
involved in successful completion of this study.

A. State machine for gesture design

For robot control a Grab gesture was proposed which
involves the user using two gestures, in a sequence, provided
by the Intel software development kit (SDK); Spreadfingers
and Fist gestures. This sequence is shown in Fig. 1. To realize
this sequential behaviour, a state machine was used.

Fig. 2 shows that the state machine always starts in a
no hand state and as soon as it receives a hand detected
signal from the video stream, it enters the hand detected
state. From here, the state can go back to the no hand state
on receiving a no hand signal or can go to the spreadfingers
state on receiving the spread fingers gesture signal. From the
spreadfingers state the state can again move to the no hand

Fig. 1: Grab gesture sequence

state if the hand moves out of the field of view (FOV) of
the camera or move forward to the fist state if the camera
detects a fist gesture. This completes the Grab gesture and
hand tracking data starts to be queried for the filtering stage
after which control commands are calculated and sent to the
robot controller to make the robot follow the user’s hand.
At any point in time the user can choose to stop the robot
control by going back to the spreadfingers state by opening
their hand.

Fig. 2: State machine for Grab gesture

For virtual collimator control, a Two hands pinch ges-
ture was proposed which makes use of, in sequence, the
Spreadfingers and the Two fingers pinch gesture provided by
the Intel SDK. This sequence is shown in Fig. 3.

Fig. 3 shows that the state machine for Two hands pinch
gesture also starts with the no hand state and enters its child
state two hands on detecting a two hands signal from the

Fig. 3: Two hands pinch gesture

video stream. With entry in the two hands state the system
immediately enters it’s two parallel child states; left hand and
right hand. State transitions within these two child states take
place independently of each other. Each hand starts in a not
pinched state and moves to the pinched state if a pinch is
detected by the hand. If both hands enter the pinched state,
the Two hands pinch gesture is completed and hand tracking
data starts being queried so that dimension change control
can commence. Once the user is satisfied with the collimator
dimensions, they can stop this control gesture by opening one
or both their hands. This takes the hand state to a transition
state where it stays for 500ms before moving to the not
pinched state again. The two hands pinch gesture is valid in
the transition state as well. If in transition the state the system
receives a pinched signal, it moves back to the pinched state.

Fig. 4: State machine for two hands pinch gesture

B. Filtering the tracking data

For noise removal from tracking data, thresholding and
Kalman filter [1] were used for the Grab gesture while and
averaging filter was used for the Two hands pinch gesture.

1) Averaging: To change the collimator dimensions the
positions of the center of masses of both hands were used
to calculate a difference. This difference was then added to
to the collimator dimensions and the collimator dimensions
updated every iteration. Five difference values were stored

in a FIFO memory and their average calculated to add to the
collimator dimensions.

2) Thresholding: Different threshold values were tried
and a value of 1 cm was to chosen to threshold the hand
center of mass position in all three axes; x,y and z. This
means that if the hand center of mass position is within 1
cm of the previous position, the previous position is kept
otherwise it is updated with the new position received by
the camera.

3) Kalman: A simple Kalman filter was chosen with the
position and velocity of the hand as the state variables of the
state s(t):

s(t) =
[
Px(t) Py(t) Pz(t) Vx(t) Vy(t) Vz(t)

]T
The process model governing hand motion was modelled
using equations of motion [3]:

x = x0 + vt +
1

2
at2 (1)

where x is the current hand position, x0 is the initial hand
position, v is the hand velocity and, a is the hand acceleration
and t is the time taken to reach x. A constant velocity was
assumed so any accelerations that occur were assumed to be
process noise.

The state transition matrix Ft [3] was chosen as:

Ft =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2)

where ∆t is the time between two frames.
The measurement matrix H which maps the true state

vector parameters onto the measurement domain was chosen
as follows:

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3)

Qt and Rt which are the process and the measurement
noise covariance matrices [2] respectively were defined as
follows:

Qt =


EPx

0 0 0 0 0
0 EPy 0 0 0 0
0 0 EPz 0 0 0
0 0 0 EVx

0 0
0 0 0 0 EVy

0
0 0 0 0 0 EVz

 (4)

Rt =


MPx

0 0 0 0 0
0 MPy

0 0 0 0
0 0 MPz

0 0 0
0 0 0 MVx 0 0
0 0 0 0 MVy 0
0 0 0 0 0 MVz

 (5)

where Ep and Ev are variances in the position and velocity
values of the process model respectively while Mp and Mv

are variances in the measured position and velocity values.
Fig. 5 shows the result of filtering with Ep = Ev = 5

and Mp = Mv = 0 and then changing the noise values to
Ep = Ev = 0.001 and Mp = Mv = 0.05 after 10 frames
when trying to move along the x-axis. This noise update
approach is used to prevent the filter from predicting values
close to zero in the beginning because the filter is initialized
with a a position and velocity values of zero. Starting with
zero measurement and a high process noise ensures that the
filter calculates its predictions based only on sensor values.
The noise values are then adjusted to use both the noise and
the measurement model. Fig. 6 shows, in 3D, the result of
noise update approach when trying to move in 3D.

Fig. 5: Kalman filtering with noise update approach

Fig. 6: Kalman filtering in 3D

C. Robot and collimator control
Once the data has been filtered, it is used to compute

robot and collimation commands to be sent to their respective
controllers.

1) Robot control: As soon as the user initiates a Grab
gesture, the position of the current hand center of mass and
the current robot position are stored, denoted as the position
vectors Pi and Ri respectively. Each time a new filtered
position data point is received, denoted as Pc, a difference
vector d is calculated using (6).

d = Pc −Pi (6)

The robot frame (right hand coordinate system) and the
camera frame (left hand coordinate system) are not superim-
posed on each other so this difference can not be directly
added to the initial robot position. Therefore, difference
values are added to the corresponding axes of the robot to
calculate new position vector, Rn of the robot end-effector
according to (7).

Rn =

Rix

Riy

Riz

+

−dz

dx

dy

 (7)

where Ri is the initial/current robot position. Once the
new position command has been sent to the robot, the
initial/current value is updated with the new position.

2) Collimator control: Since a virtual collimation (square
box drawn on the screen) was dealt with for collimator
control, all values are in pixel coordinates. As soon as the
two hands pinch gesture is made, an initial distance value
Di is calculated as using (8)[

Dix

Diy

]
=

[
|Hrix −Hlix|
|Hriy −Hliy|

]
(8)

where Hrix and Hriy are the initial (at gesture initiation)
x and y coordinates of the right hand center of mass in pixels
and Hlix and Hliy are the initial (at gesture initiation) x and
y coordinates of the left hand center of mass in pixels.

When the two hands are brought together or pulled further
apart, a current distance value is also calculated using (9)
denoted by Dc. [

Dcx

Dcy

]
=

[
|Hrcx −Hlcx|
|Hrcy −Hlcy|

]
(9)

where Hrcx and Hrcy are the current x and y coordinates
of the right hand center of mass in pixels and Hlcx and Hlcy

are the current x and y coordinates of the left hand center
of mass in pixels.

Once Di and Dc have been calculated, their difference
is taken to calculated using (10) to calculate the mount by
which the collimator dimensions should change.

C = Dc −Di (10)

As part of filtering mentioned in section II-B.1, this
difference value is computed 5 times and an average taken
before sending it to the nex stage. This average difference
vector is then added to the initial collimator dimensions Ni

to calculate the new collimator dimensions Nn using (11).[
Nnx

Nny

]
=

[
Nix

Niy

]
+

[
Cx

Cy

]
(11)

Just before the cycle ends, initial collimator dimensions
Ni are updated with the new collimation dimensions Nn.

III. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This study was conducted to check the feasibility of using
hand gestures in a real x-ray room setting and the results
of this show high promise for this possibility. The use of
state machine [5] to use gestures provided by Intel SDK
in a sequence has also been shown. This means that these
gestures can be used in combination to come up with several
new gestures each for a different task

B. Future Works

Since going from one position to another, the robot makes
a series of acceleration, constant velocity and deceleration
cycles, it introduces a lot of braking and consequently a jerky
trajectory for the robot. The most important future work is
thus smoothing out hte robot trajectory by planning its tra-
jectory. There are some limitations of the SDK for example
not detecting hands in certain orientations so another future
investigation would be to use deep learning frameworks for
hand detection. The use of other libraries such as OpenPose
for hand pose and gesture recognition [6] should also be
considered. An inverse kinematic analysis [4] of the robot
must also be made to work out the singular positions of the
robot so that move commands for those positions are not
published.

IV. ACKNOWLEDGMENTS

We gratefully acknowledge the contribution of Agfa
HealthCare Nv for the provision of all the necessary facilities
to conduct this study.

REFERENCES

[1] Kalman, Rudolph Emil," A new approach to linear filtering and
prediction problems", Journal of basic Engineering 82.1 (1960): 35-45.

[2] Bishop, Gary, and Greg Welch. "An introduction to the Kalman filter."
Proc of SIGGRAPH, Course 8.27599-23175 (2001): 41.

[3] Miners, B. W. "Kalman filtering and prediction for hand tracking." An
Advanced DSP Project for Dr. RD Dony (2001).

[4] Buss, Samuel R. "Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods." IEEE
Journal of Robotics and Automation 17.1-19 (2004): 16.

[5] Gill, Arthur. "Introduction to the theory of finite-state machines."
(1962).

[6] Suryanarayan, Poonam, Anbumani Subramanian, and Dinesh Man-
dalapu. "Dynamic hand pose recognition using depth data." Pattern
Recognition (ICPR), 2010 20th International Conference on. IEEE,
2010

Deep Into Water: Reflective Areas Detection using Deep Learning

Marc Blanchon

Abstract— Scene segmentation and understanding is an open
problem in computer vision and Artificial Intelligence (AI).
Indeed with the recent advances in AI, the need for more
accurate and efficient scene understanding models is more
evident than before. This necessity and being able to benefit
from strong segmentation power of Deep Convolutional Neural
Networks(DCNN), has motivated the research community to
propose numerous algorithms in the past years. Most of
the recent algorithms uses a single modality as a source of
information, and lack of multi-modal system is noticeable.
In addition, since RGB images being the natural and most
general choice of information, many existing algorithms of
scene understanding are not able to provide robust results on
detecting reflective areas.

Therefore in this paper, we propose (i) a multimodal ac-
quision system and dataset using RGB, NIR (Near Infra-
Red) and polarimetric cameras and (ii) a model that using a
discriminative source of information and DCNN power is able to
segment reflective areas. Testing the proposed algorithm using
different modalities illustrates the robustness and effectiveness
of a multi-modal system, specially polarimetric, for reflective
areas.

I. INTRODUCTION

Scene segmentation and understanding has been a popular
topic in the field of robotics, AI (Artificial Intelligence) and
vision. This task is specially challenging due to visual search
difficulty, image complexity, object/scene recognition, and so
on... With a special interests for robotics, it is obvious that
multi-sensors can be used as source of information for scene
segmentation. For that reason :
• The first motivation was to implement a multi-modal

framework using ROS (Robot Operating System), where
different sensors are integrated and a multi-modal
dataset can be gathered. Surprisingly, the majority of
multi-modal open datasets, consist of the RGB, depth,
and/or 3D point-clouds and the use of different cameras
such as NIR (Near Infra-Red), and PolarCam (Polari-
metric Camera) were very rare or non-existent.

• To this extend a second motivation was set to create a
public multi-modal dataset with and without reflective
areas.

• Finally, due to the recent advances of DL (Deep Learn-
ing) in pixel segmentation approaches, the final target
was set to create an innovating method based on con-
volutional networks.

In the reminder of this paper, Sect. II covers a brief back-
ground on DL algorithms (limited to scene segmentation)

This work was supported by ANR VIPeR
M. Blanchon is with LE2I, Laboratoire d’Electronique, Informatique et

Image, VIBOT ERL-CNRS 6000, Universite de Bourgogne France Comte
fr.marc.blanchon@gmail.com

and polarimetric cameras. Sect. III explains the acquisition
setup and gathered dataset. Sect. IV the proposed method is
explained, and finally in Sect. V illustraites our reslults and
finnaly Sect. VI conclude the presented work.

II. BACKGROUND

A. Deep Learning

Deep learning, a predominant concept in the context of
research, is a sub-domain of Machine Learning (ML) and AI
(Artificial Intelligence), that allows the learning of features
directly from input data. Therefore eliminating the feature
extraction and its subsequent steps within classical ML
methods, up to, the final step, prediction/classification. It is
notable that this method is neither more nor less than a model
optimizer to achieve a generic form of description of the
input. To speak briefly about the history of deep learning
and its usefulness, it is possible to refer to its creation or at
least to the creation of the first working algorithm, the MLP
(Multi Layer Perceptron) by Alexey Ivakhnenko and Lapa in
1965 [7]. After many years of refining, the biggest advance
remains the AlexNet classification network [9], obtaining
more convincing results on the ImageNet Challenge [5]. This
solution promoted the use of CNN (Convolution Neural Net-
work) in terms of image processing and image recognition
tasks. As far as the limits of basic image processing are
concerned, deep learning allows a noticeable progress in
image annotation.

The first remarkable DL approach to segmentation is
from Long et al. [11], allowing a segmentation of image
of any sizes without fully connected layers. Previously, the
noticeable problem of Deep Learning Network approach was
the size reduction. Indeed, the max pooling layers of the
network directly induce the reduction of information and by
extension the loss of information.

As the years and the evolution of power increased, mul-
tiple networks, each with better performance, have been
released. Multiple networks have been benchmarked on
VOC2012 evaluation server(*) and, a positive evolution in
precision every year is perceptible, starting with the Fully
Convolutional Network of Long et al. [11] to 67.2% in 2014.
Then the SegNet [1] by Vijay Badrinarayanan et al. in 2015
with approximately 60%. Then a big step in the precision
has been remarked with a score of 75% in 2015 with the
dilated convolutions of Fisher et al. [20]. In 2016, Deep Lab
v2 [3] achieved a score of 80% (Liang-Chieh et al.). At the
end of 2016, a significant improvement called RefineNet [10]

(*)VOC 2012 evaluation server : host.robots.ox.ac.uk/
pascal/VOC/voc2012/

was reported by Guosheng et al. with 84.2%. To end with
an evolution observing a convergence trend, DeepLab v3 [4]
obtained 85.7% accuracy in mid 2017.

To conclude on the state of the art about Deep Learning,
the networks across the years tends to reach perfect cognition
in terms of semantic scene segmentation (understanding). It
is very encouraging to see a field of research so motivating
and getting such good results in a short time (compared to
other areas).

B. Polarimetry
The polarimetry (Fig.1) is the science of measuring the

polarized state of the light. In consequence, a polarimetric
camera gives the experience of recovering the light changes
in the captured environment. Because of this behaviour and
the main goal of the thesis, the information from this camera
could be the perfect candidate as a discriminant factor aiming
the complex scene semantic understanding. To the views
of the general idea of reflection zone detection, the light
changes is the perfect descriptor of reflective regions.

Fig. 1. Reflection Influence on Polarimetry. (a) is a zoom on the non-
polarized area, (b) is on a polarized area. Clearly, on a polarized surface, the
micro-grid appear and reveal an intensity change according to the polarizer
affected.

Despite the useful and informative aspects of polarimetric
system the use of such cameras have been very limited,
due to the limitation of hardware and automatic integration,
up to recent years. Using the DoFP (Division of Focal
Plane) technique the new PolarCam (Polarimetric Camera)
are introduced in the market, which makes their integration
into acquisition systems much more feasible [15], [12], [14].
DoFP technique allows to have the polarized filters in an
array directly on the detector, as it is shown in Fig. 1. In
this design four polarized filters, each with unique angle, are
used to capture four different measurements instantly in one
shot.

Fig. 2. Polarimetric Camera Explanation. Image source: Trioptics.

In the images captured with the PolarCam, every four
pixels in image space correspond to one pixel in the final

scene. Although this technique allows for instant and fast
acquisition of polarized measurements, due to angle pattern
of the filter array, pre-processing and interpolation is required
to get the final polarized images.

Many image processing and computer vision applications
can benefit from recent DoFP-PolarCam (Fig.2). For ex-
ample, Kai Berger et al. [2] proposed a method for depth
recovering from polarimetric images in urban environment,
treating the modality as a common RGB camera. Also,
despite its complexity, Ratliff et al. [19] found a strategy
for interpolation of such a specific data.

Using other polarized setups, within this research scope,
few methods were proposed for water detection using polar-
ized information. Nguyen et al. [13] proposed a method for
water tracking with a polarized stereo system achieving an
approximate accuracy of 65% exceeding the previous state
of the art method accuracy of ≈ 45%. Another application
in recognition of mud for autonomous robotics, Rankin et
al. [18] proposed a method and offered a full benchmark for
its segmentation processes.

III. DATA ACQUISITION

(a) RGB Kinect Image.

(b) RGB UCam Image. (c) NIR Image. (d) Polarimetric Image.

Fig. 3. Polar-VIBOT Images Example of all modalities for the same
snapshot.

The acquisition setup is composed of 4 cameras, as near
as possible: PolarCam, Kinect 2, IDS UCam and NIR.
Figure 4 shows the acquisition setup. The idea behind this
camera layout is to have an optimized field of view. This
optimization consists of having the maximum common scene
in the 4 cameras spaces. By bringing the sensors closer, the
respective field of view for each camera will cross each other.
At the end, the most common field of view is the biggest
common image (Fig.3).

The environment used to monitor the cameras and to
acquire the image is ROS [17], [6] indigo. This framework
facilitates the communication between multi-camera and
computer and allows a more efficient synchronization. In
addition to this, the monitoring therefore admits a common
area of work.

Fig. 4. Camera Setup

A. Synchronization

The synchronization is one of the critical point concerning
the dataset acquisition. Since PolarCam returns the data at
higher frequency compared to the other two cameras, there
was two possibilities to be able to have a consistent dataset
and the chosen one leads to a synchronization on the lowest
frequency camera.

The frequencies from the different cameras are all different
and not synchronized. In the acquisition of a multi-modal
dataset, the key principle remain in the synchronization of
the images.

Because of these unsynchronized signals, a strategy of
recovery has been implemented(**). Using the ROS Frame-
work, the images follow a pipe and are passing through
different topics. Because synchronization wasn’t possible,
the first previous image is taken after triggering the image
storage on the lowest frequency signal. It is considerable that
some problem can occur such as image shift, motion blur or
displacement which can results in image displacement. All
this noise is then reduced at each acquisition meaning that if
the acquisition is not properly done, another snapshot trigger
can be repeated till the acquisition in the four modalities is
corresponding to the desired data chart.

Following the same principle, the acquisition can be
performed in term of sequences which results at the end in
a multitude of images grabbed one by one and separated by
a specified artificial frame rate. In addition to synchronized
acquisition, a bag file storing all four modalities using ROS
framework is stored as well, which is used specifically for
calibration purposes, explained in the next section.

B. Calibration

As previously explained, one of the functionality and key
advantage of ROS environment is the possibility of creating
bags, saving the selected data stream. In order to know
extrinsics and intrinsics parameters of the cameras as well
as preparing the field for the multi-modality, the calibration
was performed using a free library called Kalibr [16].

As commonly used, a calibration pattern is disposed and
moved in front of the camera while recording. The Kalibr

(**)The code can be found on Github: https://github.com/
BlanchonMarc/Ros_AcquisitionFromTopics

toolbox then match features from all the views to deduce
intrinsic and extrinsic parameters of the cameras. An abstrac-
tion model for the cameras is used, for every cameras, they
are considered as pinhole with a radial-tangential distortion
model [8].

IV. METHOD

Deep Learning allows to have a generic method, therefore
it is possible to use a standard segmentation network from the
state-of-the-art for similar applications. In this research Seg-
Net [1] was selected as the primary and base segmentation
network. SegNet [1] is a segmentation network, which allows
semantic understanding of the scene. This network was
selected, due to its architecture (encoder-decoder), relatively
fast training time, its original use (scene understanding) and
finally since its architecture facilitates the late fusion of
different modalities.

This section presents the Polar-VIBOT dataset, the nec-
essary pre-processing steps, the network training, and the
evaluation process of the developed pipeline.

A. Polar-VIBOT Dataset

The dataset is a major factor of effectiveness. The decision
to make the acquisition of a dataset was taken to achieve
three objectives: (i) to have a representative dataset in term
of water and reflective area detection, (ii) to have a more
balance dataset in terms of classes, and (iii) to have a
multimodal dataset (NIR, PolarCam, and RGB) suited for
autonomous navigation and vision applications beside scene
segmentation.

Polar-VIBOT contains 178 images (for each modalities)
and has been dispatched in 8 classes: unlabeled, sky, water,
windows, road, car, buildings and other. These 8 classes are
considered important in the field of autonomous navigation
which also leads to an increased usefulness of the dataset
in multiple tasks. For the purpose of scene segmentation
application, hand-made ground-truth are created on a set
of selected modalities (Polarimetry and RGB from UCam),
which are explained in the following.

B. Towards the Reflective Area Detection

Concerning the main objectives, segmentation of the re-
flective surfaces, some constraints are put in place:

• Define the best modality to perform the task.
• Transform the chosen modality to become discriminant

(if necessary).
• Pre-process the modality to adapt to the image size of

the dataset.

Being aware of the usefulness of a discriminative data in
term of DL is very important, leading to increased overall
accuracy in the desired task and allowing by extension a
better definition of the model. Having a discriminative data in
DL can increase the overall accuracy and allows by extension
a better definition of the model.

1) Modality Choice & Transformation: The dataset being
composed of 4 different modalities (5 points of view), one of
the major task was to define the proper modality. In this case,
the polarimetry and RGB have been chosen. Polarimetry,
because of its ability of recovering the light influence in
the scene. Reflection is defined as the change of direction
of the light on a surface. Polarimetric camera has the ability
to recover the Degree of Polarization (DoP) and Angle of
Polarization (AoP).

In order to perform a segmentation using polarimetric
images, many factors have to be taken into account. One
of the major problem is that, as a direct consequence of the
size of the dataset (204 images), the usage of raw image from
the camera is not possible. Since the amount of data being
considerably low, the augmentation is a mandatory step that
cannot be easily performed on raw data. The grid created by
the 4 pixel of polarization cannot be straightly rotated in an
usual way. In addition, no interpolation are feasible because
the creation of polarization data is a complex task or even
not permitted.

As a consequence of these previous facts, the usage of
Ratliff et al. [19] allowing a recovery of AoP, DoP and
intensity measures for each images is necessary. These three
parametric images can then be combined in order to mimic
the HSL color space.

Fig. 5. Ratliff1 transformation and HSL creation results. Top left : intensity,
top right: AoP, bottom left: DoP, bottom right: HSL (H = AoP , S = DoP,
L = intensity).

2) Ratliff Interpolation Method: Conventional interpola-
tions are process-able on simple modalities but when ad-
dressing a problem inducing polarimetry, the physical mean-
ing of the data oblige to use a specific methods. Ratliff et al.
[19] provides an interpolating solutions to recover multiple
information from a raw polarimetric image. Key advantages
of this extraction is that any of these interpolated images can
then be processed using conventional interpolation process.

The first step to use this method is to describe the polarized
light in the form of Stokes vector. Stokes vector are by
definition a set of four values that describe the polarization
state of an electromagnetic wave. To compute AoP (Angle
of Polarization) and DoP (Degree of Polarization)::

DoP =
√

s̄1
2 + s̄2

2 (1)

AoP =
1
2

tan−1(
s1

s2
) (2)

And the intensity being the combination of all polarized
states intensities:

I =
P0 +P45 +P90 +P135

2
(3)

At the end, any image can be computed using the three
descriptive images. A constraint come from the AoP, because
these descriptive values are periodic π , in consequence, for
an assignation, AoP have to be multiplied by 2. For an
example of combination of previously computed parameters,
the HSL image contains:

HSL =⇒ H −→ 2∗AoP, S−→ DoP, L−→ I (4)

3) Augmentation: After applying Ratliff [19] interpola-
tion, it is now possible to apply different transformation for
data augmentation. The considered dataset being insufficient
in size, the augmentation of data is a commonly used method
allowing a proper training, validation and testing set. Many
other advantages leads to an usage of this procedure, the
main one being the avoidance of over-fitting.

As transformation methods to create new images, three
processes have been selected:

• Rotation
• Flipping (in all direction)
• Random distortion

These three procedures are applied using augmentator
Library that allows a random combination of randomly
distributed transformation in order to recover a correct
amount of images. The transformation is exactly the same
for the image and the ground truth image. Thanks to the
augmentation procedure, from 204 images (177 validated
after deletion of incoherent images), the dataset obtained
contains 2124 images.

The next procedure consists of randomizing the repartition
of images in 3 different sets (6 considering the ground
truth sets) in order to have the training, the testing and the
validation containing each 708 images, all different. This
randomization allow a complete control over the visibility
of the network. Visibility of the network in this case being,
restricting the network to see only new images and never see
the same images in all the different sets.

4) Network Training and Estimation: Now that the input
of the network is fixed and adapted, it is possible to move on
to the parametric estimation in term of deep learning process.
The training of the network and its estimation also includes
their own set of constraints and objectives.

• Choosing the architecture
• Estimating the correct parameters and methods allowing

an optimal training
• Defining the Metrics that will allow a correct apprecia-

tion of the results

Based on the results obtained (influence of the parame-
ters), Learning Rate (LR) will be set to 10−4 and the number
of epoch to 500. The used loss function will be Cross Entropy
Loss and the Optimizer Adam.

V. RESULTS & DISCUSSION
This section presents the obtained results. The experiments

have been conducted in the same way for two modalities
of RGB and polarimetry from the Polar-VIBOT , only
the polarimetry will be shown and RGB will serve as a
comparison factor.

In terms of accuracy per classes, those computation have
been performed on test set with the same constraints as the
validation (randomness). Despite of the part of randomness
in the estimation, the estimated characteristics are similarly
reflecting the performances of the proposed method. As a
reminder, training, validation and test sets are all composed
of 708 images. To finish, the experiments was performed
using a dedicated server composed of an Nvidia Tesla K40c
(12GB Memory) GPU, 128GB of RAM and two CPU
accumulating a total of 24 physical cores (48 threads). As
explained in section IV-B.4, the learning rate = 10−4 and
maximum number of epochs 500.

Concerning the display of the results, all images and
graphs respond to a color chart (Fig.6). Each color will have
an assigned class present in Polar-VIBOT .

Building Car None Road Sky Unlabel Water Window

Fig. 6. Color Chart.

A. Polarimetry

The evolution curve of metrics showing overall accuracy,
F1 Score, IoU and mean accuracy can be computed.

0 50 100 150 200 250 300 350 400 450 500
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
s

F1Score
IoU
Mean Accuracy
Overall Accuracy

Fig. 7. Polarimetry Results - Metrics Estimation.

As it is visible, F1 score and Overall Accuracy are
mingled. Another remark on the curve remains on its shape.
Indeed after 500 epochs, the metrics continues to increase.
This suggests that the training could have been longer and
that the accuracy of the model has not reached its optimum.

B. Test Set Model Estimation

From the test set output of the trained model, the accuracy
can be deduced visually.

Also from the test set can be deduced the precision per
classes.

As the Fig.9 show, the 8 classes are convincingly detected.
Some classes need clarification. ”None” class stands for ”not

Fig. 8. Polarimetry Results - Test Set Output. Left is Prediction, Center
is Ground Truth and Right is Input Image (Polarimetry HSL).

building car none road sky unlabel water window
0

10

20

30

40

50

60

70

80

90

100

Fig. 9. Polarimetry Results - Accuracy per classes.

useful for the task”, this is the scene areas that are not nec-
essary for the thesis application. On the other hand the ”Un-
labeled” class mainly comes from hand-made segmentation
mistakes. As the pixel-wise segmentation needs a label per
pixel, some small areas have been missed when performing
annotation which leads to an 8th class representing more or
less the human error.

Now for the rest of the classes, the lowest accuracy per
classes corresponds to the windows and cars which is one
of the biggest challenge composing the dataset. This results
remains remarkable, as well as the other classes obtaining
high precisions. Still, it is considerable that the model hasn’t
reached optimum accuracy, so the model may be improved
by training for more epochs.

C. Comparison

In this section a discussion comparing polarimetry and
RGB modalities performances are presented. The first dif-
ference between the two models is about the reached states.
Indeed, despite of the same parameters initialization, the
two trainings have reached different state, while one is still

TABLE I
ACCURACY DIFFERENCE.

Unlabeled Sky Water Windows Road Cars Building None
Polarimetry 92.49 % 81.71 % 85.91 % 64.35 % 83.95 % 64.63 % 79.89 % 89.38 %

RGB 80.14 % 89.57 % 78.61 % 44.50 % 78.45 % 48.48 % 67.84 % 83.4 %
Difference 12.34 % -7.86% 7.29 % 19.85 % 5.5 % 16.25 % 12.05 % 5.98 %

optimizable, the other one has already reached its optimal
state. Knowing this fact, an assumption about reaching even
better results on polarimetry segmentation (with SegNet and
same parameters) is possible.

As the table I show, only one class is in deficit when taking
polarimetry performances as reference against RGB. In order
to show the accuracy improvements, it is possible to make a
difference between the results of each process.

Accuracy Difference=Polarimetry Accuracy−RGB Accuracy
(5)

As previously found in table I, only one class perform
less by 7.86% compared to RGB, the Sky class. There is an
explanation to this behaviour, RGB is strictly referring and
segmenting according to color intensity. Despite the effort
made to have a generic dataset, the sky remains on the same
tone (blue) which leads to a significant advantage on RGB
modality.

Surprisingly, even for the classes not designed to be
segmented easily by polarimetry (Building, None), the model
trained still perform better than RGB.

VI. CONCLUSION AND FUTURE WORK

In conclusion, polarimetry trained model exceeds in every
respect the RGB trained model as shown in Section V-C. The
method proposed as well as the created dataset proved their
usefulness in the scope of semantic pixel-wise segmentation.
The initial idea of using PolarCam as a discriminant factor
was a great choice and has proved its consistency applied
on such tasks. Nevertheless, the exploitation of data must
be considered as a potential disadvantage. Indeed, the pro-
posals to use polarimetry are effective but require a time
of implementation and constraints. In addition to this, there
is no use of raw images which can cause problems in some
applications. Being limited by the possible interpolations, the
intermediate passage by a Ratliff interpolation is necessary
in order to operate the proposed method. Considering multi-
modality, clearly the single modality exploitation exceeded
all expectations in terms of performance. This is encouraging
to tackle multi-modality, which is supposed to make the
process even more precise.

REFERENCES

[1] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. CoRR, abs/1505.07293, 2015.

[2] Kai Berger, Randolph Voorhies, and Larry H Matthies. Depth from
stereo polarization in specular scenes for urban robotics. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on,
pages 1966–1973. IEEE, 2017.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L. Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs. CoRR, abs/1606.00915, 2016.

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmenta-
tion. CoRR, abs/1706.05587, 2017.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. IEEE, 2009.

[6] Willow Garage. ROS: Robot Operating System, 2007.
[7] Valentin Grigorévich Ivakhnenko, Alekseı̆ Grigorevich Lapa. Cy-

bernetic predicting devices. Technical report, PURDUE UNIV
LAFAYETTE IND SCHOOL OF ELECTRICAL ENGINEERING,
1966.

[8] Juho Kannala and Sami S Brandt. A generic camera model and
calibration method for conventional, wide-angle, and fish-eye lenses.
IEEE transactions on pattern analysis and machine intelligence,
28(8):1335–1340, 2006.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[10] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. Re-
finenet: Multi-path refinement networks for high-resolution semantic
segmentation. CoRR, abs/1611.06612, 2016.

[11] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[12] James Millerd, Neal Brock, John Hayes, Michael North-Morris, Brad
Kimbrough, and James Wyant. Pixelated phase-mask dynamic inter-
ferometers. In Fringe 2005, pages 640–647. Springer, 2006.

[13] Chuong V Nguyen, Michael Milford, and Robert Mahony. 3d tracking
of water hazards with polarized stereo cameras. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages
5251–5257. IEEE, 2017.

[14] Gregory P Nordin, Jeffrey T Meier, Panfilo C Deguzman, and
Michael W Jones. Diffractive optical element for stokes vector
measurement with a focal plane array. In Polarization: Measurement,
Analysis, and Remote Sensing II, volume 3754, pages 169–178.
International Society for Optics and Photonics, 1999.

[15] Gregory P Nordin, Jeffrey T Meier, Panfilo C Deguzman, and
Michael W Jones. Micropolarizer array for infrared imaging polarime-
try. JOSA A, 16(5):1168–1174, 1999.

[16] Paul Furgale Jrme Maye Jrn Rehder Thomas Schneider Thomas
Schneider . Kalibr, 2007.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[18] Arturo L Rankin and Larry H Matthies. Passive sensor evaluation for
unmanned ground vehicle mud detection. Journal of Field Robotics,
27(4):473–490, 2010.

[19] Bradley M Ratliff, Charles F LaCasse, and J Scott Tyo. Interpolation
strategies for reducing ifov artifacts in microgrid polarimeter imagery.
Optics express, 17(11):9112–9125, 2009.

[20] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by
dilated convolutions. CoRR, abs/1511.07122, 2015.

Human Localization in Robotized Warehouse Using Artificial
Landmarks on ground

Dousai Nayee Muddin Khan and Gaël Écorchard

Abstract— Human Localization inside the robotized ware-
house is defined as the problem to find the exact position
and orientation of camera with the presence of continuous
movement of robots and humans. To navigate reliably inside
the warehouse, human should be localized its location precisely.
Localization can be explained in two ways, one is to localize
the position of the camera with respect to the environment and
the second case can be described as to localize with respect
to mobile robots within the warehouse. This paper states the
problems and issues from the first case i.e.., to localize the
human wearing camera using a safety vest in a robotized
warehouse. The localization of human in our warehouse can
be achieved by detecting the tagged stickers on the ground.

I. INTRODUCTION

In present days, most of the industries are fully automated
their warehouses with autonomous robots which can increase
the productivity and decrease the human labor. But most of
the warehouses have the challenge’s to interfere their ware-
houses with humans to increase more reliable and flexible
environment. In the present working warehouse, there are
many mobile robots which are continuously moving inside
the warehouse with the help of artificial landmarks as Data
Matrix Codes, simultaneously they are mapping, localizing
and navigating with respect to other mobile robots inside
the warehouse. All the communication in between them is
maintained by robot manager. These robots are working
basically to move the racks and bring to the goal position
or delivery position. The vital role to interfere human in this
warehouse is when there is any object fallen from the rack
and it has to be picked by human. By this interference of
humans inside the warehouse, the humans position has to be
localized and should be communicated with robot manager
to give the present location, so that the robots can know
the position of the human and plan there path accordingly.
The problem of human localization can be sensed and
known by using many localizing sensors available in the
market like Cameras, LIDAR (Light Detection and Ranging)
[1], GPS [2] etc .., Due to many constrains with lack of
indoor application for GPS and complexity over LIDAR we
preferred to choose cameras for this problem. Cameras are
cheaper and easy to assemble and carry on our safety vest.
Based on previously designed and implemented algorithms
like SLAM (Simultaneous Localization And Mapping) [3], is
used when we aren’t aware of the surrounding i.e.., unknown
map. But in our case we are dealing to recognize the markers

Authors are with the Czech Institute of Informatics, Robotics and Cy-
bernetics (CIIRC), Czech Technical University in Prague, Czech Republic,
nayeem.khan@stu.upes.ac.in

Fig. 1. Image based Camera Localization(Image Source : [4])

and get the position of camera respectively known as Image-
based camera localization. Image-based camera localization
can be explained as to localize the camera inside the re-
spective environment from the captured images or videos.
This localization can be implemented in known or unknown
environment. The paper [5] explain about a perspective-
n-point (PnP) algorithm which is defined as the problem
of estimating the pose of a calibrated camera given a set
of n 3D points in the world and their corresponding 2D
projections in the image. The fig.1 shows the simple flow
chart of localization with respective to PnP problem in the
environment.

II. DATASET COLLECTION

Localization of human being in warehouse with live on
board can be a problematic and hard to carry the whole
system all the way moving around the warehouse. To make it
easier for testing purpose we can make a dataset with simple
artificial landmarks on the ground. Artificial landmarks are
chosen as the items to detect for the developed algorithms.
So to make it easier and flexible for our thesis we create
an environment with required sensors and by choosing data
matrices of 10 centimeter wide square placed on the ground.
For the collection of data in the warehouse, the localization
of the ground stickers plays a vital role. We have made our
work space as about 4m X 4m. The important precautions
taken care to build the dataset are:

• To get the better result, the ground should be bright in
colour without any reflective objects around

• Ensure to have a sharp image from Basler camera by
opening the shutter to the maximum to reduce the depth
of field

• Distance to a camera from the ground should be ap-
proximately around 1-1.5metre

• Enough amount of light of about 500-700lux
By taking all the precautions and cautions for the collection
of dataset, we are ready to record our dataset by using the

https://arxiv.org/ftp/arxiv/papers/1610/1610.03660.pdf

Fig. 2. Setup used for localization

Fig. 3. Algorithms developed

setup shown in fig.2. The recorded dataset output will be
used as a reference to test for the explained algorithms. Data
is collected in different parameters based on human walking,
light and distance to the ground. Their cases can be explained
as: Normal and steady walk with a distance of about one
metre from the ground with 550lux illuminance with an
angle of 45 degree. The other case is fast walking with the
same distance and angle and about 650lux illuminance. Data
acquisition was recorded in many other cases also to test the
flexibility of algorithms.

III. IMPLEMENTATION

As we detect the stickers on the ground then it’s possible
to get the position of the camera and then get the position of
a human being located inside the warehouse. The proposed
methods to detect the landmarks on the ground can be
explained and developed as shown in fig.3

A. Detecting Stickers

The first thing we need to do from the video stream is to
detect the stickers from the ground based on feature match-
ing. Feature matching is basically described as to match
features between two images. So for one image we will give
our reference landmark image and the other image is from

Fig. 4. ORB Feature Matching Algorithm for sticker detection

the video stream, which has to use some feature detection
algorithms like SIFT(Scale-Invariant Feature Transform) [6],
SURF(Speeded Up Robust Features) [7] or ORB (Oriented
FAST and Rotated BRIEF) Feature Detectors [8]. we are
using ORB features because they have faster computational
time, rotation invariant and resistant to noise. The reference
and the image from the video sequence should be of the
same size. If there are many features detected from the
video sequence, ORB will find the closest neighbour with
the lowest distance and more true matches. The results are
shown in fig.4

B. Extraction of Region of Interest

The main aim to extract a region of interest is to minimize
the computational time. The DataMatrix stickers are very
sensitive with respect to the size of the image. Once we
detect the sticker from the video sequence as from the
above section, we must get the ROI of this respective image.
There are many ways to get ROI of the image like based
on K- means clustering algorithm [9] or based on blob
detection [10]. By calculating the mean we can find the
nearest neighbour, which acts as an input for the k-means
algorithm. The K-means clustering algorithm will divide the
cluster into three regions in both x and y-axis directions
and calculate the mean of x and y areas respectively. While
blob (binary large object) detection is basically to find the
area of touching pixels with the same logical state. Blob
extraction, also known as region detection or labelling, is an
image segmentation technique that categorizes the pixels in
an image as belonging to one of many discrete regions. After
implementing and testing the algorithms we have noted and
observed our results.

C. Data Matrix Detection

Data Matrix recognition can be done in two different
ways, one is to find the corners of the data matrix while the
other is using libdmtx library [11]. By considering libdmtx
library, the extracted ROI from the previous region should
be a clear and sharp image. If the image is blurred there
is very less probability to find the data matrix by using
this library. While we tested this library on video sequence
by grabbing the images we have faced many issued with
blurred images. If the images are blurred then the chances

Fig. 5. Results from Hough Line transform

of decoding the image is highly impossible, so the other
methods can be explained as to find the corners or lines
from the ROI image. There are many algorithms explained
and implemented for a corner and line detection, among them
Harris corner detection [12] and Hough line transform [13]
is considered as to get the better results. The implementation
of the result is shown in fig.5.

D. Acquisition of Position and Orientation

To get the position and orientation of the stickers camera
with respect to the world frame, we have implemented com-
pute pose node which will get the pinhole model matrices
from world coordinate to the camera frame. This frames are
observed by developing a TF listener. The position of the
camera can be calculated by using Pnp function called as
pinhole model. By using pnp function we can find the object
pose from 3D-2D point correspondences. Pnp function is
basically known by using the intrinsic parameters of a Basler
camera. It uses four corners from the above section to get
the object and image points. Output vector rotation vector
is solved by using Rodrigues notion from the rotational
matrix, it transforms 3D world coordinate to 3D coordinates
relative to camera centre. If we have a three dimensional
vector r = [rx, ry, rz] with an angle θ and the length of
the magnitude of the rotation as r then rotation matrix R is
defined as:

E. Correlation with different Kernel

As depending on the previous results, we want to find
more accurate and better algorithms to get more stability. We
come up with a solution to apply correlation with different
kernel sizes from the resulted erosion images. Erosion is
used to get the local minimum over the predefined kernel
size. As the kernel is scanned over the image, we compute
the minimal pixel value overlapped and replace the image
pixel under the anchor point with that minimal value. The
resulted image is applied with correlation by using fiter2D

Fig. 6. Developed GUI for detection of stickers

function from OpenCV. Correlation is used to find the best
and similar matches between two images, this has been
implemented for finding artificial landmarks as stated in [14].
This function will get the best matches from the input image
and defined kernel. This resulted images is checked with
different threshold values from 0 to 1. By this algorithm we
have developed and observed the results as in fig.6

IV. RESULTS AND DISCUSSIONS

For the evaluation of our results, we have use for collected
dataset from the warehouse and saved them to test for the
future references in the previous chapter. We will implement
our developed algorithms on this dataset and also for the
static images. The results are explained in different scenarios
based with respect to the position of the sticker, Obstacles
and number of sticker. They are stated as:

• Location of the image is on top, middle and bottom
• Images with lot of obstacles in the environment
• Images with more than one image
• Video stream from the collected dataset

By considering the above three cases, we will first test our
results on static images and then to the collected dataset. The
kernel size and axis of ellipses can be explained as: If the
location of the image is on top, the horizontal and vertical
axis for the ellipse are considering to be low between 20-30
range with low kernel size in 3-5. As the image is located on
the top and looks small considering to the position of camera
we will need small kernel size which can give a better output
for 0.7 threshold as shown in fig.7. For the image which is
located close to the camera or on the bottom of the image,
we will need higher ellipse axis between 40-45 and also
higher kernel size between 7-11 with 0.8 threshold as shown
in fig.7. If we increase the kernel for the same image then
the resultant threshold has to be decreased to detect nine
blobs of the DataMatrix stickers. In fig.8 we have tested and
observed our output on images with obstacles and another
half sticker. In this cases with more disturbances from the
environment, the kernel size is set to be low of 3 with 0.7
threshold. As from our collected dataset, we will test with
respect to real environment with lot of obstacles and many
stickers in one frame as shown in fig.9

Fig. 7. Results for the Static Images

Fig. 8. Results for the Static Images with other Objects

V. CONCLUSION

This paper explains about the various methods for the
localization of human in the robotized warehouse. we have
explained to localize the human inside the robotized ware-
house by using Basler camera, which is assembled behind
the safety vest of a human. This work makes to explore and
implement different algorithms and test them.

VI. ACKNOWLEDGMENTS

The work was carried at Czech Institute of Informatics,
Robotics and Cybernetics (CIIRC) and developed within the
SafeLog project funded by the European Unions Horizon
2020 research and innovation programme under grant agree-
ment No 688117.

Fig. 9. Results from dataset with other Objects

REFERENCES

[1] Claus Brenner, Vehicle Localization using Landmarks obtained by a
Lidar Mobile Mapping System, IAPRS, 2010

[2] Xia Yuan, Chun-Xia Zhao and Zhen- Min Tang, Lidar Scan-Matching
for Mobile Robot Localization, Information Technology Journal, 9 (1),
Pages 27-33, 2010

[3] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat,
Paul H. J. Kelly and Andrew J. Davison, SLAM++: Simultaneous
Localisation and Mapping at the Level of Objects, IEEE Conference
on Computer Vision and Pattern Recognition, 2013

[4] https://arxiv.org/ftp/arxiv/papers/1610/1610.03660.pdf
[5] Xu Wenli and Zhang Lihua. Pose estimation problem in computer

vision. IEEE Conference on Computer, Communication, Control and
Power Engineering. 1993

[6] D.G.Lowe. Distinctive image features from scale-invariant key points.
International Journal of Computer Vision, 60(2), Pages 91110, 2004

[7] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. In European Conference on Computer Vision,2006

[8] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski.
ORB: an efficient alternative to SIFT or SURF, IEEE International
Conference on Computer Vision (ICCV), 2011

[9] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 281297,
1967

[10] E. Jauregi, E. Lazkano and B. Sierra, Object recognition using re-
gion detection and feature extraction. http://www.sc.ehu.es/ccwrobot/
papers/jauregi09object.pdf

[11] https://github.com/dmtx/libdmtx
[12] Chris Harris and Mike Stephens. A Combined Corner and Edge

Detector. In Proc. of Alvey Vision Conference 1988
[13] Line Detection by Hough transformation
[14] M. Mata, J. M. Armingol, A. de la Escalera and M. A. Salichs,

A Visual Landmark Recognition System for Topological Navigation
of Mobile Robots. IEEE International Conference on Robotics and
Automation, ICRA. 2001

https://arxiv.org/ftp/arxiv/papers/1610/1610.03660.pdf
http://www.sc.ehu.es/ccwrobot/papers/jauregi09object.pdf
http://www.sc.ehu.es/ccwrobot/papers/jauregi09object.pdf
https://github.com/dmtx/libdmtx
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf

Deformable organ registration using tactile gestures for minimally
invasive surgery guidance

Yamid Espinel, Erol Ozgur, Lilian Calvet, Adrien Bartoli
TGI - EnCoV, Institut Pascal

Clermont-Ferrand, France
yamid@msn.com, erolozgur@gmail.com, lilian.calvet@gmail.com, adrien.bartoli@gmail.com

Abstract— Augmented reality is nowadays a very useful
technology in laparoscopic surgery thanks to the possibility it
gives to the surgeons of making efficient incisions, thus causing
less damage to the organ. In this work we present a novel
method to perform deformable registration of a preoperative
3D model (usually reconstructed from MR or CT volume), so
that it fits into the corresponding organ’s shape as shown in
the camera image. Like this, it’s possible to accurately locate
the internal structures of an organ, such as tumours and veins,
giving a clear idea to the surgeon of where to cut and how to
extract these tumours. To help themselves locate them, surgeons
make use of ultrasound imaging in the operating room. With
this in mind, we also propose an initial strategy to register an
ultrasound image in a semi-automatic way, according to how
the probe appears in the laparoscopic image.

I. INTRODUCTION

Minimally invasive surgery is today in demand thanks to
its advantages such as reduced post-operative pain, hospital-
isation time and parietal scars. This approach introduces fine
surgical instruments and a laparoscope via small incisions,
inside the human body and the laparoscope allows the
surgeons to view the area which they are operating on.

One of the difficulties surgeons have to face is the sub-
surface anatomy localization. This is because the surgeon
perceives the scene from 2D laparoscopy video showing
an opaque organ, which may lead the surgeon to incise in
places that could damage delicate anatomies. Most of the
time surgeons make use of ultrasound imaging to accurately
locate the tumour from the surface, helping them to decide
where to perform the incisions that will lead to its complete
extraction.

When the size of the tumours are small enough to not
appear clearly in the ultrasound image, there is an increased
risk of performing incisions that may cause a considerable
damage to the organ. In this cases, the resections can be
made by taking a big part of the liver in order to increase
the probability of doing an effective extraction of the tumour.
However, there is no guarantee that the tumour is indeed
in the resected part of the organ. To address this issue,
augmented reality can be applied on the live stream coming
from the laparoscope. It works by augmenting information
of the organ’s inner anatomy onto the laparoscopy video.

In order to show such 3D figures on top of the laparo-
scope’s 2D images, a 3D model of the organ is built from
the segmented preoperative scan data such as MRI or CT.

The time duration between acquisition of scan data and the
surgery is usually a few months. During the surgery, the 3D
model has to be registered to the organ, in such a way that
the surgeon can locate the inner anatomy and consequently
incise more efficiently.

In this work we present a new method to perform 3D-
2D registration of human organs by means of an appli-
cation that receives tactile gestures to perform deformable
transformations. Model registration through tactile gestures
brings comfort and reduces the process time, as this has
to be done in the operating room quickly. Shape matching
between this preoperative model and the organ as shown
in the laparoscopic image gives the surgeons an accurate
view of the internal structures, letting them to perform more
accurate and efficient incisions (see Figure 1).

Fig. 1: Augmented reality in liver

We also make a proposal to perform initial registration of
an ultrasound plane, in which the user tells the program the
location of the probe in the input image by means of a set
of markers; then, the program will automatically locate the
plane under the tool, leaving only two parameters to correct:
the depth of the plane and the roll angle. This can be used
as a groundtruth to validate the accuracy of registration done
previously, as the preoperative internal structures should now

match the locations of the real ones.

II. BACKGROUND

A. Augmented reality in laparoscopic surgery

In the past decades, minimally invasive surgery has be-
came more popular than open surgery thanks to its greater
clinical benefits. However, this kind of intervention intro-
duces a loss of direct vision and tactile feedback of the scene.
Augmented Reality (AR) has been then trying to alleviate
this drawback by providing an intraoperative guidance with
identification of subsurface targets (like tumours and infec-
tions), along with critical structures (vessels, nerves, etc.)

Thanks to this guidance, there is a reduced risk of blood
loss because of accidental vessel perforations, as well as
a shorten intervention time due to a quick localization
of the target structures. It’s also possible to make more
accurate resections, which lead to a complete removal of
the cancerous cells, while leaving more healthy tissue intact
and thus causing less damage to the organ.

The main field where AR has been used is in neurosurgery.
One of the first interventions assisted by AR is described in
[1]. Several interventions of this type followed, including
[2] and [3]. One of the advantages here is the presence of
skull, which is used as a rigid common reference between
acquisitions. While the brain is not rigid, its deformation is
limited and thus assumed to be rigid for AR purposes.

There are also other surgical fields where usage of AR
has been attempted, such as maxilofacial surgery [4] and
orthopedics [5]. As for brain surgery, the rapid development
in these fields is due to the rigidity of the structures caused
by their proximity to bones, limiting deformations between
the preoperative acquisition and the intraoperative stage.

In contrast, AR has not been so much applied to digestive
surgery, mainly because there is no constant spatial relation-
ship between the organs and rigid structures, letting deforma-
tions to occur in a significant way. One of the first attempts
reports the visualization of ultrasound images using a head-
mounted display (HMD) for an abdominal surgery [6]. Then,
a general surgery assisted by AR was an adrenalectomy, in
which several organs (like liver, kidneys and lungs) were
augmented and identified [7]. Other applications have been
made to do augmentation in kidney [8], prostate [9], and in
treatment of renal vessels [10].

B. The Hepataug software and registration of the liver

The EnCoV team at the Institut Pascal has developed
Hepataug [11] [12], an application capable of doing rigid
and deformable registration of a liver’s preoperative data into
a laparoscopic image (see Figure 2). It has tools to load the
preoperative data, change their color and opacity, and modify
their pose in 3D (translation and rotation in 6DoF) with the
help of mouse and keyboard. It can also perform deformation
of the data by the use of several types of contours, which
constrain the deformation spatially.

This application is developed using C++ and the Qt
libraries. OpenGL is used to render the 3D models, while the
deformation algorithms are made under CUDA, so that these

Fig. 2: Hepataug software

calculations are done directly on the GPU. Currently, the
application runs under Ubuntu but there are plans to make it
portable, so that it can be run even on Android-based devices.

The rendering of the 3D model is done by projecting the
model points from the model frame to the camera frame, as
seen in Figure 3. To project these points we need the camera
matrix, which in OpenGL is expressed as:

KopenGL =


α s −u0 0
0 β −v0 0
0 0 A B
0 0 −1 0


where α and β are the camera’s focal length in pixels, s is the
skewing factor, u0 and v0 are the principal point coordinates
of the image in pixels, and A and B are two coefficients
containing the minimal and maximal distances in meters
where the model should be displayed, being A = n+ f and
B = n ∗ f . In OpenGL, and n, f are the ”near” and ”far”
planes that mark the boundaries of the scene that will be
rendered, as shown in Figure 4. In our software n = 0.001
and f = 1000.

Fig. 3: 3D scene modelling in Hepataug

Once we have this camera matrix, we compute the pro-
jection by multiplying K with the transformation matrix Mm

c
between the model frame and the camera frame. Mm

c is
computed by the program automatically according to how the
user interacts with it to change the position and orientation

Fig. 4: Perspective viewing volume in OpenGL

of the model.

There are several ways to register the 3D preoperative
organ into the laparoscopic image. In general, there are 2
types of registrations that can be made: rigid and deformable.
Both of them can be made using mouse and keyboard and/or
with tactile gestures. These registrations are considered to
be valid when the shape of the model has fitted the real
organ in the image, and when the all the inner structures are
approximately at the expected locations.

In the case of rigid registration, it is possible to translate
and rotate the model in the x, y and z directions. When using
mouse and keyboard, the translation along x and y is done
using the direction keys, in z using the wheel’s button of the
mouse, while rotation in every axis is controlled by clicking
on the model and dragging towards the desired direction.
In the Figure 5 an example of translation and rotation is
illustrated.

Fig. 5: 3D liver translation and rotation using Hepataug

For a deformable registration, the standard approach right
now makes use of contours that constrain the deformation
process. These contours must be marked both in the la-

paroscopic image and the preoperative model, at the cor-
responding positions. There exist 3 types of contours: Ridge
contours, silhouette, ligament. The ridge contours are the
most restrictive of all, having a direct vertex-to-pixel cor-
respondence and making those vertices to stay at the same
positions as their corresponding pixels in the 2D image; they
are useful for stable regions of the liver such as the area
on top of the gallbladder, where there is little deformation.
The silhouette contours, contrary to the ridge contours, don’t
have any correspondence to vertices in the 3D model: they
just don’t let those vertices to cross that boundary, letting the
model to slip around the boundary marked by the contour
without any kind of linking. The ligament contours take all
the corresponding ligament vertices in the model as a single
region that will be aligned along the contour axis; being
specially useful to align the falciform ligament in the model
so that it matches the location of the ligament in the 2D
image. An example of liver deformation using contours is
illustrated in Figure 6, where we make use of all the three:
ridge in red, silhouette in yellow, and ligament in blue.

Fig. 6: Liver deformable registration using contours

III. DEFORMABLE REGISTRATION OF THE LIVER USING
TACTILE GESTURES

As explained before, one of the main objectives of this
project is to achieve fast model deformation by means of
tactile gestures. For our case, we pretend to select several
vertices or regions of vertices so that when one of them is
selected and translated, the model will adapt its shape to
these new locations by also taking into account the position
of the fixed vertices, which in the end will make the liver to
stretch/shrink. This deformation process will always occur
by respecting the biomechanical behavior of a real liver
(thanks to the position-based simulation algorithm and the
Neo-Hookean model), as explained in [14].

A. Marking of a vertex or region on the model

Before starting the deformation process, the user can mark
either a single vertex or a set of them. To be able to
select/mark, the Edition mode has to be activated by pressing
the ”E” key. Then, to select a single vertex the user will click
or press in the screen position that corresponds to the desired
vertex, as shown in the Figure 7.

Fig. 7: Marking vertex on the model’s surface

In order to find the closest vertex to the selected screen
position, we sweep all the 3D vertices in the model and
project them onto 2D. To achieve this, the 3D point in the
model has to be projected in the camera frame by doing:

vc = Mm
c vm (1)

where vc is the projected vertex in the camera image,
Mm

c is the transformation matrix between the model and
camera frames, and vm is the vertex expressed in the model
frame. It must be noted that these locations are expressed in
homogeneous coordinates, such that:

vc =

u
v
1

= Mm
c


x
y
z
1

 (2)

where u, v are the image pixel locations of the projected
vertex and x, y, z are the vertex 3D coordinates in the model
frame.

In OpenGL, the transformation matrix Mm
c that projects the

3D points into 2D image coordinates (also called projection
matrix) is expressed as:

Mm
c = MpersMortho (3)

where Mpers is a perspective projection matrix and Mortho is
an orthographic projection matrix.

The obtained coordinates for vc are then homogenized
and, because these values are in the range of [-1,1] (being
expressed in normalized device coordinates, as explained in
[13]), they can be normalized again in such a way that they
are in the range [0,1] by doing:

v′c = vc×0.5+0.5 (4)

Now these coordinates have to be mapped to the corre-
sponding locations in the image frame, which can be done
by multiplying them by the size of the viewport:[

u′

v′

]
=

[
u∗ vw + vix
v∗ vh + viy

]
(5)

where vw, vh are the viewport’s width and height, and vix,
viy are the origin coordinates of the viewport, which for our
case are (0,0).

As we want to find the closest vertex to the chosen point
in the screen, we have to take into account only those who
are visible to the camera. This can be achieved by reading
the depths of the drawn pixels the screen, with the help
of the OpenGL’s glReadPixels() function. The values
returned by this function are stored in an array of size (vw *
vh) and we can quickly find the corresponding depth index
of a rendered vertex using its 2D projection like:

id = u′+ v′vw (6)

By comparing the position in z of every 3D vertex and the
depth of its projected 2D pixel, we can decide whether if it’s
visible by the camera or not. If the difference between z and
the pixel’s depth is greater than certain value (normally a
very small value, like 1×10−5), then it’s an indication that
the vertex is covered by another one closer to the camera.

If this visibility condition is fulfilled, the coordinates of
the projected 2D pixel are compared with the chosen screen
location by means of an Euclidean distance. If the distance is
smaller than a previously computed one, then it will be kept
in memory and the index of this vertex will also be stored.
The index of the closest vertex will then be returned after
sweeping all of them, so this vertex will be set as marked.
For this selected vertex to be able to move independently
from the others, we add it to a vector of selected regions.

Regarding the case of a region marking, the user should
start by pressing outside the model and then dragging to-
wards the area of interest. A marking rectangle will appear,
changing its size according to how the user moves the finger
in the screen. When the finger is retired, the vertices inside
the rectangle will be set as marked, as illustrated in the Figure

8.

Fig. 8: Marking a set of vertices in the model’s surface

A vertex is outside the rectangle if its projected 2D pixel
meets any the following conditions:

u′< rx−
rw

2
, u′> rx+

rw

2
, v′< ry−

rh

2
, v′< ry+

rh

2
(7)

where rx, ry are the center coordinates of the rectangle and
rw, rh are the rectangle’s width and height. All the vertices
inside the rectangle will also be stored in the previously
mentioned region vector.

B. Marking of a contour on the model
Another way to add a constraint to the deformation is to

select regions that are known to remain stable. In the case
of the liver, as it is standing on top of the gallbladder, the
lower region is relatively stable. Thus, by making a careful
correspondence of the region of interest in the preoperative
model and the laparoscopic image, we can select this part in
the model as a contour and make the liver move around it.
This has some advantages over a normal region, including
that it is a more refined and precise constraint and will give
a more realistic behavior to the deformation.

Before marking the contours, the model should be po-
sitioned in such a way that the area of interest is at a

bordering zone in the view. This means that right after it,
the laparoscopic image should be visible instead any other
part of the model. After this, the user should press the ”Start
Simulation” button to copy all the models into video memory
and initialize the CUDA environment.

User can start marking contours by pressing the ”E” key
to switch to edition mode, and then the ”C” key to switch to
contour selection mode, making a yellow contour to appear
around the model (see Figure 9). Then, the procedure to
select these contours is similar to the one done for the normal
vertex regions, as shown in Figure 10.

Fig. 9: Contour mode activation

The procedure to extract the contour vertices starts by seg-
menting the 3D model from the background image, obtaining
a 2D image of the scene where the model is represented by
1’s and the background by 0’s. This is done with the help of
the glReadPixels() function, giving the depth of every
drawn pixel and in which the image pixels have a depth of 1.
Then we map the segmentation to an interval of [0,255] and
apply a Canny edge detector to extract the 2D contours, such
that these contours are represented by pixels with values of
255. Now we check which of these contour pixels are inside
the marking rectangle (as explained before), and then find
the closest model vertices to this contour by computing the
euclidean distance of the 2D projected pixels of the model
and the contour pixels.

These contour vertices will also be added to the list of
marked regions in the region vector array, so that it
can remain fixed while the others are moving.

C. Selecting a marked region/contour for manipulation

When the user presses the screen in a position where there
is a visible vertex, the program tries to find the closest visible
vertex to that 2D position as done in the section 4.1. The
model vertices are projected into the image frame and those

Fig. 10: Marking a contour region on the model’s surface

positions are compared to the chosen point in the screen
by means of a euclidean distance. The difference in this
case is that, as the vertex has been already selected, the
program will find the region to which it belongs thanks to
the region vector array. Once it is found, all the vertices
of that region will be marked as being moved by setting the
moving vertex property to 1 (or 2 if there is a second
finger in the scene).

If the finger is retired from the screen, all the ver-
tices that were marked with moving vertex = 1 or
moving vertex = 2 (according to the finger that was
handling them) will be set back to 0, indicating that they are
fixed regions again.

D. Manual real-time deformation by local translation and
rotation

According to how the organ has deformed in certain region
of interest (if there was a twist deformation rather than
a shrink), then it would be better to perform a rotation
of vertices rather than a displacement. Currently we are
handling these two transformations with a single finger,
which makes it necessary to define specific gestures that
activate one transformation or the other.

We have decided to apply the same strategy as for the
translation and rotation gestures in the rigid registration case.
If the finger stays fixed for more than 500 milliseconds then
it will switch into rotation mode, otherwise the user will
directly start moving the vertices of the selected region.

The translation of the vertices goes according to the
movement of the finger. First, the rotation of the model has
to be taken into account so that the vertices move following
that direction. As in our software this rotation is expressed
as a quaternion, we will first convert it to a rotation matrix:

R =


1−2q2

y−2q2
z 2qxqy−2qzqw 2qxqz +2qyqw 0

2qxqy +2qzqw 1−2q2
x−2q2

z 2qyqz−2qxqw 0
2qxqz−2qyqw 2qyqz +2qxqw 1−2q2

x−2q2
y 0

0 0 0 1


where qw, qx, qy, qz are the components of the quaternion
that indicates the model’s orientation. Then, the displacement
vector is obtained by multiplying the movement of the finger
in the screen with the model’s rotation like:

v = RT d (8)

where v is the displacement vector to be followed by the
vertices and d is the displacement of the finger in the screen,
which is the difference between the current and previous
positions of that finger in x and y and is defined like:

d =

 tx− tx prev
−(ty− ty prev)

0

 (9)

The vertices are then affected by this vector v by adding
it to their current positions pv:

pv = pv+ v (10)

For every new displacement of the finger the shape of the
model is deformed to fit the new vertices positions, using the
position-based simulation approach explained in the section
3.4. This deformation algorithm will modify the positions
of all the vertices in the model while the selected region is
translated, giving the impression of being pulling a model
that is fixed with needles at some locations. In the Figure
11 three regions have been selected and the one in the right
starts to be translated in a bottom-right direction, making the
model to stretch also in that way.

As explained before, if at certain region the liver has been
twisted, the user can perform local rotation of a region of
vertices to fit this deformation. For the vertices to rotate
according to the movements of the finger, first the centroid
point c of the region is found by adding all the positions

Fig. 11: Model deformation by translating one selected
region

of its vertices and dividing by the total number of vertices
in that region. This centroid will let the vertices to rotate
around their local region center.

Then, we try to find a vector which is perpendicular to
the model’s rotation vector in order to obtain its axis of
rotation. For this, we first define an unit vector vu oriented
towards the −z axis and then we multiply it by the model’s
rotation matrix to obtain a vector vp perpendicular to the
displacement vector v:

vu =
[
0 0 −1

]
(11)

vp = Rvu (12)

Now, we compute the model’s axis of rotation Ra:

Ra = v×vp (13)

We can now apply this rotation to every vertex in the
region. To do this, we first substract the region centroid
from the actual vertex position, then multiply by the rotation
matrix, and then add the centroid back to this transformation:

pv = pv− c (14)

pv = Rapv (15)

pv = pv + c (16)

As done when translating a region of vertices, for every

new rotation the shape of the model is deformed to fit the
new vertices positions, using the position-based simulation
approach. In this way, the model in that region will fit better
to that twist made by the real organ. In the Figure 12 three
regions have been selected and the one in the right starts to
be rotated towards the back in a counter-clockwise direction,
making the model to also twist in that particular area.

Fig. 12: Model deformation by rotating one selected region

IV. ULTRASOUND IMAGE REGISTRATION USING TACTILE
GESTURES

Ultrasound (US) imaging has been an important resource
in any session of laparoscopic surgery since its begginings.
It provides a fast and accurate way to confirm the positions
of the internal structures of an organ so that the surgeon can
decide on the best way to perform an incision. However,
not all clinical services are equipped with a laparoscopic
US system, and not all surgeons are properly trained to use
it peroperatively. Among the reasons for its difficult usage
we find the separate monitor that shows the US images, the
mental registration the surgeon has to do between the US
plane into the laparoscopic image, and also the difficulty
that represents an US image. We propose here to use it as
a groundtruth to validate the registrations by comparing the
locations and shapes of a tumour in both the preoperative
data and the ultrasound image.

In order to reach this objective, two main steps must be
achieved: Ultrasound probe calibration and ultrasound probe
estimation. In the latter step, two procedures are generally
executed: Pose initialization and pose refinement. In this
section, we propose a solution to this pose initialization

problem involving manual registration using tactile gestures.
From now on, we assume an image pair composed of an
ultrasound image and a laparoscopic image on which the US
probe is partially visible, both acquired at the same time.

A. Loading and pre-processing of the ultrasound image

When an ultrasound image corresponding to its corre-
sponding laparoscopic view is loaded into the program it is
first converted into grayscale. Then, a gaussian blur is applied
to it in order to ease the segmentation process, and thus
we threshold the image by removing the black components,
which is mostly the background of the ultrasound plane. As
there might be some black holes inside the sonographic zone,
we apply a dilation operation in the thresholded image to
remove them.

Because our area of interest is what is inside the sono-
graphic zone, we would like to extract this information from
the general image. Like so, we take the thresholded image
and perform a connected-component analysis from which
we will extract the highest component, corresponding in
this case to the sonographic area. With this component we
create a black-and-white mask and we apply it to the original
image, obtaining in the end only the ultrasound data with a
transparent background. The whole process of extracting this
sonographic zone is illustrated in the Figure 13.

(a) Original ultrasound image (b) Image after gaussian blur

(c) Thresholding with a value of
10 (d) Dilation to remove inner holes

(e) Mask from extraction of
biggest component

(f) Filtering of the original image
using the mask

Fig. 13: Ultrasound image preprocessing to obtain sono-
graphic region

B. Pose initialization of the ultrasound plane up to depth
and roll angle

Our goal here is to perform a semi-automatic registration
by indicating the position and orientation of the US probe in
the laparoscopic image, along with the position of the probe’s
head. The pose of the probe can be indicated by first marking
4 points, in a way where each pair makes a line that is located
in one the probe’s borders (see Figure 14). From these two
lines we find their intersection point, which will be then
backprojected to find the point at infinity corresponding to
the orientation vector that will serve as the axis in which the
ultrasound plane will move. We first compute the two lines
l1 and l2 (eqs. 5.1 and 5.2) by computing the crossproducts
between the pairs of points p1, p2 and p3, p4:

l1 = p1× p2 (17)

l2 = p3× p4 (18)

pi = l1× l2 (19)

vu = K−1× pi (20)

v̄u =
vu

‖vu‖
(21)

where p1, p2, p3, p4 are the 2D marks used to indicate
the probe’s orientation in the laparoscopic image, l1 and l2
are the lines obtained from these 2 pairs of points, pi is
the intersection point between l1 and l2, vu is the projected
intersection point in 3D space (point at infinity) while v̄u
is the unit vector that represents the probe’s axis where the
ultrasound plane will move along.

Next step is to mark the probe’s head location in the
laparoscopic image (point p5), where this point should go
along the probe’s axis v̄u. Once this location is indicated, the
ultrasound image will be automatically positioned under the
probe’s head with the corresponding orientation (see Figure
15). The rotation process of the plane is done as follows:

pfx = v̄u (22)

ptz = pfx×piy (23)

pfy = ptz×pfx (24)

pfz = pfx×pfy (25)

where p f x, p f y, p f z are the final rotation vectors, piy is the
initial rotation vector in y, and ptz is an auxiliar rotation

vector in z. From these rotation vectors we build our rotation
matrix like:

R=

p f xx p f yx p f zx
p f xy p f yy p f zy
p f xz p f yz p f zz


This rotation matrix R will be used to rotate the ultrasound

plane, so that in the end it will have roughly the same
orientation as the probe.

As the head of the probe normally should go along the
probe’s axis, we would like to be sure that the selected
position fulfills such constraint. We have then implemented
a strategy to make the selected point to be automatically
aligned along v̄u, which basically finds the nearest point that
is along the probe’s axis. Like this, we can avoid incorrect
registrations that could make the ultrasound plane not to
appear under the probe. To achieve this we do:

pm =
p1 + p3

2
(26)

a = p5− pm (27)

b = pi− pm (28)

b̄ =
b
‖b‖

(29)

d = aT b̄ (30)

p′5 = pm +db̄ (31)

where pm is the middle point between the points p1 and p3
(starting or ending points of both lines l1 and l2), a is the
vector going from pm to p5, b is the vector going from pm
to pi, and d is the scalar projection of a into b, while p′5 is
the corrected head point.

Finally we backproject p5 and align the ultrasound plane
according to the indicated probe orientation and head loca-
tion. The final registration process is done in the following
way:

ph = K−1 p′5 (32)

p̄h =
ph

‖ph‖
(33)

p = p̄h ·
[
0 0 −1

]T (34)

puh = p̄h
uz

p
(35)

where ph is the probe’s head in 3D space, p is the dot product
of ph and a vector oriented to the −z axis, while puh contains
the coordinates in 3D space that will locate the ultrasound
plane under the probe’s head.

Fig. 14: Marking of ultrasound probe’s pose

Fig. 15: Ultrasound plane aligned under the probe’s head

C. Registration of the depth and roll angle

Once the ultrasound plane is located under the head of
the probe and oriented in the same way, the movements
of the plane using tactile gestures are restricted to only 2
degrees of freedom (DoF). These degrees include the rotation
of the plane around the axis of the probe, as well as its
distance along the ray through the optical center and p5
(namely depth). This restriction will help the user not to lose
the previously done registration while refining the remaining
degrees of freedom.

To rotate the plane around the probe’s axis the user can
press on the ultrasound image and start dragging left or
right. This rotation process that follows the movements of
the fingers in the screen is done by rotating the trackball
like:

dp = pp− p (36)

d =
∥∥dp
∥∥ (37)

φ =
d
r

(38)

where dv is the difference between the points representing

the previous finger position pp and the current one p, d is
the length of the vector d, and φ is the angular distance
between d and the radius of the ultrasound plane, which is
of approx. 5cm. With both the angle φ and the probe’s axis
v̄u we obtain the quaternion matrix that will make the plane
rotate around the probe.

Regarding the depth of the plane, it is possible to adjust it
by applying a pinching gesture (with two fingers). This will
change its scale while fixing the plane to the probe’s axis as
well as the head. The procedure to scale the plane is done
as follows:

Let us assume that the user presses two arbitrary points, f1
and f2 on the touch screen. He then moves his fingers to two
new locations, f′1 and f′2. Refer to figure ?? to visualize the
3D scene. We first need to compute the backprojected points
corresponding to these locations. This procedure results in
four 3D points on the model, F1 , F′1, F2 and F′2 respectively.
Next, we compute the unit vectors u′1 and u′2 pointing towards
f ′1 and f ′2:

ū′1 =
f ′1∥∥ f ′1
∥∥ (39)

ū′2 =
f ′2∥∥ f ′2
∥∥ (40)

Since the vectors pointing towards F′′1 and F′′2 are the same
as the ones pointing towards f′1 and f′2, our new vectors ū′′1
and ū′′2 become:

ū′′1 = ū′1 , ū′′2 = ū′2 (41)

Using the law of similar triangles, the following ratio
holds:

D
D′

=
l′′1
l′1

=
l′′2
l′2

(42)

where D = ‖F2−F1‖ and D′ = ‖F′2−F′1‖ , l′1 and l′2 are
lengths of position vectors F′1 and F′2 respectively and l′′1
and l′′2 are the lengths of the position vectors F′′1 and F′′2
which have to be computed.

l′′1 = l′1
D
D′

, l′′2 = l′2
D
D′

(43)

We multiply the vectors calculated in equation (41) by the
lengths calculated in 6.3 (a)(ii) to get the z-translated 3D
points.

F′′1 = l′′1 u′′1 , F′′2 = l′′2 u′′2 (44)

where F′′1 and F′′2 are new 3D points, u′′1 and u′′2 are vec-
tors calculated in equation (41) and l′′1 and l′′2 are lengths

calculated in equation (43)
To calculate the translation parallel to the Z-axis we take

the average of the two translations required to bring the point
F′1 to F′′1 and F′2 to F′′2 .

tz =
1
2

((
F′′1 +F′′2

)
−
(
F′1 +F′2

))
(45)

where tz is the required translation, F′1 and F′2 are the points
that project onto the points F′′1 and F′′2 on the translated model
surface and F′′1 and F′′2 are the 3D points on the translated
model surface.

Because we want our plane to move along the probe’s
head axis and not on the Z-axis itself, we must compensate
this as follows:

r = K−1 p5 (46)

r̄ =
r
‖r‖

(47)

d = tT
z r̄ (48)

p′h = dr̄ (49)

where r is the 3D reprojection of the probe’s head location
in 2D, d is the distance between tz and r̄, and p′h is the point
that conditionates the plane position in 3D space so that it
moves along the probe’s head axis.

V. TESTS AND RESULTS

A. Deformable liver registration using tactile gestures

We have tested our method in 3 patients and measured the
times we spent to perform deformable registrations using the
classical contour-based registration approach and the tactile-
based manual approach. We also compare the final shapes
of the deformed organs and analyze the effectiveness of our
approach.

In the first patient, we have used two ridge contours
(red) and two silhouette contours (yellow) to make the
preoperative model to fit into the image, as illustrated in
Figure 16. We can appreciate the existence of a big tumour
below the liver and next to the gallbladder. In total, this
registration took 4 minutes 26 seconds to perform.

Afterwards, we performed a manual deformable registra-
tion with tactile gestures on the same scene using a total of
4 regions of marked vertices. The two regions in the left are
used as fixed regions (as their positions match with the organ
in the 2D image), while the two in the left were modified to
lift up the right lobe of the liver. First, the upper-right region
was translated up, then we did the same for the lower-right
one. The time spent to do this registration was of 35 seconds.

In Figure 17 we can appreciate the resulting deformation for
this case.

Fig. 16: Semi-automatic deformable registration of the liver
using two ridge contours (red) and two silhouette contours
(yellow)

Fig. 17: Manual deformable registration of the liver using 4
regions of vertices

In the second patient, we performed registration on the
liver using 3 ridge contours and 1 silhouette contour. In this
case, the tumour was inside the organ and had a size of only
a few cm. The time it took to do this registration was of 3
minutes 32 seconds. In Figure 20 we appreciate the effect of
this deformation.

For the manual deformable case, we have marked a total
of 6 regions of vertices. Among these regions, there is one
contour region while the others are generic ones. The two
regions in the left are used as fixed regions, and the three in
the left were moved up independently. The time spent to do
this registration was of 1 minute 53 seconds. In Figure 19
we can observe the resulting manual deformation.

Fig. 18: Semi-automatic deformable registration of the liver
using three ridge contours (red) and one silhouette contours
(yellow)

The third patient’s liver has been deformed using 2 ridge
contours, 2 silhouette contours, and 1 ligament contour.
For this case, the tumour was inside the organ but had a
considerable size and thus was visible from outside, with the
ligament passing just in the middle of it. The time it took
to do this registration was of 4 minutes and 20 seconds. In
figure ?? we can see the deformation made to fit the liver as
shown in the laparoscopic image.

In the manual deformable registration, we are using a total
of 5 regions. We first mark a contour region around the

Fig. 19: Manual deformable registration of the liver using 6
regions of vertices: 1 contour region and 5 generic regions

Fig. 20: Semi-automatic deformable registration of the liver
using two ridge contours (red), two silhouette contours
(yellow), and one ligament contour (blue)

location where the gallbladder is, and then the remaining
2 regions. The three regions in the left are used as fixed

regions, while the two in the right are moved to fit the right
part of the lobe. The time spent to do this registration was
of 1 minute 52 seconds. In Figure 21 we appreciate the liver
after manual deformation.

Fig. 21: Manual deformable registration of the liver using 5
regions of vertices: 3 contour regions and 2 generic regions

If we compare the times spent to deform the model using
the semi-automatic and the manual approaches, we can see
a general reduction on them in favor of the latter one. In the
Table I we can see a summary of the deformation times for
each patient and the variations between the two methods.

Deformation times
Patient Semi-automatic Manual Variation

1 04:26 00:35 7.6x
2 03:32 01:53 1.87x
3 04:20 01:52 2.32x

Average: 04:10 01:44 2.4x

TABLE I: Deformation times for the semi-automatic and
manual methods

We can see how there is a substantial reduction in the time
required to perform a manual deformation, compared to the
semi-automatic method. Most of the extra time required by
the latter is the care the user must have when selecting the
contours in both the preoperative model and the organ in
the camera image, as those should correspond as much as
possible. In general, we see a reduction of 2x in the time

used to register the preop model manually.

B. Ultrasound image registration using tactile gestures

We had the opportunity to test our initial registration
method in a patient’s kidney. In this opportunity the pa-
tient was under a tumour extraction intervention, where the
surgeon used an ultrasound imaging system to verify the
location of the tumour in the organ. Thanks to this, we could
get a synchronized stream of laparoscopic and ultrasound
sequences. We take then one of these views and try to register
the ultrasound image to its corresponding laparoscopic view,
by means of the developed semi-automatic algorithm.

We took a laparoscopic image where the probe is located
in a position where the tumour is visible. Then, in the Figure
22 we see the result of registering the US image with the
laparoscopic view according to the pose of the probe.

Fig. 22: Ultrasound image registered under the US probe

As seen in the registration result, we have used the marks
provided by the probe to define the depth and the rotation of
the ultrasound plane. Like this, we have an US image that
corresponds approximately to what the probe sees under the
organ. We could then use this to verify if the registration of
a preoperative model has been correct.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Regarding the effectiveness and easiness of the manual
deformation strategies, we can say that our method achieves
similar results as the semi-automatic one in a much shorter
time. This is specially useful for surgeons as they prefer
not having to wait 10 minutes for every new registration.

Our approach could also be seen as a very stable alternative
when a semi-automatic or automatic method fails, as it will
always behave according to the surgeon’s expectations.

We have successfully created a method to initialize the
pose of an ultrasound image so that it is located under its
corresponding probe in a laparoscopic scene. This will serve
as a starting point to develop a more autonomous method in
which the US plane follows the movements of the probe and
the images are updated accordingly, taking as reference this
initial pose.

This developed solution already can help surgeons to
perform better incisions, causing less damage to the liver
and offering a better quality of life to the patient in the end.

B. Future Works

As a future task, we want to extend this application to
perform multiview registration of the preoperative model into
several intraoperative laparoscopy images. This will help the
user to have a better perception of depth in the scene, leading
to a more accurate registration.

We also plan to implement a fully automatic non-rigid
registration method, in the framework of a larger project that
involves augmented reality for the liver. This will take as base
the work done so far for the liver, specifically everything
made for the Hepataug program.

As mentioned in the conclusions, there are plans to extend
the application to mobile devices (like iPads or Android-
based devices), so that surgeons can easily perform these
registrations without the need of translating a whole worksta-
tion to the surgery room. Because the deformation algorithms
normally require a lot of processing power, a good solution
would be to implement a client-server structure, where the
Tablet acts as the client that connects to the main workstation
through an internet connection.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the collaboration
given by the surgeons at the CHU de Clermont-Ferrand,
France, for letting us to attend those surgeries and for the
feedback they provide regarding our software.

REFERENCES

[1] Roberts, D.W., Strohbehn, J.W., Hatch, J.F., Murray, W., Kettenberger,
H., 1986. A frameless stereotaxic integration of computerized tomo-
graphic imaging and the operating microscope. J. Neurosurg. 65 (4),
545549.

[2] Marcus, H.J., Pratt, P., Hughes-Hallett, A., Cundy, T.P., Marcus, A.P.,
Yang, G.-Z., Darzi, A., Nandi, D., 2015. Comparative effectiveness
and safety of image guid- ance systems in neurosurgery: a preclinical
randomized study. J. Neurosurg. 17.

[3] Cabrilo, I., Schaller, K., Bijlenga, P., 2015. Augmented reality-assisted
bypass surgery: embracing minimal invasiveness. World Neurosurg. 83
(4), 596602.

[4] Zinser, M.J., Sailer, H.F., Ritter, L., Braumann, B., Maegele, M., Zller,
J.E., 2013. A paradigm shift in orthognathic surgery? Acomparison of
navigation, comput- er-aided designed/computer-aided manufactured
splints, and classic intermaxillary splints to surgical transfer of virtual
orthognathic planning. J. Oral Maxillo-fac. Surg. 71 (12). 2151e1.

[5] Wengert, C., Cattin, P.C., Duff, J.M., Baur, C., Szkely, G., 2006.
Markerless endoscopic registration and referencing. In: Medical Im-
age Computing and Computer-As- sisted InterventionMICCAI 2006.
Springer, pp. 816823.

[6] Bajura, M., Fuchs, H., Ohbuchi, R., 1992. Merging virtual objects with
the real world: seeing ultrasound imagery within the patient. In: ACM
SIGGRAPH Computer Graphics, 26. ACM, pp. 203210.

[7] Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix,
M., Butner, S.E., Smith, M.K., 2001. Transatlantic robot-assisted
telesurgery. Nature 413 (6854), 379380.

[8] Ukimura, O., Nakamoto, M., Sato, Y., Hashizume, M., Miki, T., Desai,
M., Aron, M., Gill, I.S., 2010. Augmented reality for image-guided
surgery in urology. In: New Technologies in Urology. Springer, pp.
215222

[9] Simpfendrfer, T., Baumhauer, M., Mller, M., Gutt, C.N., Meinzer, H.-
P., Rass- weiler, J.J., Guven, S., Teber, D., 2011. Augmented reality
visualization during la- paroscopic radical prostatectomy. J. Endourol.
25 (12), 18411845.

[10] Nakamura, K., Naya, Y., Zenbutsu, S., Araki, K., Cho, S., Ohta,
S., Nihei, N., Suzuki, H., Ichikawa, T., Igarashi, T., 2010. Surgical
navigation using three-dimensional com- puted tomography images
fused intraoperatively with live video . J. Endourol. 24 (4), 521524.

[11] Tansaoui, I., Ozgur, E., Bartoli, A., 2016. 3D-2D Manual Registration
& Augmented Reality (Project HEPATAUG). ALCoV - ISIT, Universit
dAuvergne, Clermont 1.

[12] Espinel, Y., Bashir, M., Ozgur, E., Calvet, L., Koo, B., Bartoli, A.,
2017. Tactile Gestures for 3D-2D Registration Interface Applied to
Laparoscopy. EnCoV - TGI, Universit Clermont Auvergne.

[13] Scratchapixel. (2018, May 15). The Perspective
and Orthographic Projection Matrix. Retrieved from
http://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-
and-orthographic-projection-matrix/opengl-perspective-projection-
matrix

[14] Bender, J., Koschier, D., Charrier, P., Weber, D., 2014. Position-based
simulation of continuous materials. In: Computers & Graphics 44.
Elsevier, pp. 1-10.

[15] SATT Grand Centre. (2018, May 20). Laparaug. Retrieved from
http://www.sattgc.com/fr/portfolio/laparaug/

Learned Features for Matching Renders with Real Images for
Industrial Visual Inspection

Pamir Ghimire and Igor Jovančević

Abstract— We learned a descriptor for matching real images
of mechanical assemblies with simple renders of their CAD’s
with similar viewpoint. The descriptor is a deep Convolutional
Neural Network which after training extracts features that
are invariant to domain (real or synthetic) and rotation, and
depend only on geometric information. A small dataset of
less than 20K patch pairs extracted from real and synthetic
images was created in a semi-supervised fashion for training
the descriptor. Transfer learning was used due to the small
size of the dataset. Descriptor was trained by minimizing
triplet loss so that learned features could be compared using l2
distance. The FPR95 score for the best descriptor was 13.8.
The descriptor was used for finding local correspondences
between simple renders and real images, and comparing for
conformity crops of real images with those of renders by
representing them as histograms based on Bag of Words of
the learned features. We conclude that learning robust cross-
domain rotation invariant descriptors is feasible, and such
features may be of interest for various industrial applications
like CAD based visual inspection, tracking, and finely registered
augmented reality. To the best of our knowledge, this is the first
work that presents learned features for local matching between
renders and real images.

I. INTRODUCTION
In 3D CAD based industrial visual inspection, we want

to check whether mechanical assemblies that are produced
according to CAD specifications actually conform with them.
We are interested in using passive 2D RGB cameras for the
same. The parts of the assembly that we want to inspect,
henceforth auto-control or inspection elements, are expected
to be with a certain pose in relation to a context. The auto-
control elements can be big parts like supports and clamps or
small ones like screws and caps. The context can be frames
of cars, airplanes, engines, etc. Separate 3D CAD’s are
available for the auto-control elements (inspection CAD’s)
and their contexts (context CAD’s). The CAD’s share the
same coordinate frame.

In inspecting the assemblies for auto-control elements, the
viewpoint (pose + calibration) of the 2D camera relative
to the inspected assembly is known to us through existing
software. The respective CAD’s can hence be rendered onto
the 2D image plane in one of various ways so that features
in the render can be compared with those in the real image
inside a region of interest to produce an inspection decision.

For comparing renders and real images, 2D features like
contours and line segments are popular choices since ren-
dering them from their 3D descriptions is feasible for real-
time inspection and extracting them from real images is
also well explored. However, such 2D features are not very
informative, susceptible to false edges due to shadows and
textures in real images, as well as 3D symmetries in the CAD

(contours can be the same for two viewpoints). In contrast,
2 1
2D features, which are features extracted from rendered

faces of the CAD, capture more detail associated with the
viewpoint and are less susceptible to the problems mentioned
before.

We propose to use 2 1
2D features extracted from patches

centered at interest points in a simple render and a corre-
sponding real image with similar viewpoint to compare the
2D real image with 3D CAD through a render. We propose to
render the faces of the CAD and not just edges and contours
to capture richer viewpoint dependent information.

Existing local descriptors like handcrafted SIFT and SURF
and learned LIFT [1] vary with texture in the real image and
were not designed for comparing renders with real images.
We hence choose to learn a dedicated local descriptor as
described in section III B. For this, it was necessary to create
our own dataset of patch-pairs, described in section III A,
since existing datasets like in [9] contain only real image
patches. Due to a limited number of patch-pairs, we used
transfer learning (section III B 1), and minimized triplet loss
between descriptors so that they could be compared using l2
distance without a dee[learned metric (section III B 2). Our
descriptor shows good performance in terms of ROC curves
and FPR95 score (section IV A). Nearest-neighbor matching
wasn’t very impressive, although some successful examples
have been presented in section IV B. The learned descriptors
were also used for comparing crops of real images and
renders by representing them as histograms of words in a
learned Bag of Visual Words (BoW) 1 based on the learned
features (section IV C). We begin below in section II with
review of related work.

II. RELATED WORK

A. Industrial Visual Inspection

Inspection of mechanical assemblies using 2D and 3D
vision has diverse industrial applications like detection of
surface defects, scratches and fissures, dimensional defects,
absence of parts, etc. Some contexts for applications are
assembly lines of cars, sub-sea inspections and fast paced
mass manufacturing. Popular 3D sensors are LIDAR, LI-
MAR and Time of Flight or Structured Light cameras
alongside passive 2D RGB cameras [2]. We are interested
in using 2D cameras to inspect 3D assemblies produced in
accordance with 3D CAD specifications. We want to know
about presence/absence and misalignment of auto-control
elements. [4] and [5] address similar problems. [4] compare
renders of mechanical parts with real images by matching
graphs of 2D features like ellipses and segments extracted

pgh
Machine à écrire
1http://www.robots.ox.ac.uk/~az/icvss08_az_bow.pdf

from the two images independently. [5] compare projections
of 3D descriptions of similar features in CAD with ones
extracted from the real image independently using image
processing. Both these methods face limitations associated
with 2D features described before. Comparison using 2D
features was also described by Agin [3] (1980). However,
he identified advantages of richer view-point dependent in-
formation in 2 1

2D features described as descriptions extracted
from image patches. Although local features are used in
inspection for real-real(image) comparison [6], to the best
of our knowledge, they are absent when renders of 3D CAD
(with faces, not just edges or silhouettes) are to be compared
with real images.

B. Synthetic Images from CAD Renders for Learning

Outside of industrial visual inspection, synthetic images
have been successfully used in recent literature for training
deep networks for semantic segmentation [7] and 3D object
detection [8] among other applications. 3D engines like
Unity3D [7] and Blender have been important for producing
large synthetic datasets with realistic shading. In these works,
availability of texture mapped models has been important
[7]. Google’s 3D warehouse has been an important source of
such models. However, invariance to color and texture cues
while training object detectors has also been demonstrated
[8]. When using models trained on synthetic data on real
data, domain shift is an important problem. A simple way
to address this is to train on a mixed dataset of real and
synthetic images as suggested in [7].

C. Discriminative Feature Learning

Learned features have been recently shown to outperform
handcrafted features like SIFT and SURF for matching real
images [1]. Mostly, descriptors are learned independently
from detectors using pairs of image patches [9] [10] [11].
The descriptors are either trained jointly with a deep-network
metric by minimizing a patch pair classification loss [10]
[11], or standalone by minimizing a loss based on euclidean
distances between the descriptors [9]. Descriptors from net-
works trained in the latter manner are also called embed-
dings. Learning discriminative embeddings is the strongest
approach in modern face recognition literature [12] [13].
Recent works in both face recognition and patch comparison
literature minimize triplet loss for learning discriminative
embeddigs. In patch comparison literature, patches are small,
typically 64x64, while they are larger in face recognition
literature, typically ∼ 200x200. Also, networks are shallow
in the former (3 and 4 convolutional layers in [11], 3 in
[9] and 5 in [10]) while they are relatively deeper in the
latter (13 convolutional layers in [13], and 11 in [12]). Deep
architectures in [10] and [11] are based on Alexnet [14] and
in [13] on VGG16 [15].

III. METHODOLOGY

A. Creation of Patch-Pair Dataset

For training a descriptor like in [9] [10] [11], we need
a dataset of patch-pairs produced from renders and real

images. Since there isn’t an existing one to the best of our
knowledge, we create such a dataset by cropping manually
registered pairs of renders and real images around interest
points detected by the FAST detector1. FAST points were
detected only in the (registered) render, not in the real image,
because our ’simple’ renders have edges only at locations
with discontinuities in surface normal, depth from camera
and element identity (auto-control or context) due to the
shading described in Fig. 1. This produces patch pairs with
meaningful ’geometric’ features that can be used for training
a descriptor invariant to texture and color variations in real
images. Our CAD’s do not have mapped textures or colors. A
dataset of real image patches with textures was also created
separately for use during training. The process of creating
the dataset has been illustrated in Fig. 2. We used Unity 3D
for producing our renders.

Fig. 1. Simple shading for fast rendering based on fragment normal and
fragment depth along optical axis. Intensity of fragment is also varied based
on whether it belongs to CAD of inspection element or that of context.

B. Training a Cross-domain Feature Extractor

There are 2 main challenges in training with the patch-pair
dataset produced as described in III A :

• Small number of patch pairs are available since less
than 100 image pairs were available for producing the
training dataset, but large patch sizes are necessary for
discriminative context, thanks to simplistic CAD’s

• Domain shift due to patches coming from synthetic and
real domains

Both these problems were addressed in the ’bootstrapping’
stage. The weights learned at the end of this stage were used
to initialize the triplet loss training stage resulting finally in
a discriminative feature extractor. This strategy is similar to
the one used in [13]. We also use similar notations.

1) Bootstrapping: We start with the VGG16 deep ar-
chitecture as detailed in [15] (Table 2, Column D) with
ImageNet weights2. The filters in the first convolutional layer
were modified from 3x3x3 to 3x3x1 and their weights initial-
ized by averaging the 3D filters along the 3rd dimension [16].
The 1000-way linear+softmax layer was replaced with 2-way
linear+softmax layer. The 2 fully connected layers following
the convolutional layers were initialized from scratch using
Xavier initialization [16] (Fig. 4, step 1). In the original
architecture, the fully connected layers have 4096 neurons
each. For us, they have L neurons each, with L = 1024

pgh
Machine à écrire
1OpenCV 3.0.0-dev documentation » OpenCV-Python Tutorials » Feature Detection and Description

pgh
Machine à écrire
2https://github.com/machrisaa/tensorflow-vgg

Camera
Intrinsics +
Pose

CAD of context of
inspection element Inspection element

CAD

Inspection (i + 1)
......

Inspection (i)

XML Inspection (i + 2)

 Transfer
 FAST points
from simple render to real

3. Detection of
FAST feature points
on simple render

2. Register simple
render with real
image manually

0. Place context
and element CAD’s
in virtual world,
position camera
according to
pose xml

1. Produce a simple
render, and
a mask of the
inspection
element
(inspection
mask)

4. Crop simple render
and real image around
detected FAST points

... ...

Training Data Points

5. Crop real image
around independent
FAST points to get
texture patches

...

Patch-pairs and
texture patches
from one training
data point

Inspection
Image

before after

Fig. 2. Proposed method for creating patch-pair dataset given CAD’s of inspection (same as auto-control) elements and their contexts along with real
images with tracked viewpoint

when patches are of size 128x128 and L = 4096 when they
are 224x224.

For bootstrapping, the patch-pair dataset described before
was organized into 2 classes, one containing meaningful
geometric information and the other not (texture patches).
Both classes contained patches from both real and synthetic
images. A cross-entropy loss (Equation 1) was minimized
to classify these patches. All layers except the first convolu-
tional and the last fully connected layers were ’frozen’ during
this stage (Fig. 4, step 2). Training was performed for 2
epochs with mini-batch gradient descent using batches of size
128, initial learning rate was 0.005, and dropout was used
after fully connected layers for regularization with p = 0.5.

E =
1

n

∑
i

[yilog(ŷi) + (1− yi)log(1− ŷi)] (1)

Where yi ∈ [0, 1] and ŷi = exi

ex0+ex1
.

2) Triplet Loss Training: The weights learned from boot-
strapping were retained except for the last 2-way lin-
ear+softmax layer. We denote the retained architecture with

φ. It maps an input patch P ∈ IRM to IRD; φ(P) ∈ IRD.
To φ, we appended an l2 normalization layer and a linear
layer W ′ ∈ IRL×D, L << D, which together implement
eP = W ′φ(P)/||φ(P)||2. W ′ is an affine transformation
layer without any bias, since bias would be canceled when
minimizing triplet loss detailed in Equation 2. The thus
augmented φ is replicated thrice to create a triplet network
[12] [13] and triplet loss is minimized for batches of triplets
(anchor (a), positive (p), negative(n)) produced by a batch
server.

E(W ′) =
∑

(a,p,n)∈T

max{0, α− dan + dap} (2)

Here, dan = ||ea − en||2, dap = ||ea − ep||2, and T is the
set of triplets in each training mini-batch. α > 0 is the margin
parameter that describes the desired difference between aver-
age distances between matching and non-matching patches.
The method and notations followed in this section are the
same as those in [13].

During triplet loss training, only the ’embedding layer’ W ′

is updated, the rest of the layers are frozen. Thus, it is W ′ that

learns a discriminative projection of features extracted by φ
(Steps 3 and 4 in Fig. 4). The architecture φ together with
the l2 normalization W ′ layers is the learned cross-domain
feature extractor. The extracted features are of dimension
D, with D = 512 when patches are of size 128x128 and
D = 1024 when they are of size 224x224. Of the D′s we
experimented with, these were the best values.

During triplet-loss training, it is important to pick ’hard’
triplets i.e., triplets for which dan < dap so that the network
can learn from training with them. We retain only hard
triplets in a batch of triplets of size 128 or 64 produced
by a batch server by passing them through the network once
before training for getting their embeddings. We also perform
’in triplet hard-negative mining’ described in [9] by swapping
anchor and positive patches if dan > dpn. This improves
triplet loss training. We use the Adam optimizer with an
initial learning rate of 0.005, β1 0.9, β2 0.999 and ε 1e-08.
Regularization was performed via dropout added before the
embedding layer.

The batch server when picking negative patches picks
either a geometrically meaningful non-matching real patch
respective to the anchor or a real texture patch, of which
there are thousands in a ’reservoir’. We under sample the
texture patches with ratio of 3:7. Random rotations are also
applied to patches on the fly so that the descriptor learns to
be robust to rotations.

C. Work-flow at Test-time

At test time, FAST points (or some other interest points)
are detected independently in real image and the correspond-
ing render. A patch of a fixed size is extracted around each
interest point location and the learned descriptor evaluated
for it. The features extracted from the images can then
be used for nearest neighbor matching or converted into
histograms of words based on Bag of Visual Words for
comparing the pair for producing an inspection decision (See
Fig. 3).

IV. EXPERIMENTS AND RESULTS

We trained different networks with patch-pairs of two
sizes, 128x128 and 224x224, and different values of the
margin parameter ’α’ (equation (2)). Table I presents the
FPR95 rates, which are false positive rates when true positive
rates are 95%, observed for the different descriptors. They
were obtained using a test set of 10K patch pairs which
were classified as either matching or non-matching based on
whether the euclidean distance between their embeddings
was below certain thresholds. The best score of 13.8 was
observed for 224x224 descriptor with α = 5.0. For reference,

Fig. 3. Proposed workflow for using the descriptor at test-time for nearest-
neighbor matching

Margin α 128x128 Patch
Descriptor

224x224 Patch
Descriptor

2.0 40.1 17.0
5.0 41.2 13.8
10.0 37.8 17.5

TABLE I
FPR95 RATES OBSERVED FOR LEARNED DESCRIPTORS.

[9] reports this score for SIFT to be between 26.0 and 30.0
when matching natural patches.

A. ROC Curves

Figure 5 presents ROC curves which are plots of true posi-
tive vs false positive rates for different descriptors mentioned
in Table I. Change in α shows little effect on the ROC of the
128x128 descriptor. 224x224 descriptors for all values of α
perform better than the corresponding 128x128 descriptor.

B. Nearest Neighbor Matching

We present only qualitative examples of some nearest
neighbor matching between renders and real images in Figure
6 . As can be seen, the renders are very simplistic and are
lacking in parts like screws and wires present in the real
images. Results for one-to-one matching were generally poor
despite a good FPR95 score. Good ROC does not imply good
nearest neighbor matching, as explained in [11].

C. Bag of Visual Words with Learned Descriptor

Besides nearest neighbor matching for comparing image
pairs, we also test histograms based on Bag of Visual Words
(BoW) learned from a set of renders and real images by
extracting from them ORB features (rotated BRIEF) [11]

VGG 16 trained on ImageNet,
needs 3-channel input

Conv Layers FC Layers

Weights transferred up to Conv Layers,
except first layer, modified to accept 1
channel input with different image
dimensions

Real and synthetic
patches containing no
FAST corners

Real and synthetic
patches containing FAST
corners

Bootstrapping

Bootstrapping Dataset

Weights fixed
during
bootstrapping

First layer is
learned for 1
channel input

2-class classification layer,
specific to bootstrapping
dataset

Triplet network created using weights learned
during bootstrapping, last layer is ignored

Matching
Patch-pairs

...

Reservoir
of texture
patches

Batch-serverTriplet-loss
Minimization

W W

0 +-

Triplets

Embedding Layer,
to be learned

Learned Feature
Descriptor Network

Weights fixed
during triplet loss
minimization

1

2

3

4

Fig. 4. Proposed method for training a descriptor using a dataset of patches created as described in Figure 2

Fig. 5. ROC curves for 128x128 (blue) and 2224x224 (gray) learned
descriptors for different margin parameters.

and the learned features (LF) around FAST interest points.
The two learned dictionaries each contained 50 words.

For every test pair, the two features were extracted at FAST
points, and histograms were created using the features and
dictionaries. For each image, 2 histograms were computed,
one based on ORB BoW and the other on LF BoW. One
pair hence produced 4 histograms, and 2 distances, one
between the ORB BoW histograms and the other between
LF BoW histograms. The distances between all matching
test pairs have been shown in Fig. 7 (e). The LF based
distances between histograms were observed to be less erratic
than ORB based ones. Classification by thresholding the

Fig. 6. Some examples of successful nearest neighbor matching between
renders (left) and real images (right).

distances was not performed because of availability of few

non-matching pairs (red in Fig. 7 (a), (b)).

Entropy = 2.42
Entropy = 2.73

(a) (b)

(c) (d)

(e)

Distances between histograms of non-matching
crops

Distances between histograms of matching crops

Fig. 7. Comparison of image pairs using Bag of Visual Words histograms
learned from renders and real images using ORB features and the learned
features (LF).

V. DISCUSSION AND CONCLUSIONS

We saw that it is possible to learn a feature descriptor
to compare simple renders with real images using relatively
few image pairs. The learned descriptors showed better
performance when larger patches were used, possibly due
to simplistic nature of the used CAD’s so that bigger
patches provided more discriminative context. A 2-stage
training strategy was necessary for learning the descriptor,
where the first stage was for learning initial weights that
addressed domain-shift before learning discriminative cross-
domain embeddings. The learned descriptors were used for
comparing image pairs by nearest neighbor matching and
through histograms based on Bag of Words built using the
learned features. The learned features can thus be used in a
variety of ways, much like other local features.

A. Future Works

Although we used a basic shading as described before, a
slightly more detailed shading, like Phong 1, might provide
better performance while still enabling fast renders. The
deep architecture used was VGG16, which is expensive to
evaluate and impractical for real-time inspection. Smaller
networks like one in [9] need to be explored. The FAST
detector was used for sake of dense detections, but its interest
points are not best suited for comparing real and synthetic
images. Detectors like SIFT or MSER [1] need to be tested,
a detector could also be learned. Matching pairs or triplets of
descriptors between image pairs needs to be tested instead of
one-to-one nearest neighbor matching since correspondence
between a simplistic CAD and real assembly is not one-
to-one. Finally, realistically colored and textured renders

can be explored for use in stead of real images so that a
custom descriptor can be trained for a completely new kind
of assembly with none or few real images of the same.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of Diota-
Control, Toulouse, for supporting this work.

REFERENCES

[1] Schonberger, Johannes L., et al. ”Comparative evaluation of hand-
crafted and learned local features.” 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2017.

[2] Timothy S Newman and Anil K Jain. A survey of automated visual
inspection. Computer vision and image understanding, 61(2):231262,
1995.

[3] Gerald J Agin. Computer vision systems for industrial inspection and
assembly. Computer, (5):1120, 1980.

[4] Ilisio Viana, Florian Bugarin, Nicolas Cornille, and J-J Orteu. Cad-
guided inspection of aeronautical mechanical parts using monocular
vision. In Twelfth International Conference on Quality Control by Ar-
tificial Vision 2015, volume 9534, page 95340I. International Society
for Optics and Photonics, 2015.

[5] Jovanevi, Igor, et al. ”Automated exterior inspection of an aircraft
with a pan-tilt-zoom camera mounted on a mobile robot.” Journal of
Electronic Imaging 24.6 (2015): 061110.

[6] Claudio Cusano and Paolo Napoletano. Visual recognition of air-
craft mechanical parts for smart maintenance. Computers in Industry,
86:2633, 2017.

[7] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and
Antonio M Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 32343243, 2016.

[8] Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning
deep object detectors from 3d models. In Computer Vision (ICCV),
2015 IEEE International Conference on, pages 12781286. IEEE, 2015.

[9] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Miko-
lajczyk. Learning local feature descriptors with triplets and shallow
convolutional neural networks. In BMVC, volume 1, page 3, 2016.

[10] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and
Alexander C Berg. Matchnet: Unifying feature and metric learning
for patch-based matching. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 32793286. IEEE, 2015.

[11] Sergey Zagoruyko and Nikos Komodakis. Learning to compare im-
age patches via convolutional neural networks. In Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on, pages
43534361. IEEE, 2015.

[12] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 815823, 2015

[13] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face
recognition. In BMVC, volume 1, page 6, 2015

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 10971105, 2012.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[16] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards
good practices for very deep two-stream convnets. arXiv preprint
arXiv:1507.02159, 2015

pgh
Machine à écrire
1https://learnopengl.com/Lighting/Basic-Lighting

1

Segmentation of Fish Instances in Underwater

Imagery using Mask R-CNN

S. Guillaume, R. García, R. Prados and J. Quintana

solene_guillaume@etu.u-bourgogne.fr , {rafa, rprados, josepq}@atc.udg.edu

Abstract
Fishing vessels cannot know in real time what type of fish

species is being caught by the trawl net. Fish sorting is

performed on the boat, and the rejected fish, often dead,

is thrown back into the sea. The main goal of the Deep

Vision device is to build a system able to perform

automatic recognition and measurement of the fish

passing through the trawl, leading to precise selective

fishing.

The system will allow to keep in the net the preferred fish,

while driving back to the sea the unwanted ones by means

of a motorized gate. The first step to perform selective

catching consist of segmenting the fish on the pictures

acquired by the Deep Vision device. The result of this

segmentation can be used later for the fish species

recognition and measurement in further steps. Specific

algorithms have been developed to segment fish in the

images acquired by the Deep Vision device. However,

those algorithms are not able to appropriately segment

fish when those are superposed, a situation that happens

in crowded scenes.

The goal of this work is to outperform the results obtained

by existing algorithms by using deep learning techniques.

For this purpose, Mask R-CNN has been studied and

tested for optimizing fish segmentation. The results

obtained by the method are encouraging, and have

demonstrated its suitability to effectively perform fish

segmentation.

Introduction
The number of fish available in the sea is decreasing

rapidly, and this is leading to ecological and economical

problems. Until some years ago, there were no common

rules among the different countries to manage the fishing,

but this situation has started to change since 2015. To

reach a more sustainable fishing, the European Union

created the “landing obligations”, aiming to eliminate

progressively the discards in all the Union fisheries, for

catches of species subject to catch limits [1]. The main

challenge of a more selective and consequently efficient

fishery comes from the inability of the fishing vessels to

know precisely the species and key characteristics (such

as the size) of the specimen being caught. According to a

study performed during six months in the Papua New

Guinea aquarium in 2016 [2], 24.2% of fish from catches

was rejected and thrown back to the sea, either dead or

alive. To avoid catching unwanted fish, the Scantrol Deep

Vision project arises as a system allowing to

automatically select the fish under the sea, by opening

and closing a motorized gate located in the trawl net cod

end. To perform fish selection, the Deep Vision device

(see Figure 1) is equipped with a stereo camera system

that takes still pictures at a relatively high frame rate,

enabling the real-time study of the specimen being caught.

The device is placed at some meters of the entrance of the

net to allow imaging all the fish passing by.

Figure 1. (Top) Scantrol Deep Vision device attached to the trawl net.

(Bottom) Section scheme of the Scantrol Deep Vision image

acquisition system depicting the cameras, lighting system and

distances between the elements.

The method described in [3] was implemented to perform

fish segmentation on the images acquired by the Deep

Vision system. This algorithm performs a good

segmentation when the fish on the image appear isolated,

i.e., when the fish are not overlapping. Nevertheless, it is

unable to distinguish among fish when those are

overlapping, situation that often happens in crowded

scenes. Additionally, the algorithm sometimes cannot

provide a precise segmentation of fish close to the image

corners and the fins are undersegmented in certain

2

scenarios. The main objective of this paper is to

outperform the results obtained in [3]. A promising

deep-learning based algorithm named Mask R-CNN and

able to segment and classify objects in a single step has

been recently developed and presented by the Facebook

research team, obtaining highly accurate results. Mask R-

CNN, by performing instance segmentation (see Figure

2), is able to appropriately segment and classify objects

that overlap. In our case, we are going to use images of

fish acquired by the Deep Vision device in a real scenario.

State of the Art

As stated above, our problem is to be able to segment fish

in a crowded scene and/or additionally to classify them.

Deep learning is able to perform instance segmentation

with very high accuracy, it is easy to adapt to any new

environment and it is simple to use. According to [4], the

most accurate or/and fast deep learning algorithms for

instance segmentation are, in order of apparition: Faster

R-CNN [5], Yolo [6], R-FCN [7], SSD [8], Mask R-CNN

[9] and NASNet [10].

Faster R-CNN is a Convolutional Neural Network (CNN)

in which the fully connected layers situated in the end of

the network, called also Region Proposal Network (RPN),

are proposing regions likely to contain objects. In a

powerful enough computer and with a very deep network,

it can run at five images per second. Yolo is a CNN

predicting bounding boxes and class probabilities like

Faster R-CNN. Nevertheless, and unlike Fast R-CNN, it

is not analyzing one by one the extracted patches from a

moving window but the entire image. This network is fast,

and can process from 45 to 150 images per seconds.

Unfortunately, it learns very general representations of

objects, and it is less accurate than other algorithms. In

fact, it performs almost the same than Fast R-CNN on

PASCAL VOC 2007 [4]. R-FCN is a Fully Convolutional

Network (FCN) for region detection and classification. A

FCN is a CNN where the last fully connected layer is

substituted by another convolution layer. Unlike

Faster-RCNN, it does not apply a lot of different

computations on each of the extracted patches: it shares

100% of the computations across every single output. For

each class, it has learned a score map. Then the score map

is compared with each region of interest (extracted by a

RPN) piece by piece. R-FCN is several times faster than

Faster-RCNN with comparable results. Contrarily to

Faster-RCNN and FCN, Single Shot Multibox Detector

(SSD) skip the part that generates regions of interest: it

does not use an RPN network. For every moving window,

a bounding-box and its corresponding label are found.

Then Non-Maximum Suppression (NMS) and other

methods are applied to discard the false positive

bounding-boxes. SSD is faster than both R-FCN and

Faster R-CNN and it still performs quite comparably.

NASNet is an algorithm that optimizes the architecture

of a CNN while this CNN is being trained on a dataset.

The parameter to optimize is the number of layers.

Optimizing the architecture of a network directly to a

dataset should allow the network to generalize more

easily and more precisely any dataset, with an

architecture less heavy. NASNet provided similar results

to Yolo on the PASCAL VOC 2015.

We choose Mask R-CNN [9] because it is performing

segmentation in addition of detection and classification,

with a very good accuracy and still a good speed to

process images. As can bee seen in Figure 2, we can

expect having good results for crowded scenes.

Figure 2. Output of Mask R-CNN, built using RESNet 101. Bounding
boxes are represented by green frames, masks are fully colored and

labels are written in white [9].

With a powerful enough computer, Mask R-CNN can

process up to five images per second. According to the

authors “Mask R-CNN outperforms all existing, single-

model entries on every task, including the COCO 2016

challenge winners”. Mask R-CNN is an extension of

Faster R-CNN, which adds some improvements to the

first one. Currently, the Mask R-CNN seems to be the

most appropriate framework for the task that needs to be

carried out.

We need to perform the fish segmentation proposed in [3]

on a large enough number of images, in order to build the

ground-truth that will be used to train Mask R-CNN.

Until the last year, the algorithms performing fish

segmentation were scarce and none of them used an

environment similar to the one setup on the Deep Vision

system [3]. “Real-time Fish Detection in Trawl Nets” was

conceived with the idea of taking profit of the specific

acquisition environment properties of the Deep Vision

system, and consequently is able to deal with the main

difficulties faced to segment the fish from the

background in this controlled environment. That is, the

method is able to deal with the effects of non-uniform

illumination, fish shadows and spurious specular

reflections from the lighting system on the moving

specimens. This is the main reason why the method

described in “Real-time Fish Detection in Trawl Nets”

has been chosen to build the ground-truth for Mask

R-CNN.

Mask R-CNN

Mask R-CNN for Fish Segmentation

A CNN is a convolutional neural network used to extract

image features in order to, for example, classify the

image. R-CNN is first finding RoIs, where RoIs are

Regions of Interests, in the input image, and then it is

runing a CNN on each RoI. Some algorithms are applied

on each output of CNN to classify the RoI and to find the

3

bounding-box, if existing. Fast R-CNN is using only one

CNN, shared for all the RoIs, for feature extraction. The

locations of the RoIs in the input image are computed by

backpropagation. Faster R-CNN is not using an external

algorithm to compute the RoIs, and this task is done by

the CNN. The authors of the approach included in the

CNN an RPN able to extract the RoIs. Previously, the

features extraction was done twice, first for the RoIs and

second for classification and computation of bounding

boxes. Currently, it is done only once. Mask R-CNN is

Faster R-CNN plus a branch to compute the masks. This

new branch is parallel to the branch existing for

classification and bounding box regression. The mask

branch is a small FC network applied to each RoI. A mask

is built by classifying each pixel of a RoI as 0 if it

corresponds to non-object and as 1 if it corresponds to

object. Then, all the pixel values equal to 1 takes the label

of the corresponding RoI. The authors tested mask

R-CNN with two architectures. One is a CNN made of an

RPN and a ResNet network. The other one is a CNN

made of an RPN and a FPN. Mask R-CNN with a FPN

gives better results than Mask R-CNN with ResNet.

Creation of the Ground-truth

In [3], the illumination pattern is computed and removed

from all the images. Then, fish are segmented using a

difference ratio criterion between an estimated

background and the image. We added to the algorithm a

small piece of code to compute the masks of the

segmented fish using the OTSU method. For each new

datasets, we fine tuned the parameters of the algorithm.

For each image, if the algorithm detects fish, it outputs

the input image, the segmented fish and the mask (or

masks) of the segmented fish. We applied this algorithm

on different datasets, selecting the well-segmented

images to build the ground truth. We added to the

ground-truth only the images where the whole fish was

segmented. We ensured that both the body of the fish and

the fins were segmented with high accuracy. Fins are very

important to enable the recognition the fish, although

they are hard to segment since they often appear

translucent in the images. Furthermore, we did not keep

images where the fish show artifacts as a side-effect of

the compensation of the non-uniform illumination. Small

fish have not been segmented because they are often

translucent and their sizes are quire reduced. Even for the

human eye, it is generally too hard to segment these

small-sized fish correctly. We organized the data in three

different groups: images with overlapping fish, images

with no fish in the border, and images with small fish not

segmented. We want to know, for each of these groups,

the consequences of adding them in the ground-truth on

the quality of the results. Specially, we want to know if

we can avoid to add overlapping fish in the ground-truth

to simplify the creation of further ground-truths, intended,

for instance, for species classification. We ended up with

only 1658 high-quality segmented fish coming from the

automatic algorithm, thus we performed manual

segmentation. To segment precisely the fish, we used a

touch computer to select a fish with a pencil. The high

resolution of the computer (2160 x 1440) allowed for

very fine segmentation. The manual segmentation has to

be fast, so we implemented a MATLAB® GUI with

simple and efficient functionalities to modify easily the

segmented images and the corresponding masks. To be

able to differentiate merged fish, we stored the masks in

different grey levels, so that each fish corresponds to a

mask with a different label. The Table 1 shows the current

number of input images for each category. This Table

would be updated as soon as the ground-truth datasets

grows.

 Hand

selected

Manually

segmented

Total

All images 1658 656 2314

Images with small fish 242 0 242

Images with no border fish 551 80 631

Images with overlapping fish 0 22 0

Table 1. Current number of input images for each category.

Implementation of Mask R-CNN

In a first step, we created a dataset readable by the Mask

R-CNN algorithm. To realize this task, we took the

COCO dataset 2014 and we modified it by adding the

information related to our own dataset and by removing

the information concerning to any other class. The

authors of Mask R-CNN included the Mask R-CNN code

in Detectron, a Facebook AI Research’s software system

written in Python and powered by Caffe2. The research

team provides a Dockerfile to access to all the tools

required by Detectron, which is proposing several

configuration files. We first used a network using ResNet

with 50 layers. We trained then Mask R CNN on 14 input

images and with 1000 iterations. This first trial took

around eight minutes to train the network We finally

reduced the number of ROIs per images from 512 to 14,

and we decreased the learning rate from 0.1 to 0.005. At

this step, the system was running but the output images

contained multiple small masks for each fish. Later, we

tried to change the anchors sizes.

After a small study of the fish size, we changed the area

and the aspect ratio of the anchors. Then, the results

became much better, but not good enough. We tried to

train Mask R-CNN with an FPN of depth 50, but the

results did not improve significantly. In case of an “out

of memory” situation, we can reduce the number of RoIs

per images, and the number of images (per GPU) in the

training mini-batch, but then it is needed have to increase

the number of iteration and learning rate should be

decreased. We set the parameter “scale” to 1392 instead

of 800 to do not resize the input images, in order to

increase the accuracy. We choose to pick automatically

values of aspect ratio at regular intervals from the

minimum to the maximum value of the aspect ratios. We

applied the same criterion with the area values. Changing

the anchor sizes and the rescale did not solve the error.

Finally, we cleaned and modified a bit the MATLAB®

codes to created a new dataset readable by Detectron, and

we used another configuration including data

augmentation in the testing part. Additionally, we

4

decreased the learning rate parameter from 0.01 to 0.005.

This learning rate is multiplied by a coefficient at

different values of iterations. We modified the different

values of iterations, and we used two GPU instead of one.

We called this las configuration as “Final_Model”. After

having trained the “Final_Model”, we got good results by

testing it on a new dataset.

Results
We trained the “Final_Model” using all the ground-truth

images that we had at the time, that is, 1872 images. 80%

of the ground-truth images were used for training while

the resting 20% were used for the validation. The results

are shown in Table 2.

(AP) @[IoU=0.50:0.95 | area = all | mD=100] = 0.582

(AP) @[IoU=0.50 | area = all | mD=100] = 0.708

(AP) @[IoU=0.75 | area = all | mD=100] = 0.673

(AP) @[IoU=0.50:0.95 | area = small | mD=100] = 0.378

(AP) @[IoU=0.50:0.95 | area = medium | mD=100] = 0.704

(AP) @[IoU=0.50:0.95 | area = large | mD=100] = 0.641

(AR) @[IoU=0.50:0.95 | area = all | mD= 1] = 0.664

(AR) @[IoU=0.50:0.95 | area = all | mD= 10] = 0.719

(AR) @[IoU=0.50:0.95 | area = all | mD=100] = 0.720

(AR) @[IoU=0.50:0.95 | area = small | mD=100] = 0.484

(AR) @[IoU=0.50:0.95 | area = medium | mD=100] = 0.801

(AR) @[IoU=0.50:0.95 | area = large | mD=100] = 0.773

Task: box

AP, AP50, AP75, APs, APm, APl

0.3874, 0.7054, 0.2805, 0.2672, 0.5783, 0.4238

Task: mask

AP, AP50, AP75, APs, APm, APl

0.5817, 0.7081, 0.6732, 0.3782, 0.7038, 0.6408

Table 2. COCO-evaluation results for instance segmentation of

“Final_Model”.

Average Precision (AP) and Average Recall (AR) of

bounding-boxes and masks are higher for medium-sized

fish, a bit lower for large-sized fish, and lower for

small-sized fish. When the number of fish detected by

mini-batch is large, the global AR value is a bit higher.

Global AP is ranging only from 0.673 to 0.708 while IoU

threshold is rangin from 0.75 to 0.50. The global AP is

equal to 0.582 when the IoU value is between 0.50 and

0.95. The reason for the AP and AR to be fish-size

dependent may be the fact that the medium-sized fish are

the ones with more samples in the training datasets, while

this number is lower for the other fish sizes.

Currently, the obtained results are not precise enough to

be able to recognize all the different types of fish, but

there are anyway encouraging. The illumination

correction had not been applied on the dataset used to

validate the “Final_Model”, so we better when using

images with the non-uniform illumination compensated

are expected. The “Final_Model” is not performing well

when trying to detect small fish, and the best performance

occurs when middle size fish are identified.

We are currently training “Final_Model” on each of these

three datasets separately, so that we will have up to three

output models. Without overlapping fish in the ground-

truth, the results of “Final_Model” for overlapping fish

on images with no illumination compensation are not

good enough, but at least the different fish specimen are

appropriately identified (see Figure 3).

Figure 3. Qualitative results obtained by testing “Final_Model” (which

is a Mask R-CNN N network with a FPN) on a new dataset.

Conclusions

In this work, we tried to improve the results obtained by

the segmentation approach presented on the paper “Real-

time Fish Detection in Trawl Nets”, specially in the case

where several fish overlap, given that the algorithm is not

able to deal with this situation. Increasing the robustness

of the method would allow further steps such as fish

tracking and species recognition.

To reach this goal, we decided to use Mask R-CNN,

because it is fast and accurate, and performs instance

segmentation. We had to build the ground-truth to train

5

the Mask R-CNN. The outputs of [3] where used to create

the initial ground-truth. From this first output, we had to

select fish correctly segmented. Manual segmentation

has been also performed to increase the ground-truth.

Mask R-CNN using Detectron has been finally applied,

and we have been able to train it using 1872 images.

The results obtained during this thesis are encouraging,

but they are not currently accurate enough to enable fish

recognition in a future steps. The main reason explaining

this performance is the lack of an appropriate amount of

labeled data. Mask R-CNN does not achieve good

enough results in this situation, but it has proved to be

able to identify and differentiate two or more different

fish in some of the tested images.

We are currently in the process of increasing the size of

the training datasets by performing manual segmentation

in cases where overlapping fish appear, to be able to train

and test Mask R-CNN with the largest possible number

of images, and increase consequently the quality of the

results. After this work, much better results are expected.

Bibliography

[1] “Commission Delegated Regulation (EU) 2015/2438 of 12 October

2015 establishing a discard plan for certain demersal fisheries in north-
western waters”. In: Official Journal of the European Union (Oct. 2015).

URL:http://eurlex.europa.eu/legal-content/EN/TXT/

 [2] Thane A. Militz et al. “Fish Rejections in the Marine Aquarium

Trade, An Initial Case Study Raises Concern for Village-Based
Fisheries”. In: (March 2016). URL: http://journals.plos.org/plosone

/article?id=10.1371/journal.pone. 0151624.
[3] Real-time Fish Detection in Trawl Nets - R. Prados, R. García, N.

Gracias, L. Neumann, Håvard Vågstøl, June 2017

[4] Arthur Ouaknine « Review of Deep Learning Algorithms for Object
Detection » Feb 5 2018 https://medium.com/comet-app/review-of-

deep-learning-algorithms-for-object-detection-c1f3d437b852

[5] Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian

Sun, January 2016

[6] You Only Look Once: Unified, Real-Time Object Detection Joseph

Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi (Submitted on 8

Jun 2015 (v1), last revised 9 May 2016 (this version, v5))

[7] R-FCN: Object Detection via Region-based Fully Convolutional

Networks

Jifeng Dai - Yi Li - Kaiming He - Jian Sun, 21 June 2016

[8] SSD: Single Shot MultiBox Detector – Wei Liu, Dragomir

Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang

Fu, Alexander C. Berg (Submitted on 8 Dec 2015 (v1), last revised 29

December 2016 (this version, v5))

[9] Mask R-CNN Kaiming He - Georgia Gkioxari - Piotr Dollár - Ross

Girshick, 24 January 2018

[10] NASNet : Learning Transferable Architectures for Scalable Image

Recognition - Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V.
Le (Submitted on 21 Jul 2017 (v1), last revised 11 April 2018 (this

version, v4))

 1

Abstract Food industries require the development of sensor that provide continuous measurement and monitoring of the quality

of food products. Microwave sensors are a widely known technology that allows the evaluation and analysis of food products.

However, this technology is mostly applied on lab conditions, which differs a lot from those in food industries. A solution to this

need is provided by the FoodSense sensor system, invented and developed by “MicroSense Technologies” Ltd . The purpose of

this research is to analyze the data collected by the sensor and use classification methods to train models that could optimally

recognize and correctly label the provided data to the corresponding recipe. The classification methods used for this project are

Support Vector Machine (SVM), Decision Trees and K-Nearest Neighbor (K-NN).

Index Terms — classification, decision trees, foodsense, k-nearest neighbor, microwave sensor, support vector machine

I. INTRODUCTION1

The quality and composition of food products are of

significant importance during all stages of a food production

flow line. But what is considered “good quality”? Based on

the paper [1], quality is defined as “The distinctive trait,

characteristic, capacity or virtue of a product that sets it

apart from all others”. Taking this into consideration, and

with the knowledge that the consumer’s awareness is high in

today’s social and economic environment, obliges food

manufacturing companies to have great standards regarding

the quality of their products. The technology of microwave

sensors is an accurate fit to fill this need. Many researches

on microwave techniques were performed through the last

years, resulting in practical implications in pharmaceutical,

oil and food industries [2] [3] [4] [5].

More precisely, the dielectric-based sensors have shown to

provide better results, due to the fact that most food

products have enough water concentration, that combined

with water’s strong interaction with the electric field at

microwave frequencies, can render even better results [6].

Different food compositions have distinct dielectric

properties, such as permittivity and conductivity. These

properties affect the reaction of each food composition to an

external electromagnetic field.

This technology offers real-time monitoring, is non-

destructive, contactless and non-invasive, in contradiction to

other complex chemical procedures. A statement of the

basic principle behind this kind of sensor was given by the

.

authors of this article [6]. “Depending on the type and

amount of a chemical ingredient in the liquid under test, a

variation of the complex dielectric permittivity is produced.

This perturbation of the dielectric permittivity affects the

electromagnetic response of the sensor, thus allowing to

obtain information about the composition of the solution.”

Generally, microwave measurements can be categorized

into frequency and time domain measurements. The first

method determines the permittivity by calculating the

transmission or reflection coefficient. On the other hand, the

method using time domain frequencies, traces the time

domain waveform and then can either compare it with the

one before the measurement or apply Fourier-Transform

(FT) and follow the frequency domain method [7].

There are many techniques available to analyze the

dielectric properties of liquids in the frequency domain that

was mentioned earlier. Some of these techniques use a wide

range of frequencies [8] [9] [10], while others, using

resonant perturbation methods, provide results with more

accuracy [11] [12] [13] [14].

II. PROCESSING OF RAW DATA FROM SENSOR

A. FoodSense Sensor System

The microwave sensor system that was used for the

collection of data in this project is called “FoodSense

Sensor Electronic System” (Figure 1). It was invented by

“MicroSense Technologies” Ltd [15], which is a spin out

company from Heriot Watt University [16]. The sensor

provides precise and real-time monitoring and beneficial

intelligence to running processing pipelines of food

manufacturing industries, that lack online measuring

Author : Despoina Melidoni – despoina.melidoni@gmail.com

Classification of pattern algorithm for novel

microwave sensor systems

Supervisors: Professor Desmulliez Marc - m.desmulliez@hw.ac.uk

Dr Altmann Yoann - y.altmann@hw.ac.uk

Dr. Pavuluri Sumanth Kumar - sumanth_kumar.pavuluri@hw.ac.uk

systems. Currently the sensor is installed in two food

production flow lines, of two different companies. In order

to make a correct analysis of the data collected by the

sensor, both food companies, submitted the overview of the

process they follow during the

time the sensor was working.

This schedule overview is a

sheet containing information

regarding the date and time of

each product processing

period and how the procedure

moved from one product to the

next. It also contained

information about the cleaning

cycles that occurred in

between some productions of recipes

B. Initial Data Analysis

The first step was to process the data separately for each

recipe, to assess their integrity in comparison with the

schedule overview provided by the companies. The

schedule overview is a sheet containing information

regarding the date and time of each product processing

period and how the procedure moved from one product to

the next. It also contained information about the cleaning

cycles that occurred in between some productions of

recipes. During this part, some irregularities in the signal

were noticed, that later, using the variance and the second

order derivatives of the data as a whole, concluded that they

were caused by existing outliers in the data. Afterwards,

using linear interpolation these outliers were removed.

Furthermore, in order to achieve better results during the

procedure of classification, the data of each recipe had to go

through the process of PCA.

III. CLASSIFICATION OF DATA

Following the results of PCA, the data from all the recipes

were combined together in one matrix, where was added an

extra column at the end, that contained the information of

which measurement belonging to what recipe. For example,

the rows of the matrix that contain the measurements from

recipe 26, are labeled at the final column as class 1, where

the rows containing the

measurements for recipe

51, are labeled in the final

column as class 2. The

complete mapping for the

correlation between

recipes and labels/classes,

is shown in Figure 2.

This matrix was used in

the following

classification methods.

A. Support Vector Machine (SVM)

In machine learning, support vector machines (SVMs) are

supervised learning models with associated learning

algorithms that analyze data used for classification and

regression analysis. An SVM performs very similar to a

human brain regarding pattern classification, being able to

recognize and distinguish an object by its features [17] [18]

[19]. During SVM’s recognition procedure, a hyperplane is

formed that separates two classes with a maximum distance.

The closest samples to the hyperplane are called support

vectors.

As seen in Figure and Figure , the data are classified correctly

in almost all cases. The overall accuracy of the SVM

classification model was 92%. The significant errors are

found in class 6, where as the confusion matrix in Figure

verifies, 45% of the data belonging in class 6 were

classified incorrectly in class 3. In a similar way, but not at

the same extend, 4% of the class’s 3 data were wrongly

labeled as class 6. Moreover, 2% of class’s 1 data were

falsely labeled as 5 and respectively 6% of data belonging

in class 5, were classified as class 1.

Figure 2 : Mapping between

labels/class and recipes

Figure 1: FoodSense Sensor Electronic

System

Figure 3: SVM Model – Classes 1 , 2 , 3

Figure 4: SVM Model – Classes 4 , 5 , 6

 3

There is an apparent correlation between classes 1 and 5,

and 3 and 6. Another look at the schedule overview reveals

that in both cases, there is a transition from one recipe to

another, without a cleaning cycle in between, which

potentially causes these errors in the classifier model.

Moreover, there is a need for more calibration data

provided by the sensor, but currently there is a lack of them.

This potentially could cause the errors at the classification

model.

B. Decision Trees

Decision Tree Classifier is a simple and widely used

classification technique [20] [21] [22]. It applies a

straightforward idea to solve the classification problem.

Decision Tree Classifier poses a series of carefully crafted

questions about the attributes of the test observation. Each

time it receives an answer, a follow-up question is asked

until a conclusion about the class label of the observation is

reached. Figure 2 shows an example of a decision tree [23].

The results of the Decision Tree model have similarities

with those of the SVM model, but with better overall

accuracy at 95%. Again, a significantly high percentage of

class’s 6 data were incorrectly classified as class 3. And

vice versa but with lower percentage. The correlation

between classes 1 and 5, and 3 and 6 are observed again

(Figure 9). In addition, more associated classes can be

found, such as 2 and 3, 2 and 4, 3 and 4. Look back again at

the schedule overview, there is indeed a time when

transitions between the respective recipes occurred, without

a cleaning cycle after each one.

Figure 5: Confusion Matrix of Decision Tree Model

Figure 4: Decision Tree Model – Classes 4, 5 , 6

Figure 3: Decision Tree Model – Classes 1 , 2 , 3

Figure 5: Confusion Matrix of SVM Model

Figure 2: Decision Tree Example

C. K-Nearest Neighbor (K-NN)

K-NN is a non-parametric method used for classification

and is considered as one of the simplest and thus most

common machine learning algorithms. All the training data

are used during the testing phase and an object is classified

by a majority vote of its neighbors, with the object being

assigned to the class, that is the most common among

its k nearest neighbors. If k = 1, then the object is simply

assigned to the class of that single nearest neighbor. There

are various methods to calculate the distance between the

neighbors, with the most popular being the Euclidean

distance,

, where p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two

points in Euclidean n-space, that is the set of all the

ordered n-tuples and it is denoted by Rn.

The K-NN model gives much better accuracy results

(97.4%) compared to the SVM and Decision Tree models.

The classification of the data was completed with higher

precision and with less incorrect data points (Figure 7, Figure

8). From the PCA results, the data appeared to be clearly

distinguishable and easily separable, thus the K-NN method

was expected to have the best results, since the

classification of its point is based on its neighbor. The

confusion matrix of the K-NN model (Figure 6) reflects the

same conclusion. The correlations of classes 1 and 5, 3 and

6 are observed again (as with SVM and Decision Trees

models) with the addition of 2 and 4 that was found in

previous model as well, inferring the same conclusion as

before.

IV. CONCLUSION

The aim of this master thesis was to analyze and

subsequently to classify the data collected using the

FoodSense sensor system. The first step was to process the

data separately for each recipe, to assess their integrity in

comparison with the schedule overview provided by

company A. During this part, some irregularities in the

signal were noticed, that later, using the variance and the

second order derivatives of the data as a whole, concluded

that they were caused by existing outliers in the data.

Afterwards, using linear interpolation the outliers were

removed. Following that, three methods of classification

were used, Support Vector Machine (SVM), Decision Trees

and K-Nearest Neighbor (K-NN), where the latest provided

the highest accuracy (97.4%). In all methods existed some

consistent correlations between some recipes that caused

errors to appear in the classification models, that as it was

observed can be attributed to transitions from one recipe to

the next, without a cleaning cycle in between. Also, the

current lack of additional raw data may be affecting these

results.

A. Recommendations

There are areas of this project that could benefit from more

research, that could not be accomplished during the time

period of this master thesis. Other outlier detection methods

could be tried and compared to find the one providing the

optimal results. The same applies for the method used for

the linear interpolation, were other methods could be used

to remove the outliers in a faster and more efficient way. In

conclusion, more classification methods could be tested to

Figure 8: K-NN Model – Classes 4 , 5 , 6

Figure 7: K-NN Model – Classes 1 , 2 , 3

Figure 6: Confusion Matrix of K-NN Model

 5

search for one resulting in higher validation accuracy and

thus enabling the creation of a real-time recognition and

classification system. Moreover, the use of additional raw

data collected from the sensor could provide better overall

results in the classification process.

ACKNOWLEDGMENT

I would like to express my deep gratitude to my master

thesis supervisor, Professor Desmulliez Marc for his

enthusiastic encouragement, his useful critiques on this

research and his assistance in keeping my progress on

schedule. This work would not have been possible without

his continuous support and the environment he provided to

work at the Heriot-Watt University. I am also particularly

grateful for the assistance given by Dr Altmann Yoann and

Dr Pavuluri Sumanth Kumar for their patient guidance, their

valuable and constructive suggestions during the planning

and development of this research work. Their willingness to

give their time, outside their working hours, has been very

much appreciated as well as, their immense knowledge that

assisted me during the time of research and writing of this

thesis.

Last but not the least, I would like to thank my parents,

whose love and guidance are with me in whatever I pursue.

My special thanks are extended to my siblings and my life

partner that supported me throughout my studies.

REFERENCES

[1] M. Ferree, "What is Food Quality," Food Distribution Research, pp.

36-39, February 1973.

[2] K. Saeed, A. .. Guyette, I. C. Hunter and R. D. Pollard, "Microstrip

resonator technique for measuring dielectric permittivity of liquid solvents

and for solution sensing," in Proc. IEEE Int. Microw. Theory Tech.Soc.

Symp., 2007.

[3] K. Joshi and R. Pollard, "Sensitivity analysis and experimental

investigation of microstrip resonator technique for the in-process

moisture/permittivity measurement of petrochemicals and emulsions of

crude oil and water," in Proc. IEEE Int. Microw. Theory Tech. Soc. Symp.

Dig., 2006.

[4] K. H. Theisen and T. Diringer, "Microwave concentration

measurement for process control in the sugar industry," Proc. SIT, vol. 60,

pp. 79-92, 2000.

[5] O. L. Bo and E. Nyfors, "Application of microwave spectroscopy

for the detection of water fraction and water salinity in water/oil/gas pipe

flow," Non-Crystalline Solids, vol. 305, pp. 345-353, 2002.

[6] S. Trabelsi and S. O. Nelson, "Microwave sensing of quality

attributes of agricultural and food products," IEEE Instrumentation &

Measurement Magazine, pp. 36 - 41, 21 January 2016.

[7] Z. Meng, Z. Wu and J. Gray, "Microwave Sensor Technologies for

Food Evaluation and Analysis – Methods, Challenges and Solutions,"

Transactions of the Institute of Measurement and Control, 20 September

2017 .

[8] J. M. Anderson, C. L. Sibbald and S. S. Stuchly, "Dielectric

measurements using a rational function model," IEEE Trans. Microwave

Theory Tech., vol. 42, pp. 199-204, February 1994.

[9] M. D. Migliore, "Partial self-calibration method for permittivity

measurement using a truncated coaxial cable," Electron. Lett, vol. 36, pp.

1275-1277, 2000.

[10] D. Misra, M. Chabbra, B. R. Epstein, M. Microtznik and K. R.

Foster, "Noninvasive electrical characterization of materials at microwave

frequencies using an open-ended coaxial line: Test of an improved

calibration technique," IEEE Trans. Microw. Theory Tech., vol. 38, pp. 8-

14, January 1990.

[11] K. Saeed, R. Pollard and I. C. Hunter, "Substrate integrated

waveguide cavity resonator for complex permittivity characterization of

materials," IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2340-2347,

October 2008.

[12] U. Raveendranath, S. Bijukumar and K. Matthew, "Broadband

coaxial cavity resonator for complex permittivity measurements of

liquids," IEEE Trans. Instrum. Meas., vol. 49, pp. 1305-1312, December

2000.

[13] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K.

Varadan, Microwave electronics: Measurement and materials

characterization, New York, USA: Wiley, 2004.

[14] R. Inoue, Y. Odate, E. Tanabe, H. Kitano and A. Maeda, "Data

analysis of the extraction of dielectric properties from insulating substrates

utilizing the evanescent perturbation method," IEEE Trans. Microw.

Theory Tech., vol. 54, pp. 522-532, February 2006.

[15] "MicroSense Technologies," [Online]. Available:

http://microsensetechnologies.co.uk/.

[16] "Heriot Watt University," [Online]. Available:

https://www.hw.ac.uk/.

[17] R. Brereton and G. Lloyd, "Support vector machines for

classification and regression," Analyst, vol. 135, no. 2, p. 230–267, 2010.

[18] S. Ari, K. Hembram and G. Saha, "Detection of cardiac abnormality

from PCG signal using LMS based least square SVM classifier," Expert

Syst. Appl., vol. 37, no. 12, p. 8019–8026, 2010.

[19] T. Wu, S. Huang and Y. Meng, "Evaluation of ANN and SVM

classifiers as predictors to the diagnosis of students with learning

disabilities," Expert Syst. Appl, vol. 34, no. 3, p. 1846–1856, 2008.

[20] Y.-Y. Song and Y. Lu, "Decision tree methods: applications for

classification and prediction," Shanghai Arch Psychiatry, vol. 27, no. 2, p.

130–135, 25 April 2015.

[21] C. C. Aggarwal, Data Classification: Algorithms and Applications,

CRC Press, 2015.

[22] O. Z. Maimon and L. Rokach, Data Mining With Decision Trees:

Theory And Applications, World Scientific Publishing, 2015.

[23] S. Raschka, Python Machine Learning, Packt Publishing Ltd, 2015.

https://www.hw.ac.uk/

	Athanasiadis Stefanos-paper.pdf
	I. INTRODUCTION
	II. Introduction To Artificial Neural Networks
	III. Processing of Sensor Raw Data
	IV. Implementation Of Artificial Neural Networks
	A. A sample architect of a Neural Network
	B. Classification Accuracy - Confusion Matrix

	V. Results
	A. Comparison of results in category 1.1
	B. Comparison of results between categories 1.1 and 1.2
	C. Comparison of results in category 2.1
	D. Comparison of results between categories 1 and 2

	VI. Conclusion
	Acknowledgment

	Dousai Nayee Muddin Khan-paper.pdf
	INTRODUCTION
	Dataset Collection
	Implementation
	Detecting Stickers
	Extraction of Region of Interest
	Data Matrix Detection
	Acquisition of Position and Orientation
	Correlation with different Kernel

	Results and Discussions
	CONCLUSION
	ACKNOWLEDGMENTS
	References

	Erabati Gopi Krishna-paper.pdf
	INTRODUCTION
	Related Work
	Framework

	Methodology
	3D Model Reconstruction - Offline phase
	Plane Segmentation and Clustering
	3D Model - Registration using ICP

	Pose Estimation - Online Phase
	Object Recognition
	Initial Alignment
	Final Alignment - ICP

	Results and Discussion
	Datasets
	Qualitative Evaluations
	Results of pose estimation of objects acquired using Microsoft Kinect v1
	Results of pose estimation of objects acquired using Orbec Astra Pro

	Quantitative Evaluations

	Conclusion and future work
	References

	Espinel Lopez Yamid-paper.pdf
	INTRODUCTION
	BACKGROUND
	Augmented reality in laparoscopic surgery
	The Hepataug software and registration of the liver

	Deformable registration of the liver using tactile gestures
	Marking of a vertex or region on the model
	Marking of a contour on the model
	Selecting a marked region/contour for manipulation
	Manual real-time deformation by local translation and rotation

	Ultrasound image registration using tactile gestures
	Loading and pre-processing of the ultrasound image
	Pose initialization of the ultrasound plane up to depth and roll angle
	Registration of the depth and roll angle

	Tests and results
	Deformable liver registration using tactile gestures
	Ultrasound image registration using tactile gestures

	CONCLUSIONS AND FUTURE WORKS
	Conclusions
	Future Works

	ACKNOWLEDGMENTS
	References

	Melidoni Despoina-paper.pdf
	I. INTRODUCTION
	II. Processing of raw data from sensor
	A. FoodSense Sensor System
	B. Initial Data Analysis

	III. Classification of data
	A. Support Vector Machine (SVM)
	B. Decision Trees
	C. K-Nearest Neighbor (K-NN)

	IV. Conclusion
	A. Recommendations

	Acknowledgment
	References

