
Low-Cost Underwater Stereo Camera System

Dea Adlina and Nuno Gracias

Abstract— Documentation of coral reefs and fish is usually
performed in shallow waters by divers who carry small and
inexpensive handheld video and still cameras. These cameras
do not allow accurate measurements of distances due to the
lack of stereo capacitiy or small camera baselines. This research
developed a set of software modules that perform calibration
and synchronization of a stereo-pair by using either a flashing
light or image motion consistency. This allows a diver to
perform stereo-vision measurements by means of two low-cost
video cameras operating independently. We assume that the
intrinsic calibration and the distance between the cameras are
known, while the precise camera orientation is computed by
the system without using a calibration grid.

I. INTRODUCTION

People studying coral reefs and fish require methods and
setups for the documentation of these marine biodiversity.
The studies are usually performed in shallow waters by divers
who carry handheld video and still cameras. Research has
been conducted on determining the accuracy and precision
of stereo-video measurements of moving fish as an accurate
indicator of their true length [3]. It states that an additional
criterion for stereo-video measurement was that the fish had
to be at an angle of less than approximately 50◦ perpendicu-
lar to the stereo-video cameras to ensure maximum accuracy.
The results of the research show that stereo-video can be
used to make accurate field measurements of the length of
reef fish and has many advantages in monitoring programs
that aim to detect changes in the mean length of fish that are
rare, or are sampled in low densities [3].

When capturing the video of coral reefs and fishes using
multiple cameras, the cameras are usually attached to a ve-
hicle or handheld by divers. Sometimes, the cameras are not
securely positioned or not rigidly attached. Especially in low-
cost imaging systems using off-the-shelf video cameras, the
resulting videos may suffer from the cameras’ slight changes
in orientation due to water resistance while moving. Also,
most commercially available underwater stereo-systems have
very small camera baselines allowing them to be more com-
pact and rugged. Small baselines have a very negative impact
on the ability to perform accurate triangulation, and thus pro-
vide useful distance measurements. This is even worse when
acquiring images of marine animals and structures at larger
distances. For these reasons, it is relevant to develop and
validate stereo-imaging systems based on affordable cameras
that do not rely on synchronized acquisition which requires
cable link between the two cameras. Nonetheless, the use
of unsynchronized and non-rigid stereo is a challenging
problem because it requires the development of procedures
for quick synchronization and calibration in the field.

II. RELATED WORKS

F. Oleari et al [5] made a low-cost stereo-vision system
for object recognition. It uses two unsynchronized Logitech
C270 UVC cameras put inside an aluminum rigid bar case to
ensure that it can hold against vibrations and collisions. The
system applies Fast Point Feature Histogram (FPFH) descrip-
tors to acquire point clouds in order to accurately perform
object recognition. The intrinsic and extrinsic calibration,
the disparity image and the point cloud computation are
done with ROS packages and libraries (stereo image proc).
Although the author states the cameras are unsynchronized,
no automatic synchronization is presented in this work.

P. Cerri et al [6] presents a new method for extrinsic
parameters computation by using 10 computer-generated or
real images of a ball rolling on a flat plane in front of the
camera for computing roll and pitch angles. The calibration is
achieved by an iterative Inverse Perspective Mapping (IPM)
process that uses estimation of the ball gradient invariant
as a stop condition. The method is suited to be used to
quickly calibrate vision systems where a grid is not available.
Although this could be an alternative for an extrinsic camera
calibration, this method cannot be applied as it is because
the research is aimed for underwater use and the calibration
with a rolling a bowling ball underwater would be hard to
implement.

Heng et al [7] made an automated pipeline that handles
both intrinsic and extrinsic calibration of a stereo rig. It does
not assume that there are overlapping fields of view. At first,
for each generic camera, an automatic intrinsic calibration
that requires a chessboard is conducted. Then, the vehicle
must be driven around for a short time to perform the ex-
trinsic calibration, i.e. find all camera-odometry transforms.
Triangulation of the inlier feature point correspondences is
generated by monocular visual odometry using the initial
camera-odometry transforms and odometry data. The result-
ing sparse map is then optimized via bundle adjustment; the
odometry poses are kept fixed while all 3D scene points and
the camera-odometry transforms are optimized. In this work,
we use the same way of performing the intrinsic calibration
using a chessboard. However, instead of using the odometry
in 3D, we apply a simpler approach of relating the two
cameras using rotations along the 3D axis.

Dang et al [9] presents a framework for continuous stereo
self-calibration. The active camera platform consists of three
independently moving cameras: two stereo cameras with
one rotational DOF (degree of freedom) and a telecam-
era with two DOF. The framework utilizes the geometry
of stereo image sequences, stereo-image pairs and image



triplets. However our aim is to use a much simpler setup
of unsynchronized cameras.

III. METHODOLOGY

A. Standard Calibration

First, a simple and quick intrinsic camera calibration using
Camera Calibration Toolbox for Matlab [10] is conducted.
This calibration technique makes use of a regularly gridded
checkered pattern where the metric size of the rectangulars
is known. This grid is flat, and therefore multiple images
of the calibration grid are acquired at different distances and
orientations. The images are then automatically corrected for
the radial distortion by the toolbox. These corrected images
are used to do a stereo calibration between the left and the
right camera using the toolbox. In the stereo calibration, all
intrinsic and extrinsic parameters are recomputed together
with all the uncertainties so as to minimize the reprojection
errors on both cameras for all calibration grid locations.
The purpose of the standard calibration is two-fold. Firstly
it allows to determine the intrinsic calibration for the two
cameras. We assume that these parameters are not changing
over time. Secondly, one of the objectives of this work is to
avoid having to do the extrinsic calibration in the field each
time that the stereo system geometry is changed. However,
the standard stereo calibration is performed for comparison
purposes.

B. Synchronization With a Flashing Light

When recording the same scene by two unsynchronized
cameras, there will be a slight time inconsistency between
them. This is because their recording start times are not
exactly the same. To synchronize the cameras, the frame
difference of the resulting video sequences must be deter-
mined. One of the simplest ways to do this is to capture
a simultaneous event that can easily be recognized in both
video sequences, such as a flashing light.

When both cameras are recording, a strong light is turned
on for an instant. Therefore, in both videos, there will be
a frame with a sudden intensity peak compared with the
averages of the previous and next frames. To detect the
peak, the image is first converted into a gray scale which
helps to simplify the thresholding of the white values. The
criterion to detect the presence of the light is by counting
the number of pixels that are present in the largest connected
group after applying a threshold to the gray scale image.
The number of pixels in the region for each connected
component is measured and the connected component that
have a connection of white pixels that will only be found in
a particular part in the image. The measurement is conducted
separately for both left and right camera images. When the
frame of the flashing light event is found in both images sets,
the time lag or frame difference between the left and right
camera is then known.

C. Synchronization From Motion Consistency

The reasoning behind this approach is that sudden move-
ments of the stereo camera create distinctive patterns of

image motion that are easy to correlate and therefore help
determine the time lag. Among these movements, a combi-
nation of pure rotations along the 3 different axes is well
suited. Pure rotations avoid parallax effects and are easier to
estimate robustly using 2D registration methods. Although
it is impossible to execute pure rotations with a stereo
rig due to the baseline distance, these movements can be
executed while pointing the cameras to a faraway location,
thus reducing the parallax effect.

D. Estimation of rotation velocities

From the acquired video, the extracted image sequences
are corrected for the radial distortion. For each sequence,
the images are matched sequentially over time using SIFT
features and RANSAC for outlier removal. For each image,
matched points are sought within the current and the next
image.

The robust estimation algorithm uses homography of 8
DOF as the motion model to identify the inliers. The 8
DOF homography is the most general model that can be
computed linearly and can describe a pure rotation of the
camera in all three axes (α, β and γ). For RANSAC, a linear
model is important since it can be computed very quickly and
therefore the robust estimation can identify the outliers in less
than one second after doing approximately 500 iterations of
random sampling over a set of more than 400 matched points.
After RANSAC, a final 8DOF homography H is computed
from inliers

After finding the matched points, a rotation-only homog-
raphy with 8 DOF is computed. This is done in order to
have an approximation of the 3D rotation matrix that relates
each image and the next one. The transformation matrix is
directly computed using the coordinates of the markers fixed
on a moving body. This can be done if more than 3 markers
are fixed on the body. Then, the orientation angles and the
center of rotation can be computed from all of the inliers.
From H, an approximation to a rotation matrix is obtained
by R̂ = K−1HK. However, this approximation is not a
real rotation matrix because it is not necessarily orthogonal,
due to the noise in the matched points and departures from
the assumed rotation only camera motion. Furthermore, its
determinant is not necessarily 1 since it is defined up to scale.
Therefore, a proper rotation matrix R̃ is estimated from R̂
by means of the singular value decomposition (SVD). Let
U, S, V T be the SVD of R̂ such that R̂ = U · S · V T . Then
a rotation matrix approximation to R̂ is [17]

R̃ = V

1 0 0
0 1 0
0 0 det(V UT )

UT

From R̃ a vector of rotation angles (α, β, γ) is extracted
using the X-Y-Z fixed angle convention of

dt = [t]× =

 0 −tz ty
tz 0 −tz
−ty tx 0





To improve the results of the estimation of these angles a
non-linear minimization was implemented in the following
form:

α̃, β̃, γ̃ = argmin
∑N

i=1 d
2(xt+1

i ,KR3D(α, β, γ)K−1 · xti)

Where N is the number of inliers, xt+1
i and xti are matched

points in the frame t and the next frame t+1 and d2(·, ·) is
the squared distance between point projections in one image.
The minimization was done with the Levenberg-Marquardt
algorithm [16] available in Matlab. However, this additional
step did not make any difference with respect to the results
of the SVD approximation and was not used in practice.

Apart from the 3 angles α, β and γ, we used a forth one,
θ, corresponding to the total angle of rotation obtained from
the axis-angle representation:

θ = arccos
(

trace(R̃)−1
2

)

The objective of having this additional angle was to check
if it would be sufficient in practical applications to do the
synchronization with just one angle instead of the three
components (α, β, γ).

E. Determining the frame shift

Since the left and right cameras are not started at the same
time, there will be a time difference for the rotation events.
Although the rotation angle transformation between the two
cameras is similar, there are still slight differences, because
they are placed at opposite ends of the bar.

After angular velocities are estimated from the temporal
matching along the image sequence, the noise in the signal
is reduced by smoothing the angular velocity profiles using
a Savitzky-Golay filter. From the smoothed signals, both left
and right cameras normalized cross correlation is computed
and the peaks for all angles are localized. These peaks can be
obtained by taking only a part of the whole signal where high
angular velocities were recorded. This is because the time
interval corresponding to two or three saccadic movements
of the camera is usually sufficient to find a clear peak.

The frame difference estimated from the angular velocities
of α, β, γ, and θ may vary slightly. We consider the frame
difference to be the mean of all four rounded to the nearest
integer. In this work, we are not considering that the reso-
lution of the frame lag between the left and right sequences
can be below one frame interval. Although potentially this
could be done by estimating the fraccional locations of the
peak using a polynomial fit.

F. Stereo extrinsic calibration from image registration

The required parameters are a vector that describes the
baseline with respect to the reference frame of the left camera
T = [tx, ty, tz]

T , and a rotation lR2 of the reference frame
of the right camera, also described in the left camera frame.
The approach used is based on the concepts of structure from

motion [14] and visual odometry[15] where the motion of a
camera in 3D can be found from point matches.

The method uses the Essential matrix E and a set of
matched points among the left and right cameras. The
matched points are found using SIFT and RANSAC but the
motion model is described by the E matrix instead of an
homography. The E matrix maps normalized points in one
image to normalized epipolar lines in the other image. For
the outlier rejection, the Sampson distance [14] is used to
assess the inliers.

After RANSAC, the unknown extrinsic parameter are
estimated from the set of all inliers using a parameterization
for the E matrix based on the rotation angles α, β, γ and
two angles that define the direction of the baseline in
spherical coordinates θ, ϕ. The baseline T can be obtained
as T = [sin θ cosϕ, sin θ sinϕ, cos θ]T · r, and r is the
baseline distance. The reason for using sperical coordinates
is that the length of the vector T cannot be determined just
from matches between images [14]. However, this baseline
distance is assumed to be known, and can in fact be measured
relatively precisely in the field.

The extrinsic parameters are estimated by

(α, β, γ, θ, ϕ) = argmin
∑
i

d2(xli, E ·xri )+d2(xri , ET ·xti)

(1)
where E = [R3D(α, β, γ)]T · [t(θ, ϕ)]x and t =

[sin θ cosϕ, sin θ sinϕ, cos θ], d(·, ·) is the perpendicular
distance between a point and an epipolar line.

IV. RESULT
The experiment was done by using Matlab and two un-

synchronized Gopro cameras placed in underwater housings
attached to the opposite ends of a straight bar. The length
of the bar is known and both cameras are facing front. The
camera orientation can be measured by only using the result-
ing images from the video recorded by each camera without
a calibration grid. The sequences were taken in the test pool
using two baselines: a narrow baseline of only 35 mm and
a wider one of 350mm employing single camera housings.
This sequence was used for the synchronization test and for
both the standard calibration and for the extrinsic calibration
from point matches. Another sequence was acquired at sea,
with a similar setup, but with a shorter baseline of 95.5 mm.
These sequences are summarized in Table I.

Sequence Baseline Housing Synchronized External
(mm) Calibration

PoolNarrow 35 Modified Yes Standard
GoPro Stereo toolbox

PoolWide1 350 Separated No Standard
toolbox

PoolWide2 350 Separated No From
matches

Sea 95.5 Separated No From
matches

TABLE I
SUMMARY OF COLLECTED STEREO SEQUENCES



A. Synchronization with a flashing light

The frame differences between unsynchronized cameras
have to be known in order to use the stereo rig. In the
synchronization by using a flashing light, a peak happens
when a strong light is detected within the frame as seen in
figure 1. The peak happens in different frames because the
right camera started recording before the left camera. The
frame difference can be estimated from the peak location.
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Fig. 1. Peak in left (a) and right (b) camera image sequence.

B. Synchronization from motion consistency

Another method to do synchronization of two cameras
is using motion. Figure 2 depicts the angular velocities
of α, β, γ and θ that were estimated from homographies
computed from sequence PoolWide1. The signal describes
the time differences or lags between sequences.

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
−0.05

0

0.05

α

image frames

 

 
Left
Right

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
−0.05

0

0.05

β

image frames

 

 
Left
Right

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
−0.02

0

0.02

γ

image frames

 

 
Left
Right

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
0

0.02

0.04

θ

image frames

 

 
Left
Right

Fig. 2. Unfiltered angular velocity

Figure 3 shows the result of the normalized cross correla-
tion of the signals from Figure 2. The correlation peaks are
clearly visible and consistent among themselves. Although
not used in this research, a criterion to evaluate the quality of
the lag estimate for various angles would be to analyze the
width of the correlation peak. Wider peaks would suggest
more uncertain correlations. From the plots, the θ angular
velocity is the most distinctive regarding the ratio of the
largest peak to the secondary peaks. This suggests that a
saccadic motion in any direction is suitable to be detected by
the θ angular velocity. The peak within the signal in Figure
3 is later used to find the frame difference.
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Fig. 3. Result of the normalized cross-correlation of the smoothed velocity
signals

In Figure 2, it can be seen that the signal is noisy. This
noise is smoothed by Savitzky-Golay filter. When the SIFT
algorithm finds matches between current and next frames,
it also detects incorrect points which are usually found in
water surface reflections. These problems can be reduced
by lowering the threshold of acceptance of inliers, but could
result in decreasing the number of correct matches. However,
these incorrect matches are unlikely to happen in practice.
Because when the cameras are used to record video of coral
reefs and fishes, they normally face downward where water
surface reflections are unlikely to happen.

C. Stereo extrinsic calibration from image registration

The extrinsic calibration was tested in stereo pairs of Pool-
Wide2 right before the camera tilt, after the camera tilt and on
a sea sequence. The set inliers are found by matching using
the essential matrix. The results of the extrinsic calibration
are shown in Figure 4, 5 and 6. As a criterion to evaluate and
visualize the quality of the calibration, the stereo rectification
was computed. A necessary condition for the calibration to
be considered successful is that the rectified stereo pairs must
have corresponding horizontal scan lines.

Figure 4 shows a good result of the standard stereo calibra-
tion where misalignments of the scan lines are barely visible.
The center figure illustrates the optimization initialization
values which were set to be far apart from the correct ones.
The optimization is able to find a set of calibration values
where the scan lines match perfectly.

Figure 5 presents the same arrangement for the part of
sequence where one camera was rotated. As expected, the
top rectification is clearly wrong. The starting point for the
optimization was, in this case, set to represent a perfect
fronto-parallel configuration where all five angles of the
essential matrix parameterization are set to zero. The result of
the estimation process is also quite good, with no noticeable
misalignments. Finally the result for the sea sequence is
presented in Figure 6, also attaining good results.

A final set of results are reported for illustrating the effects
of the baseline length in measuring distances between 3D
points in the scene. Table II corresponds to the GoPro stereo



housing with the baseline of 35 mm. Stereo pairs were taken
approximately at 1 meter intervals from roughly 1 to 5
meter distance. Several distance measurements were done
to simulate objects of different sizes that are visible in a
plane approximately perpendicular to the optical axis (fronto
parallel-plane).

Table II is the accuracy test for the PoolNarrow sequence
with the object viewed from near to far. 616 mm is the width
or height of 11 squares in the chessboard. 224 mm is the
width or height of 4 squares and 56 mm is the width or
height of 1 square. Table III shows the accuracy test for
the PoolWide1 with the object viewed from near to far. 480
mm is the real height of a clay pot. The standard deviations
marked with an (*) have no statistical meaning, since for
these cases the distribution of the uncertainty of the distance
measurements is clearly non-gaussian.

To evaluate the uncertainty and therefore the validity of the
distance measurements, a Monte Carlo test was implemented
to compute the distribution of the distance measurements
under the effect of noise in the location of the image
coordinates of the points marked by a human operator. For
this test a conservative value for the uncertainty of 4 pixels
standard deviation was assumed, which corresponds to 1/500
of the image width. Using the two pairs of correspondences
clicked by the user, two 3D points are found by triangulation.
The length in 3D of this segment is reported as the distance.
The two 3D points are reprojected into the images. Zero
mean gaussian noise is added to these point projections and
a new 3D distance is computed. This process is repeated
1000 times, standard variation of the distance is computed
along with the histogram.

It can be easily seen that the errors and the uncertainties
do not scale well with the increasing distance from the
camera to the scene. For distances of more than 4 meters
the errors grow significantly and the resulting measurements
are meaningless. The distribution of the uncertainty becomes
clearly non-gaussian even at short distances and is better
approximated by a gamma distribution. The same behavior
can be observed for the PoolWide1 sequence, although
considerably less severe, due to the wider baseline which
is ten times larger than in the previous case.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

Coral reef studies, fish sizing and their population distri-
bution assessment are some of the documentation activities
that can benefit from a simple and inexpensive stereo imaging
system. This research has presented and tested techniques to
achieve the goal to perform the calibration and synchroniza-
tion of two inexpensive cameras operating independently.

Camera synchronization and extrinsic calibration was per-
formed using computer vision techniques with very promis-
ing preliminary results. The camera synchronization was
solved in this work in two different ways but they are
limited to the fact that only two frames are computed at
a time thus it cannot be more precise than 1/30 second. This
is not a problem when the camera is static, or when the

Original Extrinsic Calibration

Starting Point for Extrinsic Estimation

Final Extrinsic Estimation

Fig. 4. Rectified image of PoolWide2 sequence before tilting of the right
camera. The top figure show the result of the standard stereo calibration.
The center illustrates the starting values for the extrinsic estimation from
matches. The values were deliberately set to be wrong. The lower figure
corresponds to the final values of the estimation

No. Real Measured Standard Distance Estimated
distance distance Deviation error Distance

(mm) (mm) of distance (mm) of object
(mm) to camera (m)

1
616 587.4 27 -28.6 1.4
224 232.2 17.3 8.2 1.4
56 53.3 19.6 -2.7 1.3

2
616 570.4 61.5 -45.6 2.6
224 223.1 84.7 -0.9 2.6
56 48.6 104.5 -7.4 2.6

3
616 561.7 171.7 -54.3 3.9
224 248.3 340.6 24.3 4.7
56 61 392.1 5 4.8

4
616 863.8 550.9 (*) 247.8 5.3
224 486.1 627.8 (*) 262.1 5.9
56 212.7 661.2 (*) 156.7 6.1

5
616 2530.6 1796.5(*) 1914.6 7.6
224 503.9 663.3(*) 279.9 6
56 1911 1598.9(*) 1855 7.8

TABLE II
ACCURACY TEST FOR POOLNARROW

object being measured is moving slowly. Iinaccuracy may be
induced in the measurements when the speed of the image
motion is high, for example when the camera is panning
quickly. While the main objectives of the work were attained,
by demonstrating the use of a stereo system that does not
require an extrinsic calibration procedure in the field, the
performance of the method is dependent on the number of
inliers that are found for computing the essential matrix.
In this work it was illustrated with just results obtained
from a single stereo pair. However, the same approach could
be used with results from multiple stereo pairs as long as
the geometry of the stereo system is constant during the
acquisition of those stereo pairs.
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Fig. 5. Rectified image of PoolWide2 sequence after tilting of the right
camera

Starting Point for Extrinsic Estimation

Final Extrinsic Estimation

Fig. 6. Rectified image of Sea sequence

No. Real Measured Standard Distance Estimated
distance distance Deviation error Distance

(mm) (mm) of distance (mm) of object
(mm) to camera (m)

1
480 493.5 51.4 13.5 5.9
224 226.8 2.9 2.8 1.7
56 52.8 2.2 -1.2 1.5

2
480 484.9 51.1 4.9 6.9
224 246.1 16.9 22.1 4.5
56 59.7 23.1 3.7 4.5

3
480 783.4 341.3(*) 303.4 14
224 532.3 300.4(*) 308.3 12.3
56 263.5 256.4(*) 207.5 11.8

TABLE III
ACCURACY TEST FOR POOLWIDE1

B. Future Works

As future work, further testing is required for validating
the approach in terms of error accuracy also to detect when
the result are inconsistent based on the analysis of the
reprojection errors. When estimating the extrinsic calibration,
the modeling of the rolling shutter effect and the estimation
of the parameters for the end model of the rolling shutter
effect and the correction of this effect.
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Classification and Recognition of Traffic Signs

Farhat, Dr. Yohan Fougerolle

Abstract— Traffic sign is the main component in the
highway that aims to organize and provide information to
the user, for road safety. The given information can be as
a guidance, prohibition, warning, etc. A development of
an application that has an ability to automatically detect
and translate the meaning of the sign can help increase
the awareness of traffic sign and road safety. One field of
technology in this regard is the Traffic Sign Recognition
(TSR). In this paper, implementation of TSR especially
for the classification stages is performed. Combination of
SIFT and HOG to extract the features, Singular Value
Decomposition (SVD) method to reduce and keep only the
significant features, Bag of Words (BoW) to represent the
extracted features to the Support Vector Machine (SVM) as a
classifier. The accuracy obtained was 84 %. This is because the
lighting factor. Almost all of the misclassified signs are the signs
with a dark view or get reflection of the light in large numbers.

I. INTRODUCTION

Traffic signs are one of the most important components in
traffic environments because it helps to create a controlled
and safe traffic. The main focus is to improve the ability
to identify the trafic sign which in turn will improve road
safety. A TSR system is composed of two principal steps:
the detection and the classification. The detection stage aims
as automatically detecting the traffic sign by doing segmen-
tation and various pre-processing operations. The results of
this stage will be forwarded to the classification stage to
determine the type and the information contained in the sign.
In the implementation, there are some major problems:

1) The signs are captured in various
• Weather conditions, such as fog or rain.
• Lighting / illumination conditions: day and night.

2) Geometrical issues
• Occlusion.
• Rotation.
• Different view point.
• Scale distortion.

3) Self Similarity
Can be happen for signs from different categories
(intra-class similarity) and for the signs from the same
category (inter-class similarity).

4) Similarity between some surrounding objects and the
signs (in terms of color and shape).

II. RELATED WORK

Considering the importance of Traffic Sign Recognition,
there are many researches have been done using various
methods.

In [1], the authors perform classification by using the Bag
of Words (BoW) approach, where the Scale Invariant Feature
Transform (SIFT) features that have been extracted from the
training images are stored in the ’Individual Dictionaries’.
Then they combine all the individual dictionaries and become
’Modular Codebook’. This is useful if there is a new
class of the data, then recomputed of the modular codebook
is not needed. The testing is conducted by comparing the
features with the modular codebook and at the same time
the histogram is generated. This histogram is used as input
to a linear SVM (One vs. All SVM). Scale Invariant Feature
Transform (SIFT) is selected because it is scale and rotation
invariant. Recognition results is 97 %.

Classification stages in [2] similar to [1], the only difference
is that they use SVM with RBF kernel (using LIBSVM
library). While in [3], linear CSVM is used. [4] utilizing the
SVM with Gaussian kernel. Test is only performed on the
image with the same color and shape. SVM with Gaussian
kernel is also used in [5], but the classified sign is simply
the circular traffic sign.

In the [6], classification of the detected traffic signs is
performed by using information of the moment. According
to Fleyeh, moments are useful for feature extraction because
provide information about the geometrical features and rep-
resent the global characteristic of the shape of an object in
the image. Fleyeh performs various comparisons between
the features, different kernels type and obtain that the best
features for traffic signs recognition was Legendre moments.
Similar in [12], but Haar Invariant Features yields the result
of 97.77 %.

Alberto Broggi in [7], conducted sign classification by
using NN based on shape and color.

Normalized Cross Correlation is used in [10] and with a
variety of different color such as in [9] HSV color space
was used as it separated the color and intensity, [13] and
[8] using a gray scale image because of Hue component in
the HSV color channel is affected by weather, age and the
distance between the sign detection tool.

[15] perform template matching in the form of traffic
sign that has removed the background. SURF descriptors
of the detected traffic sign’s pictogram in [16] is used in
classification stage. According to a study of Juan et al.
[11], SURF is more robust to illumination changes. The
recognition rate was 97.72% Achieved.



III. MATHEMATICAL BACKGROUND

A. Image Gradient

Image gradient expresses the directional change in an
image (the change of intensity / color). Gradient of each
image point (image pixels) is represented in 2D vector, that
represents:

1) The magnitude shows the intensity changes along the
vertical (Y) or horizontal (X) direction (expressed as
the length of the vector).

(dy) = A(x, y − 1)−A(x, y + 1) (1)
(dx) = A(x+ 1, y)−A(x− 1, y) (2)

∥A(x, y)∥ =
√
(dy)2 + (dy)2 (3)

• A(x,y) is an pixel in image A
• x is the position of pixel A in X coordinate and

y is the position of pixel A in Y coordinate
• dx is the measurement of the change of pixel value

in X coordinate
• dy is the measurement of the change of pixel value

in Y coordinate
2) Orientation / direction of the gradient shows the direc-

tion of the changing in image (in angle). The values
of magnitude that have been obtained previously are
used to calculate the orientation value (θ).

θ = tan−1 (dy)

(dx)
(4)

B. Features Descriptor

Features are properties of an image.

1) Histogram of Oriented Gradients (HOG): HOG is a
local feature descriptor developed by Dalal and Triggs [6].
HOG will divide the image some into small windows / cells
(small region, for further feature extraction is done in this
area). In every region / cell, the gradient calculation will be
performed to all the pixels and represented the obtained θ
values into a histogram (with certain number of bins). At
the end, all the obtained histograms from all cells will be
merged and will be a final feature extracted rom the image.
The detail workflow of HOG computation can be seen in
Figure 1(a).

2) Scale Invariant Feature Transform (SIFT) Desriptor:
Has been developed by Lowe [14] and transforms an im-
age into scale-invariant coordinates. The obtained features
invariant to various geometric condition (scale, rotation),
noise, affine distortion and partially invariant to change in
lighting (illumination) and different viewpoint. In contrast
to the HOG that extracting the features on all parts of the
image, SIFT extracts features only on some parts of the
images that are considered to have important information.
SIFT computation stages can be seen in Figure 1(b).

Determining the location and scales can be performed by
using the convolution of Gaussian functions with the input
image.

Compute magnitude of image’s pixels
 in  X and Y direction [(dy)(dx)]

(in each cell)

Compute orientation of gradient

Determine Bins number

Create histogram of each cell

Merge the histogram

End

Traffic Sign Images

Divide into Cells

Start

(a)

Start

Scale space extrema detection

Keypoints localization

Orientation Assignment

Keypoint Descriptor

End

(b)

Fig. 1. Flowchart of (a) HOG descriptor, (b) SIFT descriptor proposed by
Lowe [14]

G(x, y, σ) =
1

2πσ2
e

x2+y2

2σ2 (5)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (6)

• L(x,y,σ) = Scale Space of an image
• * is convolution operation
Keypoint location detected by using the difference of

Gaussian function (two nearby scales) convolved with the
image in scale space. This is performed incrementally.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (7)
= L(x, y, kσ)− L(x, y, σ) (8)

• D(x,y,σ) is the Difference of Gaussian function(DoG).
• k is a constant multiplicative factor.
• σ is the sigma value of gaussian function.
Keypoint is obtained by comparing a pixel with 27 neigh-

bors pixels (8 pieces pixel on the same scale, 9 pieces of
pixels on the scale above and 9 pixels on the scale below).
In the end the local maxima and minima of D (x, y, σ) is
obtained as keypoint.

C. K-Means Clustering

Is a method to do partition of N observations into K
clusters in which each observation belongs to the cluster with
the nearest mean (Figure 2).

Cluster =
k∑

i=1

∑
xjϵsi

∥xj − X̄∥2 (9)
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Fig. 2. K-means workflow

D. Bag of Words (BoW)

Bag of Words is a commonly used method in the classifi-
cation. In this method, an image can be treated as a document
and the extracted features will be considered as words. K-
Means clustering is performed on the set of features and
yields codebook. Frequency /occurrence calculation between
features with the codebook is performed. The calculation
result will be obtained in the form of frequency histograms.
This histogram is used as a feature for training a classifier.

E. Support Vector Machine (SVM)

Classification process begins by generating and finding the
best and optimal model / hyperplane that can separate the
extracted features linearly into the appropriate classes. More
precisely, the hyperplane can be used as a decision function
(models) that obtained from the training process, the one
which is intended as a boundary between classes. Optimal
hyperplane is defined as a candidate hyperplane which has
maximum distance with the data located at outer boundary
from each class. This distance is called Margin, while the
data located at the outer boundary from each class is called
the Support Vectors. If in the input space, the data cannot be
separated linearly, then mapping the inputs into the higher
dimensional space (Feature Space) is needed with the help

of kernel techniques . This mapping approach is known as
”Kernel Trick”. This paper uses RBF as the kernel.

RBF : K(xi, xj) = exp(−γ∥xi − xj∥2, γ > 0 (10)

The chosen kernel for SVM is RBF it has been widely
proven as a good kernel and can handle if the relation be-
tween class labels and attributes is non-linear (by nonlinearly
maps samples into a higher dimensional space). In addition,
if compared with the polynomial kernel whose value can be
zero or infinity (influenced by the degree), RBF does not
has that such numerical difficulties. In doing the mapping,
RBF kernel requires gamma parameter (-γ). The gamma (-
γ) parameter is obtained by doing cross validation. The best
parameters obtained from cross validation are used to train
the whole of system and get the model.

IV. IMPLEMENTATION

Figure 3 shows the general flow of the developed system.
This classification system uses a combination of SIFT and
HOG features. Both of these features are extracted from
each image, and the significant features are selected by using
SVD. Then, the frequency quantization is performed, based
on each codebook.

Traffic Sign Images

Pre-Processing

Dimensionality Reduction
(SVD)

Bag of Words (BoW)

Classifier (SVM)

End

Start

Features Extraction

Fig. 3. General flowchart of the developed system

The obtained histogram for SIFT and HOG then combined
and is used by SVM to train and generate the model. This
model will be used for a whole system to classify traffic sign
image (Figure 4).

V. RESULT

The training and testing stages have been conducted on a
total of respectively 2480 and 1215 images from 31 classes of
traffic signs with a various conditions (ranging from lighting,
view point and size). Figure 5, 6 and 7.
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SVM Train - Generate the Model
(RBF Kernel) Model Exist?

SVM Testing

Cross Validation for 
C and G parameters

N

Y

Y

End

Fig. 4. SVM in training or testing stage

Fig. 5. Images from all class in Training

Fig. 6. Various conditions of Training images for the developed TSR
system

Fig. 7. Various conditions of Testing images for the developed TSR system

To facilitate the visualization and the delivery of infor-
mation of the classification result, Confusion Matrix is used.
Confusion Matrix is a visualization of the performance of the
classifier to classify correctly the traffic sign images. Each
column represents the predicted class and the row is the
actual class. From the matrix, it can be seen the number
of images from one class that misclassified or classified
correctly. For the misclassified images, distribution of the
prediction class can be determined easily.

TABLE I
A CONFUSION MATRIX OF THE DEVELOPED CLASSIFICATION STAGE

From the testing stage that has been conducted and the
result presentation in the confusion table, it can be seen that
there are many misclassified traffic sigs. From the analysis
on the obtained result, can be grouped:



1) Misclassified
Sign that are belongs to this group are the signs which
have a extreme dark view and which get the reflection
of light in a hefty amount. Can be seen in Figure 8.

(a) (b)

Fig. 8. Images from class 15 that are misclassified due to the lighting
effect.

2) Correctly classified
Signs that are belongs to this group are the signs with
various conditions: the view is not really dark, blurred,
signs with different view point, and has a little bit
reflection. Figure 9 and Figure 10.

VI. CONCLUSION

From the conducted testing, the accuracy level of the
developed classification system to correctly classified the
signs is 84 %. This is because, 16 % are mostly images
with extreme lighting conditions (dark view and get high
reflection by the light). As for other conditions, such as
a different view point, a different scale and non extreme
lighting conditions, the system proved able to correctly
classify.
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Fig. 9. Images from class 15 with various conditions that are correctly
classified
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Fig. 10. Images from class 9 with various conditions that are correctly
classified



Implementation of a Behavioral-based Navigation System for Mobile
Robot BIGBOT

Isram Rasal, Xavier Cufi and Albert Figueras

Abstract— There are many different types of disasters such
as earthquakes, flood, building collapses, landslides or volcano
eruption. During emergency situations, and especially in urban
disaster, usually policeman, fireman and medical assistance are
deployed. They need to cooperate with each other to save
human lives, protect the structural infrastructure, and evacuate
victims into a safe place. An Urban Search and Rescue (USAR)
operation involves the location of these victims, their medical
stabilization and their extraction into the safety zone for further
treatment.
We designed and implemented a novel approach to improve
the USAR performance. The novelty of this paper is to develop
Behavioral-based Navigation System for mobile robot, which
by using mobile robot‘s visual cognitive, the mobile robot can
interact with the USAR trained dog.
3D object colored tracker is implemented and tested in practice
using C++, Python and Robot Operating System (ROS). 3D
object colored tracker has been developed as an independent
ROS module using CamShift by OpenCV library and Voxell
Grid filter by Point Cloud Libraries, it receives image messages
from a Kinect image stream, process them and produce control
commands. The control commands are then published as
ROS messages. A velocity controller module will receive these
messages and execute them. The functionality of 3D object
colored tracker and teleoperation mode are tested in a Agent
Research Laboratory room and our implementation shows
satisfactory results.

I. INTRODUCTION

A. Background

There are many different types of disasters such as
earthquakes, flood, tsunami, hurricane, and they lead to
different disasters such as building collapses, landslides or
crater. During emergency situations, and especially in urban
disaster, usually policeman, fireman and medical assistance
are deployed. They need to cooperate with each other to
save human lives, protect the structural infrastructure, and
evacuate victims into a safe place.

An Urban Search and Rescue (USAR) operation involves
the location of the victims, their medical stabilization and
their extraction into the safety zone for further treatment. Ur-
ban Search and Rescue. USAR teams normally uses trained
dogs as a friend to find hidden victims (figure 1). Trained
dogs are very helpful because they have high mobility,
speed and detection ability. Whereas, they need direction

This work was supported by Agent Research Laboratory, University of
Girona

Xavier Cufi is with Department of Computer Engineering, belongs to the
Computer Vision and Robotics (VICOROB) University of Girona, 17003
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and supervise by the USAR teams. In some situations, for
instance, in a presence of dangerous gas, USAR teams and
trained dogs are in danger situation, they should leave away
the area. All these characteristics mean that autonomous or
semi-autonomous robots can be a very useful tool in USAR
operations, giving appropriate support to all the components
of USAR teams. Robots have a high sensorial capability, can
collect and interpret data in a precise way, also can operate
in hazardous environments.

Fig. 1. Sweden MSB SWIFT USAR canine team [12]

B. Problem Definition and Project Goals

Anna Bosch et all in [3], proposed a new USAR scenario
that uses mobile robots to improve the efficiency of USAR
teams in hazardous environments. This research [3] describes
the MATE project [8]. MATE project consists of several insti-
tutions in European area, with the participation of University
of Girona and University of Burgundy. The main challenge
of MATE project is the dog-robot-human interaction that: (i)
to give visual cognitive and reasoning abilities to the robot
in order to let the robot autonomously or semi-autonomously
interact and cooperate with the dog according to its behavior
and environmental conditions, and (ii) to specify train a dog
to correctly accept and interact the robot.

Some researchers from Agents Research Laboratory (AR-
Lab) in University of Girona has developed mobile robot
BIGBOT that can operate in difficult terrains such as sands,
gravels, and rocks. The first version of BIGBOT is manually
controlled by operator (human) through Labview interface,
there are no ability to run in autonomous navigation by using
visual iinformation.

In brief, the goals of the project which described in this
paper are :

• To develop autonomous navigation system on mobile
robot BIGBOT which based on visual cognitive to detect



and follow a specific trained dog and can deal with
occlusion.

• To develop semi-autonomous navigation system on mo-
bile robot BIGBOT by using teleoperation mode.

• To implement autonomous and semi-autonomous nav-
igation of the BIGBOT robot into a new software
architecture.

The rest of this paper is organized as follows: Section II
presents current research relating to USAR robots, Section III
describes the development of Behavioral-based Navigation
System, Section IV describes software design, Section V
describes the experiments and results, and the last is Section
VI, describes the conclusions and future works.

II. RELATED WORKS

North Carolina State University and several team of re-
searchers from around the United States are working on
Smart Emergency Response System (SERS) project. They
trying to develop dog-robot-human interaction, using a sim-
ilar concept as MATE‘s project. By using a combination
of ground and aerial autonomous vehicles like drones, hu-
manoids, human-operated telerobots, and trained SAR dogs
equipped with Canine Assisted Robot (CAR) to save human
lives as much as possible in an emergency situation [1](figure
2).

Fig. 2. Several robots and trained dog by North Carolina State University,
United States of America [1]

The Network-Centric Applied Research Team (N-CART)
in Department of Computer Science at Ryerson University,
which involve in MATE project, has been defining the con-
cept of Canine Augmented Technology (CAT). CAT consists
of a sensor, actuation and communication package which
dressed on canine USAR dogs [9] (figure 3).

(a) (b)

Fig. 3. Trained dog equipped with Canine Augmentation Technology (CAT)
[11]

III. DEVELOPMENT OF BEHAVIORAL-BASED
NAVIGATION SYSTEM FOR MOBILE ROBOT BIGBOT

A. Behavior-based Robotics

Behavior-based robotics is a methodology or approach
for designing autonomous agents and robots. The behavior-
based methodology aim is to develop methods for controlling
artificial systems , usually physical robots, but also simulated
robots and other autonomous software agents. There are
some basic principles that have been used by researchers
in behavior-based robotics. Parallelism, modularity, situated-
ness/embeddedness, and emergence are the key success of
this methodology [13].

B. Behavioral-based Navigation System for Mobile Robot
BIGBOT

In order to achieve our project goals, we designed
Behavioral-based Navigation System for mobile robot BIG-
BOT, which consist of three behaviors :

• Looking for colored patch behaviour: This behaviour is
used to find an object by its color. If we look at regular
USAR trained dog, usually they wear a special cloth
with a conspicuous color (usually red or orange).

• Following colored patch behaviour: This behaviour can
run if looking for colored patch behaviour is running
well. This behaviour is to follow desired colored object
and keeping a safe distance. The inputs of this behavior
are RGB camera and IR camera. The algorithm com-
putes all distances and creates a 3D space. The direction
of the robot must be taken to keep distance with the
object which detected by the IR camera.

• Teleoperating behaviour: This behaviour means that
mobile robot is manually controlled by human. This
behavior becomes active in three specific situations. The
first is when looking for colored patch behaviour is fail.
The second is when looking for colored patch behaviour
is not activated. The last is when performing USAR
operation with trained dog to find a victim by using
following colored patch behaviour, and the moment the
trained dog barking or giving a signal that victim is
found and then the operator (human) in control room
take the control of the robots platform.

IV. SOFTWARE DESIGN

We proposed 3D colored object tracker which based on
Continuously Adaptive Mean Shift Tracking and Voxell Grid
filter in ROS platform.

A. Robot Operating System (ROS) as Software Platform

Robot Operating System (ROS) is a framework which is
commonly used in robotics area. ROS was designed to meet
a specific set of challenges encountered when developing
a large-scale service robots as part of the STAIR project
at Stanford University and the Personal Robots Program at
Willow Garage, but the resulting architecture is far more
general than the service-robot and mobile-manipulation do-
mains [14]. ROS is distributed under Berkeley Software



Distribution (BSD) license, which allows developer develop
in non-commercial or commercial projects [10].

The ros-pkg is a community repository to develop a high-
level library in easy way. Many capabilities often associated
with ROS, such as navigation library and rviz visualizer, are
developed in this repository. The ros-pkg give a powerful
set of tools to work with ROS in easy way. Frome those
libraries, visualization, simulators, and debugging tools are
the most important ones.

B. Continuously Adaptive Mean Shift Tracking

The Mean Shift algorithm is a robust, non-parametric tech-
nique that climbs the gradient of a probability distribution to
find the mode (peak) of the distribution. Mean Shift was
first applied to the problem of mode seeking by Cheng
in [6]. Mean Shift considers feature space as an empirical
probability density function. If the input is a set of point then
Mean Shift considers them as sampled from the underlying
probablity density function (pdf). If dense regions (or cluster)
are present in the feature space, then they correspond to the
local maxima of the pdf [7].

The intuition behind the Mean Shift is simple. Consider
we have a set of points. It can be a pixel distribution like
histogram backprojection. We are given a small window or
may be a circle, and we have to move that window to the area
of maximum pixel density or maximum number of points [4].
It is illustrated in the figure 4.

Fig. 4. Mean Shift basic approach

In figure 4, the initial window is shown in blue circle with
namely ”C1”. Its original center is marked in blue rectangle,
namely ”C1 o”. But if we find the centroid of the points
inside that window, we will get the point ”C1 r” (marked
in small blue circle) which is the real centroid of window.
Surely they do not match. So move our window such that
circle of the new window matches with previous centroid.
Again, find the new centroid. Most probably, it will not
match. So move it again, and continue the iterations such
that center of window and its centroid falls on the same
location or with a small desired error. So finally what we
obtain is a window with maximum pixel distribution. It is
marked with green circle, namely ”C2”. As we can see in
figure 4, it has maximum number of points.

Constinously Adaptive Mean Shift (CamShift) is primarily
intended to perform efficient head and face tracking in a
perceptual user interface by Gary Bradsky [5]. It is based
on an adaptation of Mean Shift algorithm that given a

probability density image, finds the mean (mode) of the
distribution by iterating in the direction of maximum increase
in probability density. The main difference between the
CamShift and the Mean Shift algorithm is that CamShift uses
continuously adaptive probability distributions. Mean Shift is
based on static distributions, which are not updated unless
the target experiences significant changes in shape, size or
color. Since CamShift does not maintain static distributions,
spatial moments are used to iterate towards to mode of
the distribution. This is in contrast to the conventional
implementation of the Mean Shift algorithm where target
and candidate distributions are used to iterate towards the
maximum increase in density using the ratio of the current
(candidate) distribution over the target.

The CamShift algorithm can be summarized in the follow-
ing steps [5]:

1) Set the region of interest (ROI) of the probability
distribution image to the entire image.

2) Select an initial location of the Mean Shift search
window. The selected location is the target distribution
to be tracked.

3) Calculate a color probability distribution of the region
centred at the Mean Shift search window

4) Iterate Mean Shift algorithm to find the centroid of the
probability image. Store the zeroth moment(distribution
area) and centroid location.

5) For the following frame, center the search window at
the mean location found in Step 4 and set the window
size to a function of the zeroth moment. Go to Step 3.

OpenCV (Open Source Computer Vision) provide
CamShift library, we can utilize it to bring our looking for
colored patch behaviour into reality.

C. Voxel Grid Filter

Point Cloud Library (PCL) has a downsampling function,
its called voxel grid filter. A voxel grid filter serves as an
approximation of the real surface and is used to separate the
shape functions into more descriptive histograms represent-
ing point distances, angles, and areas, either on the surface,
off the surface, or both [2].

We proposed a new system based on ROS framework
to be implemented in mobile robot BIGBOT in order to
give a robust solution. In our design, ROS as platform in
higher level that handle our designed behavior. By using
Kinect and Joystick as input, ROS provide two main task
: autonomous navigation and semi-autonomous navigation.
Then, ROS will send the velocity (angular and linear) data
to BIGBOT on lower level (controller board). Our design
(see figure 5) implies to the new configuration. We call it
the second generation of mobile robot BIGBOT.

V. IMPLEMENTATIONS AND RESULTS

In the experiment, we use a low cost dummy trained dog
which made by a red box that mounted on the SMALLBOT
(figure 6). The experiment was performed in the Agent
Research laboratory room which has a flat floor surface.



Fig. 5. Schematic system based on ROS in the second version of mobile
robot BIGBOT

Fig. 6. SMALLBOT as a dummy trained dog

Small box IPC which installed with Ubuntu 12.04 and
ROS Groovy version, is mounted on the top side (outside)
the SMP box. Kinect is also mounted on the top side next
to small box IPC (see figure 7 ).

Fig. 7. Robot configuration

A. Implementation of Continuously Adaptive Mean Shift
Tracking

We implement a Continuously Adaptive Mean
Shift(CamShift) tracking using OpenCV library. The
way of our code can run are described in three major steps:

1) From openNI stack we can obtain RGB color image
frame from Kinect sensor. The input RGB color image
(figure 8(a)) is converted into HSV color space. This
step is done by using cv2CvtColor function (figure
8(b)).

2) The HSV image data is used in conjunction with a
color histogram in a process called Back-Projection,
which essentially produces a color probability im-
age from the input RGB color image. The Back-
Projection image encodes for each pixel, its probabil-
ity of belonging to the color probability distribution
represented by the histogram. The histogram itself
initialized by sampling a representative area of one
frame, we specified manually by the progress bar
(figure 8(c)). OpenCV provides data structures for
histograms and associated functions, this step done by
using cv2CalcBackProject (figure 8(d)).

3) Finally, the core of the CamShift algorithm itself is ap-
plied, coded as a call to the cv2CamShift function.
Given an initial ROI window (figure 8(e)) and a Back-
Projection image, the function returns the bounding
box of the most probable detection area in the image,
and a size and orientation estimate of the distribution
(figure 8(f)). The bounding box is used to infer the
initial search window in the next input back-projection
image. The initial ROI window data (input) is related
to the detected area (output) in the previous frame.
In an asynchronous approach, this information can be
encoded as the last known detection result (bounding
box), which is persistent information updated after the
processing of each new frame, thus forming a feed-
back loop, as known as tracking (figure 8(g) )

B. Implementation of Tracking for 3D Colored Object

In above, we have implemented how to use OpenCV to
track colored object by using CamShift algorithm. The result
is a bounding box / region of interest (ROI) that follows
the desired colored object and the ROI published on the
ROS topic /roi. Our Kinect is mounted on a mobile robot
BIGBOT, we use the x offset coordinate of the /roi to keep
the desired colored object centered in the field of view by
rotating the robot to compensate for the offset. In this way,
the robot will track the desired colored object as it moves to
the left or right in front of the camera. On the other hand,
we use z-axis of point clouds which published by Voxell
Grid filter. In this way, the robot will track and keep the
safe distance to the desired 3D object as it moves forward
or backward in front of the Kinect.

We sample all the points in the depth clouds that lie
within a desired search box in front of the mobile robot
BIGBOT. From those points, we compute the centroid of
the z-axis region. If there is an object in front of the mobile
robot BIGBOT, the z-coordinate of the centroid tells us
how far away they are. From these z-axis point numbers
we can compute an appropriate linear velocity to keep the
robot near the object. At the same time, we compute the
x-axis displacement of the target from the center of the



(a) RGB image from
Kinect

(b) HSV image (c) Slider control (d) Back-projection

(e) ROI selected (f) Color histogram (g) Bounding box /
ROI

Fig. 8. Implementation of Continuously Adaptive Mean Shift Tracking

(a) Seq. 1 (b) Seq. 2 (c) Seq. 3

(d) Seq. 4 (e) Seq. 5 (f) Seq. 6 (g) Seq. 7

Fig. 9. Result of 3D colored object tracking

Fig. 10. CamShift tracking with occlusion



camera image. Recall that the x offset field in an ROI
message specifies the x-coordinate of the upper left corner
of the region, so to find the center of the region we add
half the width. Then to find the displacement from the
center of the image we subtract half the width of the image.
With the displacement computed in pixels, we then get the
displacement as a fraction of the image width. Finally, we
compute the angular speed of the robot to be proportional to
the displacement of the target. If the target offset does not
exceed the x threshold parameter, we set the angular velocity
to zero. From these two velocity parameters (angular and
linear) we can compute an appropriate Twist cmd vel
message to keep the robot following the object.

When controlling a mobile robot, it is always a nice idea
to set a maximum speed. Setting a minimum speed as well
can make sure that the robot does not struggle against its own
weight and friction when trying to move too slowly. We do
not want the robot to be draining its battery, just because
chasing every small movement of the target. So we set a
lower threshold on the displacement (in x, y and z axis) of
the target to which the robot will respond.

C. Results

Our implementation shows satisfactory results, mobile
robot BIGBOT can follow SMALLBOT by using 3D colored
object tracker (see figure 9). The BIGBOT try to chasing the
SMALLBOT but keep a safe distance and moves as well
as our design, if the SMALLBOT go to forward right, the
BIGBOT also moves to forward right, but the movement
its depend on our safe distance and the gain parameter.
Remember that turn right and left movement is depend on
the ROI boundary and forward and backward movement is
depend on the object position in front of Kinect.

We also test CamShift tracker with occlusion. While
CamShift tracks desired color patch, and some object ob-
struct the desired object, at one moment CamShift track the
wrong object but then CamShift recover it and track our
desired color patch as well (see figure 10).

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

There are exists two unusual projects in USAR robotics.
SERS and MATE project bring a new approach on USAR
scenario, which combining robots, dogs and humans into
USAR operation. However, MATE project has some ad-
vantages, one of the advantages is to linking trained dogs
and robots by using the robot‘s visual information. It is
a novel approach on dog-robot behavior which presented
in MATE proposal. The deep research on trained dog and
USAR robotics has lead to several new technologies such as
Canine Augmented Technology (CAT) and Canine Remote
Deploymen System (CRDS).

Belong to the theory of Behavior-based Robotic, we
defined three behaviors called Behavioral-based Navigation
System for mobile robot BIGBOT. These kind of behaviors
are the main approach to realize our project goals. Real time
experiments with a low cost dummy trained dog showed that

combination of Continously Adaptive Mean Shift algorithm
and Voxell Grid filter is capable to create a robust 3D colored
object tracker. This was noticed from the experiments, more
precisely in speed controlling heave, the small variations
of detected 3D colored object width to produce orders to
the mobile robot BIGBOT to follow the desired object.
Teleoperation mode is done by using a joystick as well as
3D colored object tracker.

B. Future Works

Future work would consider the extension of navigation
system in autonomous and semi-autonomous navigation.
Several works we are planning to do to make the behavioral-
based navigation system for mobile robot BIGBOT more
complete include:

• Localization
• Path planning
• Obstacle avoidance
The mobile robot BIGBOT has ability to determine its

position and to navigate over specific rescue scenario con-
sidering a specific set of behavioral-based navigation system
for mobile robot BIGBOT which has been developed in this
project.

VII. —
Our project (videos, images, etc) can be found on

www.projectbigbot.tk

Fig. 11. scan this QR code to see our project
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Visual Odometry and 3D Reconstruction based on Stereo Image
Sequence

Muhammad Wesam AL NABKI

Abstract— Accurate autonomous vehicles localization and
map building are core topics in computer vision and robotics
applications, since the robot has no prior information about
the environment around it. Moreover, the robot needs to have
localization and mapping information online. In his research,
we propose a novel approach for ego-motion estimation and
3D maps reconstruction from a high resolution, continuous
sequence of stereo images in real-time. Our method depends on
visual odometry algorithm with a robust sparse feature match-
ing for motion estimation. Then, clouds registration process is
performed upon the resulted transformations between frames.
The assumptions we make are a known stereo camera intrinsic
parameters and a continuous smooth camera trajectory. We
employed a RANSAC base outlier rejection, then a Kalman
filter to yield a robust frame to frame motion estimation in real-
time. In our experiments we used a Bumblebee 2 stereo camera
for image acquisition running on CPU core i7 with 3.0 GHz.
The algorithm is able to adapt the environment changes and
handles 2-3 frame per second with high accuracy and running-
time.

I. INTRODUCTION

Nowadays, Robots have been involved in many fields in
our life. One of the main prerequisites for any autonomous
vehicle is to localize itself within the environment. Usually,
the robot has several sensors (GPS, IMU, Camera, Wheel
sensors and etc ...) in order to identify the robot location
with respect to an initial frame. The information flow coming
from sensors is gathered into a given representation to answer
the question ”How does the world around me looks like?”.
However, the robot still needs an answer for other question
”Where am I now?”. Localization is the answer for the
second question by estimating the robot current pose with
respect to the previous pose or to a static reference pose.
Nowadays, many robotics and autonomous vehicle depend on
laser scanners for navigation and pose estimation in unknown
environment, because it can provide the 3D measurements
directly in real time. The alternative solution for the tradition
pose estimation method is Visual Odometry. In other words,
the process of estimating the motion of a robot using a
sequence of single or multi cameras embedded to a robot
is called Visual Odometry. Recently, camera systems be-
came cheaper, more compact and the needed computational
power can be handled with standard PC. Moreover, the PC’s
hardware capability nowadays is increasing dramatically with
lower power consumption especially when GPU is used to
process high resolution image at high frame rate in real-time.
The proposed method uses a stereo camera for estimating the
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Department of Computer Vision and Robotics, University of Burgundy,
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relative displacement between each two consecutive stereo
camera poses. The yielded poses are used for registering the
point clouds. Then, world 3D reconstruction is performed.
The sequence is captured in urban environment. Outliers
rejection step is used based on random sampling. The es-
timated ego-motion has 6 degrees of freedom (6DOF). The
contributions of this research are: First, simple but efficient
Visual Odometry strategy is proposed to obtain high quality
ego-motion. Second, several thousand of features matches are
computed in real-time scene flow. Third, based on yielded
pose from ego motion estimation and thanks to library ELSA
[8], a 3D reconstruction is obtained easily.

II. STATE OF ART

Computer Vision and Robotics communities have devel-
oped many techniques for 3D mapping and localization tech-
niques and algorithms. The following part will cover briefly
some techniques used by others: Simultaneous Localization
and Mapping (SLAM) [1] [2] [3] is the process by which an
autonomous vehicles starts from an unknown environment.
Then, it tries to build its own map incrementally and at
the same time uses this map to localize itself using only
relative observations of the environment in order to compute
its own location then be able to navigate autonomously.
Recently, several algorithms have been developed based on
visual odometry. These methods can be roughly divided into
two groups, group one depends on features tracking over a
sequence of images [4] and group two depends on feature
matching between consecutive images [5]. In [4], they used
IMU to estimate the rotation and some computer vision meth-
ods to estimate the translation by tracking salient features
based on sequence of images taken by a camera continuously
using KLT tracker, then try to calculate different vectors
from the tracked features to extract the robot’s motion. In
[5], a set of features are detected on each frame then match
features between frames with applying a rejection criteria. A
3-dimensional scene cane be reconstructed via triangulation
if a stereo camera is used. The iterated closest point (ICP)
algorithm is often used to estimate the trajectory. Iterative
Closest Point algorithm (ICP) tries iteratively to find the
best transformation between source cloud and target cloud
by finding temporary point correspondences and updating
motion parameters until the system converges. By accumu-
lating the transformations between each point cloud, the
camera trajectory can be recovered as explained in [6] and
[7]. In [4] IMU sensor is used to recover rotation angles,
while in [9] inexpensive GPS is used with wheel encoders.
In this research, we will depends mainly on novel visual



odometry algorithm [7] based on visual matching in stereo
image sequence token in urban environment to build a 3D
map and estimate camera motion from high-resolution stereo
sequences in real-time.

III. METHODOLOGY

Our algorithm consists of five main stages. First, building
camera model. Second, motion estimate. Third, building
depth map. Fourth, 3D reconstruction. Finally, clouds regis-
tration. Each step will be covered in details in the following
sections. The implementation uses the following open source
libraries: OpenCV [12], Point Cloud [11], ELSA [8].

A. Building Camera Model

Camera model is represented in camera intrinsic and
extrinsic matrices. In this research, we are working on Point
Grey Bumblebee2 Stereo Camera. The input for this step is
a set of calibration pattern images with different poses and
the output is the camera calibration matrix.

1) Camera Calibration: Camera calibration pattern cap-
tured by the camera are used to solve camera model equa-
tions and find its matrix. OpenCV provide a method called
stereoCalibrate, it takes as an input a vector of vectors
of the calibration pattern points, which are the calibration
pattern corners, and a vector of vectors of the projections
of the calibration pattern points for each camera. By solving
camera matrix, we get intrinsic camera matrix and distortion
coefficients for each camera f 0 cu

0 f cv
0 0 1

 (1)

2) Stereo Rectification: Up on Bouguet’s algorithm stereo
pair is rectified. In other words, all the epipolar lines will
be parallel to each other and to the baseline. Since the
rectification process can be implemented by projecting the
original pictures onto the new image plane. Then, a new
projection matrix is resulted for each camera Pl ,Pr those
matrices now represent the new rectified cameras matrices.

Pl =

 f 0 cul 0
0 f cvl 0
0 0 1 0

 (2)

Pr =

 f 0 cur Tx ∗ f
0 f cvr 0
0 0 1 0

 (3)

B. Motion Estimation

Based on [7], this process consists of two main steps.
First step is feature matching. Then, ego-motion estimation.
The feature matching is responsible for extracting features
between the current and previous stereo pairs and the ego-
motion estimation is responsible for estimating the trans-
formation between the current and previous stereo pairs.
The input for this step is a continuous, rectified, undistorted
sequence of stereo pair images. The output is the transforma-
tion (rotation and translation) of each stereo pair with respect
to initial static frame coordinate.

(a) Blobs detector (b) Corners detector

Fig. 1: Features detector masks

1) Feature Matching: The input for this step is the right
and left current frame and right and left previous frame.
Each image of input is filtered with 5 by 5 corner and
blob masks. The filter is as show in 1. The input for this
step is the right and left current frame and right and left
previous frame. In order to have a robust motion estimation,
stable features are needed. Each image of input is filtered
with 5 by 5 corner and blob masks. After that, to faster
the performance and reduce the computation complexity, a
non-maximum and non-minimum-suppression [10] is used
to categorize the resulted features into four groups (i.e.,
blob max, blob min, corner max, corner min) Bases on [7],
feature matching simply is computed based on finding the
minimum sum of absolute differences (SAD) error metric
on comparing horizontal and vertical filter responses to each
other using 11 by 11 block window. The features matching
algorithm assumes that we have two stereo frames, which
are the left and right images from the current frame and
the left and right images from the previous frame. Then,
feature matching is achieved in a circle manner. Initially, the
algorithm tries to find features in current left image frame.
Then, within a M by M search window, it tries to find the
best match in the previous left image frame. After that, since
we already have the fundamental matrix from calibration
step and we have the feature points (corners and blobs
extracted previously) in previous left image, we can calculate
the corresponding epipolar line in previous right image.
Searching for corresponding point along the epipolar line
with error tolerance of 1 pixel reduces the search space. The
next step is similar to first step. We find the corresponding
feature in current right frame whine M by M searching
window. Now, we have a feature on current right image,
and we need to find its correspondence in current left image
frame. Also, this step is done thanks to the corresponding
epipolar line in current left image. Only circle matches are
accepted. In other words, if the last feature in current right
frame coincides with the first feature in current first frame,
we consider this features.

2) Ego-motion Estimation: From the previous step we
yielded enough number of features that validate the cir-
cle condition. From those points correspondences, the 3-
dimension is estimated via triangulation. The camera motion
is computed by minimizing the sum of re-projection errors.
After that, a refinement step is used to optimize the resulted



velocity estimates using Kalman filter. More feature points
implies more computational complexity of the algorithm.
Since we are working on real-time application, processing
time is a critical issue. From practical experimentations, we
found that 200 to 500 features are enough for good ego-
motion estimation. To have good feature points reduction,
the image is divided into several non-overlapping rectangles
called buckets [14]. Each bucket contains the maximum
number of feature points to express this rectangle. This
strategy benefits in several ways. First of all, reducing the
number of features in each rectangle reduces the compu-
tation complex as the smaller number of features reduces
the computational complexity of the algorithm which is an
important prerequisite for real time applications. Second, as
we are working on stereo system, so each stereo pair will
be a 3-dimensions cloud of points. Then, we can note that
the features are distributed along the Z axis which is the roll
axis. The bucketing for features distribution along Z axis
guarantees that the far and near features are considered for
the estimation process which leads finally to a precise ego-
motion of the robot. Third, uniform distribution is granted
for the features over the whole image which leads to better
estimation performance.

Since we are working on a calibrated, rectified and undis-
torted stereo camera system and we have enough point
correspondences, then we can estimate the 3-dimensions
of each features point correspondence via triangulation[15].
The re-projection is done using camera matrix 5. Assuming
X is a 3D point and Pl and Pr are the left and right
images planes receptively. Projecting the point X on Pl and
Pr maps the point from R3 → R2 such as xl ∈ R2 and
xr ∈ R2. Error minimization is done using Gauss-Newton
optimization iteratively.

N

∑
i=1
||(xl− xpl )||

2 + ||(xr− xpr)||2 (4)

Where xpl and xpr are the projected value of X on
current left and right image planes respectively via projection
matrix5, and xr and xl denote the feature locations in the
current left and right images respectively. According to [15],
ten iterations are sufficient for convergence but in practical
a couple of iterations (e.g., 4-8) are enough. To be robust
against outliers a RANSAC scheme is used for 50 times
to estimate (r, t) using 3 randomly drawn correspondences.
Then, the accepted inliers of are used for refining the (r, t)
parameters giving final estimated pose.

u
v
w

=

ku f 0 cu
0 kv f cv
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z

 (5)

Last layer is standard Kalman filter. The robot speed is
calculated as

v = (rt)T/∆t (6)

Where (rt)T is the transformation parameters and ∆t is
time between frames. Assuming the robot is moving in
constant acceleration, we denote acceleration by a. The state
equation is given by(

v
a

)(t)

=

(
I ∆tI
0 I

)(
v
a

)(t−1)

+ ε (7)

Where I is the 6 by 6 identity matrix.
The output equation reduces to

1
∆t

(
r
t

)(t)

=
(
I 0

)(v
a

)(t)

+ϕ (8)

Where ε,ϕ represent Gaussian process and measurement
noise, respectively. At the end, the transformation (rotation
and translation) between each consecutive stereo pairs is
knows.

C. Building Depth Map

The input for this step is a rectified and undistorted stereo
pair, and the output is a grayscale image represents the depth
for each pixel. ELSA (Efficient LArge-scale Stereo) [8] is
a new library works with binocular high resolution stereo
images with high speed performance. It depends on finding
robust matches, then tries to build a prior on the disparities
using triangulation on set of support points which are found
before (in features extraction step). This strategy reduces
the false matching of the remaining points. The resulted
dens disparity map leads to an accurate reconstruction. The
algorithm is automatically adjust it’s parameters such as
searching range and windows size which make it adaptable
for environment conditions changing.

D. 3D Reconstruction

Thanks to Point Cloud Library [11] the reconstruction is
done very easy since we have the 3D for each point. The
X ,Y,Z are yielded from camera intrinsic parameters as the
following equations show

X = (u− cu)∗T/d

Y = (v− cv)∗T/d

Z = f ∗base/d
(9)



where X ,Y,Z are the coordinate of 3D point P in space, u,v
is a 2D point in the image coordinate system, cu,cv is the
principal point of the camera, d is disparity value in u,v and
T is the base line which is calculated using

T =−P2(1,4)/P2(1,1) (10)

Where P2 is the projection matrix of right camera resulted
from rectification process.

E. Clouds Registration
From the ego-motion step we have pose (translation and

rotation) between each two consecutive stereo pair. The
registration here simply thanks to the below equation

PCloud = PCloud +CCloud ∗T (11)

T =

r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 (12)

where PCloud ,PCloud represents the previous and current point
cloud respectively and T represents the transformation

IV. EXPERIMENTS

A. Ego-motion Experiment
This experiment includes indoor and outdoor camera tra-

jectory.
1) Outdoor with Random Trajectory Using Pointgrey

Flea2 : We have a calibrated and set of images sequence
for outdoor in urban environment. The camera is moving in
smooth trajectory. The first outdoor sequence is download
from online source [12] with calibration parameters.

2) Outdoor with Camera Rotation around an Object in
Space Using Point Grey Bumblebee2: This experiment is
done in outdoor environment moving the camera in full
rotation motion. For full rotation, a closed loop circle is
the optimal case which is our target, but here the resulted
circle is near to close circle because of accumulated error in
estimation process.

3) Indoor with Rotation around an Object in Space Using
Point Grey Bumblebee2: The experiment is done within
indoor environment with a full rotation motion trying to
reach a closed loop. Here the trajectory is built from 160
stereo pairs. The figure 2 shows the result for ego-motion
experiments.

B. Ego-motion Experiment
1) Registration in outdoor environment with random tra-

jectory using Pointgrey Flea2 : A set of 10 clouds in
outdoor environment are registered based on transformation
we already had from ego-motion process. Then, the clouds
are concatenated to each other.

(a) Outdoor 1

(b) Outdoor 2

(c) Indoor 1

Fig. 2: Ego-motion Estimation

2) Registration in outdoor environment with rotation
around an object using Point Grey Bumblebee2: Here we
are working in outdoor environment with Point Grey Bum-
blebee2. 10 clouds are registered upon the transformation we
yielded from ego-motion step, and registered using registra-
tion equation.

3) Registration in indoor environment with rotation
around an object in space using Point Grey Bumblebee2:
Last experiment is on a set of points clouds token in indoor
environment based on transformation we yielded from ego-
motion step, and registered using registration equation. The
figure 3 shows the result for Registration experiments.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed an approach for estimating
the motion of a stereo camera rig mounted on a vehicle
with 6DOF based on visual Odometry. The outlier rejection
schema used is RANSAC and Kalman filter. A transforma-
tion between each two consecutive frame is calculated. The
algorithm is adaptive to environment condition changing,
even outdoor or indoor ego-motion. The prerequisites are



(a) Outdoor 1 Registration

(b) Outdoor 2 Registration

(c) Indoor 1 Registration

Fig. 3: Clouds Registration

to have a calibrated camera, such that the intrinsic are
known, and the camera is moving in smooth trajectory, so
the input images are a continues sequence. A strong features
matching is used to estimate the dense depth map; 3D points
cloud are calculated via triangulation. Finally, register point
clouds to have a 3D view for the trajectory. The experiment
shows that the estimation is very close to correct trajectory
in urban environments. In future, we want to increase the
accuracy of our system by adding a GPS/INS system to
reduce the estimation accumulated errors which will increase
the localization accuracy. Also, we intent to handle dynamic
objects environment.
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Comparison of Parametric and Non-parametric Learning

Methods for the Inverse Dynamics Modelling of the Arm of the

iCub Humanoid Robot

Chalikonda Prabhu Kumar and Giorgio Metta

Abstract - Acquiring accurate models of dy-
namical systems is an essential step in many
robotic applications for example safe operation
in unstructured dynamic environments. Analyti-
cal models for robot dynamics often perform sub-
optimal in practice due to various non-linearities
and difficulty of accurately estimating the dy-
namic parameters. Machine learning techniques
are less sensitive to these problems and there-
fore they are an interesting alternative for mod-
eling robot dynamics. Non-parametric methods
will approximate the function describing the re-
lationship between joint trajectories (i.e. joint
positions, velocities and accelerations) and the
joint torques of the rigid body dynamic model.
The qualitative measure for the prediction is
Root Mean Square Error (RMSE) for forces and
torques in three dimensions and influence of the
data supplied (i.e. in Batch or Incremental) on
RMSE error. In parametric models, we aim to
identify a small set of significant parameters of
the equations whose form is given to the learning
method.

1 Introduction
Robotics research are mainly aimed at designing and

implementing systems able to perform advanced tasks in
unstructured environments, possibly along with human
actors. If the F/T sensor is placed along the kinematic
chain as proposed in [1], F/T sensor measures both ex-
ternal and internal forces. This solution allows the robot
to detect interactions that occur in the surrounding not
only on the end-effector, but on the whole arm. To de-
tect this external contribution of forces acting on the
robot the internal forces must be known, estimated or
modeled. There are several approaches to estimate these
internal forces. Commonly, the inverse dynamics [2] are
modeled analytically using

τ = D(q)q̈ + C(q, q̇)q̈ + g(q) (1)

Where D is generalized inertia matrix, C is vector of cen-
trifugal forces and Coriolis, and g is gravity term.This
formulation has limited applicability in reality due to
the presence of non-linearities (i.e. due to friction, elas-
ticity, flexibility & vibrations) and accurate estimation

of kinematic and dynamic parameters. Machine learning
forms a viable alternative for modeling robot techniques.
In the literature, some learning techniques often outper-
form analytical models of the rigid body dynamics[3][4].
These techniques were proposed under batch learning
when the model is trained off-line. Incremental learn-
ing methods adapt the model continuously when new
sample of data is added, therefore having an advantage
over batch methods for sequential learning. However
there are many approaches in the literature but some
of these methods does not give any theoretical guar-
antees on timing requirements, some are hard to tune
the parameters etc. The approach used for incremental
learning is proposed in [5] with an efficient update rule
and stable when compared with other methods. Learn-
ing algorithms are based on the well-known regularized
least squares algorithms for both linear and non linear
models. Estimating the relationship between the inputs
(i.e. joint positions, velocities and accelerations) and
outputs (joint torques) referred to functional estimation
approach.

A dynamic model is characterized by the inertial pa-
rameters of the bodies composing the system which,
in case of rigid bodies, are : masses, positions of cen-
ters of mass and rotational inertias. These parameters
can be estimated using arms joint torques and forces
along with position,velocity and acceleration of joint[6].
The idea of identifying inertial parameters are used for
object recognition, force control and pose estimation.
The inverse dynamics of general kinematic tree is calcu-
lated using Recursive Newton Euler algorithm[7]. Re-
cursive Newton-Euler steps can prove that relocation re-
lies solely on inertial parameters[9] & inertial parameters
space affects the dynamic equation [10].More general ap-
proach to determine the identifiable subspace, with no
assumptions on the regressor structure or on kinematic
was proposed by Gautier [12].

In this report presenting non-parametric modeling
algorithms for both linear and non-linear models,
estimating inertial parameters and showing the effect
of regularization parameter λ in estimating inertial
parameters. In section II non-parametric modeling
for both linear and non-linear models for batch and
incremental learning, and theory for estimating inertial
parameters. Section III with experimental results
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followed by conclusion.

2 Methodology
2.1 Linear Models :

Linear regression is a statistical procedure when the
relationship between the variables can be described as
linear. This means predicting the value of a dependent
variable from an independent variable. The output y
can be expressed as a linear algebraic combination of
the input attributes x1, x2, ....xn. There are different set
of methods like ordinary least squares, ridge regression
that which are intended for regression in which the tar-
get value is expected to be a linear combination of the
input variables. In mathematical notation, if y is the
predicted value
y = w1x1 + w2x2 + .....
The whole objective of the training phase is to learn
the weights w1, w2, ... by minimizing the empirical loss
function. Gradient descent is the classical technique for
solving this problem with the general idea of adjusting
w1, w2, ... along the direction of the maximum gradient
of the loss function. To avoid overfitting, regulariza-
tion (L1 and L2 norms) is used to penalize large values
of w1, w2, .., wn. For the implementation GURLS [13]
package was used. GURLS is a least squares based li-
brary for state of the art supervised learning algorithms.
Implementation is easy using GURLS, there are some
tasks which are used for specific purpose. Explaining
each task will cover both implementation using GURLS
and theory behind the non-parametric modeling.

• a. Splitting Dataset: This task is explicitly
aimed at splitting the data into training and val-
idation sets. In the training phase we present data
along with the outputs to train the model. Valida-
tion set is used in order to estimate accuracy of our
model has been trained in general.

• b. Parameter Selection : Regularization refers
to a process to solve an ill-posed problem or to pre-
vent overfitting. This plays a key role in the learn-
ing pipeline i.e., regularization parameter is choosen
by specifying the approach we are interested in. In
these there three different approaches for selecting
the regularization parameter λ. Fix lambda which
sets the λ value to 1. loocvprimal, which performs
parameter selection when the primal formulation of
RLS is used by leave one out approach. The approx-
imated function is trained on all the data except for
one point and a prediction is made for that point.
Even though this approach is good, but it is very
expensive in computational time. hoprimal, which
performs parameter selection when the primal for-
mulation of RLS is used by hold out approach. This
is the simplest kind of cross validation. The ad-

vantage of this method is usually preferable to the
residual method and takes no longer to compute.

• Optimizer : The objective of optimizer is to mini-
mize the hyper parameters, so the hypothesis/func-
tion is close to outputs for our training samples.
For most of the regression problems squared error
is the reasonable choice. It is interesting to use the
L2 norm, because of its properties, for both the loss
function and the regularization terms.

G(f) = ||f ||2 (2)

and

L(y, f(x)) = (y − f(x))2 (3)

The constraining F to the set of linear functions of
the form

f(x) = 〈w, x〉 (4)

where w is a weight vector. Inserting the squared
loss and L2 regularization results in a convex op-
timization i.e. inverted bell shape doesn’t have
any local optima. Thus, guarantees unique solu-
tion which is global optima for problem of w, for
which the objective function is given by

J(w, λ) = λ
2 ||w||

2 + 1
2

∑m
i=1(yi–f(xi))

2 = λ
2 ||w||

2 + 1
2 ||y −Xw||

2 (5)

In equation 5 uses matrix notation by defining an
m x n matrix input samples X = [x1, x2, ...., xm]T

and an m-dimensional vector of outputs y =
[y1, y2, ....., ym]T . The additional factor 1

2 is solely
for mathematical convenience and does not affect
the optimal solution. Setting partial derivative of
J with respect to w to zero, such that

∂J/∂w = w(λI +XTX)–XT y

= 0, we obtain the optimal solution given by

argminwJ(w, λ) = (λI +XTX)−1XT y (6)

The system of linear equations is well posed if λ > 0,
this guaranteeing a unique optimal solution. This
technique, known as Tikhonov regularization, was
originally proposed to improve condition of ill-posed
linear systems of equations by Tikhonov and Ars-
enin, 1977 [14]. The main advantage of this formu-
lation is computational nature.

• Prediction Once training of data is finished, pre-
diction of output is performed in this task. This
computes the predictions of the linear estimator
stored (matrix of coefficient vectors of rls estima-
tor) computed with primal formulation of RLS on
the samples passed in the input data matrix i.e. test
dataset.
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• Performance Measure The preformance is mea-
sured by computing Root Mean Square Error be-
tween predicted values and actual F/T measure-
ments.

Data can be provided to the learning algorithm in two
ways namely : in Bacth and Incremental. In batch we
will provide all data at once to the learning algorithm
on the other hand for incremental they learn from each
training samples as it arrives. In reality incremental
learning is preferred over batch learning. These are also
termed as off-line and online learning.
a. Batch Learning For Linear Models : In batch
learning all the data is given at once to learning algo-
rithm. After training was done predictions are made for
test dataset. For convenience in the report three bar
graphs are shown in one. First bar graph is rmse error
of forces (units : N ewton) between predicted and ac-
tual measurement from the F/T sensor, follwed by rmse
error for torques(units : N ewton − meter) and compu-
tational time (in Seconds) for both training and testing
on vertical axis. On horizontal axis number of samples
including testing and approach used for parameter se-
lection. From the results Figure 1 we can see the RMSE

Figure 1: Results of linear models with different approaches in batch learning

error is same for all the experiments this because covari-
ance matrix is stable and as discussed earlier matrix is
well posed if λ > 0. However the error will reduce if the
number of samples for training are increased.
b. Incremental Learning For Linear Models : The
sequence for implementation using GURLS is same as
batch learning but data supplied to learning algorithm
is different.Initially,taking reasonable amount of samples
(above 1000) for training and parameter selection, then
we will update model by training each sample. In incre-
mental learning we can do retraining after updating the
model, for the experiment it is not considered because it
is computationally expensive. Figure 2 we can see error
is more because of numerical instability in covariance
matrix.

2.2 Non-Linear Models :

In real life problems linear functions are too restric-
tive, which are often found to be non-linear. To deal

Figure 2: Results of incremental learning for linear models

with non-linear models, best way is to apply linear algo-
rithms on non linear problems to map the input features
into feature space. With this approach input-output re-
lation will turn to be in linear form in feature space i.e.
Hilbert space. To fulfill this we use kernel in this case.
Let us consider map function φ : χ → H, where H is
Hilbert space which is feature space. On substituting φ
in equation 4, we get

f(x) = 〈w , φ(x )〉 (7)

optimal solution for equation 6 turns to

argmin(w)J(w , λ) = (λI + ΦTΦ)−1ΦTy (8)

where Φ = φ(x). This means the algorithm operates
explicitly in the feature space and consequently w ε H.
There are different types of non-linear feature mapping
also known as basis functions, which are used in practice
like Radial Base Functions, Polynomial basis functions.
The time complexity of equation 8 is cubic in the num-
ber of features and may therefore be computationally
not feasible if huge number of basis functions is made as
a choice. To overcome this issue we can use kernel trick.
In addition to this it allows linear methods to be applied
in infinite dimensional feature spaces.Most of the tasks
in the non-linear models are same as linear modeling. In
non-linear dual formulation will be used instead of pri-
mal formulation. The tasks that are used for non-linear
models using GURLS are splitting datasets, parameter
selection, kernel selection, optimizer, predicting kernel,
prediction and computing error. Using representer theo-
rem the optimal solution of equation 8 . We can rewrite
w as

w = 1
λΦT (y − Φw) = ΦTα =

m∑
i=1

αiφXi (9)

showing that w can be written as linear combination
of the training samples. Following that m-dimensional
coefficient vector α is given by

α = 1
λ(y − Φw) = (K + λI)−1y (10)
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where K = ΦΦT . To obtain optimal solutions for
this dual representation we need m – dimensional sys-
tem of linear equations, as opposed to an n – dimen-
sional system for primal formulation. The above alter-
native formulation has one of the most attractive fea-
tures is computationally advantageous in training when
m < n. Apart from this, training occurs within the in-
ner product. The matrix K is called the kernel matrix
and is symmetric and positive semi-definite. It is inter-
esting to know which kernel functions should be used.
K : χ×χ→ R to an inner product in a feature space H.
The answer is mercer’s condition, because it avoids ex-
plicit expressions for non-linear mapping & makes kernel
trick powerful. One of the advantage in using represen-
ter theorem is solution for the given problem depends
on the inputs only through inner product. The function
K is often called a kernel and to be admissible it should
behave like inner product.In addition to this, main use
of positive semi definite kernel ensures that the opti-
mization problem will be convex and solution is unique.
With the given admissible kernel, it is possible to con-
struct a corresponding Hilbert space H, which is known
as Reproducing Kernel Hilbert Space (RKHS).
In fact, it is difficult to say which kernel is best in per-
formance, there are particular kernels that have been
shown to perform well on a wide variety of practical
learning problems. Most widely used families of ker-
nels are polynomial and RBF kernel. In experiments
linear kernel, RBF kernel and approximating Gaussian
kernel with random features are used.Even though poly-
nomial and RBF kernel are widely used in machine
learning but they are restricted to use in reality be-
cause high computational time & unable to deal with
large number of input features. Random features are
a trick to speed up supervised learning algorithms, so
they are able to handle large datasets.In the literature,
Rahimi and Techt (2008a) [19] demonstrated that the
RBF kernel and other shift invariant kernels can be ap-
proximated to an arbitrary precision using finite dimen-
sional random features mapping. Their approach uti-
lizes Bochner’s theorem, which relates positive definite
functions, among which admissible kernel functions, to
Fourier transforms using finite Borel measure. In brief,
this theorem states that shift-invariant kernel function
K(xi, xj) = K(xi − xj) can be described as the Fourier
transform of a unique measure µ. Here µ is probabil-
ity density function. Then the kernel can be estimated
randomly sampling features according to µ. Combining
both these techniques, finally we get
k(xi − xj) =

∫
Rd e

−iωT (xi−xj)µ(ω)dω

= Eω [zω(xi)
T zω(xj)] where

zω(x) = [cos(ωTx), sin(ωTx)]T (11)

Inner product 〈zω(xi)
T zω(xj)〉 gives an unbiased es-

timate of any shift-invariant kernel k(xi, xj), spectral
frequency ω is drawn according to its corresponding

measure µ. Corresponding probability density func-
tion µ can be obtained by computing IFT (Inverse
Fourier Transform). Probability density function for the
isotropic RBF kernel is Gaussian and it suffice to sample
ω ∼ N(0, 2γI). Prediciting kernel task compute kernel
matrix between training points and testing points. It
must use dual formulation. The prediction step Matrix
K = ΦΦT obtained above can be described component
wise as Kjj = 〈φ(xi), φ(xj)〉 and the prediction function
can be written as

f(x) = 〈w, x〉 = 〈ΦTα, φ(x)〉 =
∑m

i=1 αi〈φ(xi), φ(x)〉 (12)

From the above equation 12 we can observe that inner
productH is required to compute the RLS dual solution.
Kernel trick exploits this observation by directly speci-
fying a kernel function. This avoids explicit mapping of
the input samples into feature space.

K(xi, xj) = 〈ø(xi), ø(x)〉H (13)

In other way computed the predictions of the regressors
stored in gram matrix on the samples passed in the X
matrix. Qualitattive measurment is same as linear mod-
eling i.e. RMSE error.
a. Batch Learning for Non-Linear Models :
The drawbacks of linear and RBF kernel they are in-
feasible in large number of features, which need more
time and memory. To overcome the issues of regular
kernel, aprroximating the Gaussian kernel with random
features are used. From results Figure 3, we can make

Figure 3: Results of batch learning for non-linear models

observations i.e. linear and RBF kernel with less number
of samples(1457 for training and 352 for testing) need
more time to compute regularization parameter and pre-
dictions. Approaximating gaussian kernel with random
features in the last experiment with complete dataset
was used instead of small dataset to alleviate advantage
of computational time & able to deal with large number
of input features.
b. Incremental Learning for Non-Linear Models:
Results Figure 2, Incremental learning for Linear mod-
els is numerically unstable, so it leads to more error. So
now the idea is to make the system stable by making ef-
ficient updates when the new sample arrives.The easiest
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method to do update in incremental learning an RLS
solution is to perform rank updates on the inverse of co-
variance matrix (λI + XTX)−1 using sherman-morison
formula. But this approach is numerically unstable be-
cause this formula is more sensitive to rounding errors.
A numerically much more stable alternative is to up-
date cholesky factor R of the covariance matrix instead,
such that RRT = (λI + XTX). This update stratergy
is known as QR algorithm in the field of adaptive fil-
tering.Rank updates of the cholesky factor can be com-
puted efficiently, whereas the weight vector w can be
obtained using back substitution. Results in Figure 4

Figure 4: Results for incremental learning for non-linear models

shows that sherman-morrison update is less stable when
compared with cholesky update.

2.3 Parametric Modeling:

Initial parameters estimation is accomplished by col-
lecting sample measurements if kinematic quantities
i.e. joint positions, velocities and acceleration and
forces acting in robot i.e. external forces and joint
torques. The samples measurements of kinematic quan-
tities are then used to compute regressor that linearly
related to inertial parameters to the force measure-
ments.Independently from the method used to obtain
a measure quantity that depends linearly in inertial pa-
rameters , considering all samples it is possible to write
a regressor for all the available measurements in single
equation 

Y1

Y2
...
YN

 ø =


f1

f2
...
fN

 (14)

Also if the collected samples are sufficiently exciting the
equation 14 is almost always intermediate in ø. So in-
finite least square solutions exist. As only the elements
of identifiable subspace can be identified, to avoid nu-
merical issues it is possible to compute directly the base
parameters øb = B>ø,
where B is a matrix whose columns are a base for IY ,
that can be calculated from an arbitrary structure using

Gautier algorithm[12]


Y1B
Y2B

...
YNB

 øb =


Y b

1

Y b
2
...
Y b
N

 øb =


f1

f2
...
fN

 (15)

Using this equations only the base parameters, the pro-
jections on a base of identifiable subspace IY can be
estimated. A projection on this subspace is sufficient to
obtain many quantities of interest in robotics that solely
depends on the inertial parameters. The equation 14
can be used to estimate the parameters øb using least
squares presented in non-parametric modeling part. we
are using incremental update, so there will be numerical
instability to over this issue cholesky update was prefer-
able than sherman-morrison update. An estimation
algorithm is derived from Newton-Euler equations,and
used the base force sensor measurements and manipu-
lator (i.e. iCub left arm) joint positions,velocities and
accelerations. No direct measurement of the arm’s joint
torque or force are required. Adaptive filtering algo-
rithm eliminates the need for difficult to measure joint
accerlation. From the Figure 5 we can see that there

Figure 5: Effects of regularization parameter on Inertial
parameters estimation

is change in inertial parameters.It is evident that tak-
ing the advantage of λ that prevent overfitting to give
accurate prediction in non-parametric modeling, we can
say that optimal λ yields to more accurate in obtaining
inertial parameters than assumed one (i.e. fixlambda :
1 in our case).

3 Experimental Results:
Some experiements are performed to improve the re-

sults. Increase in crossfolds for holdout approach will
lead for better results. Using 5 cross folds the rmse er-
ror is reduced by 0.3 times depicted in Figure 6.
Increase in the number of random features for incremen-
tal learning of non-linear models Sherman-Morrison up-
date is less stable when compare to the Cholesky update
is shown in Figure 7.
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Figure 6: Change in Cross folds for Non Linear Models

Figure 7: Change in Number of Random Feature for Non Linear Models with
Sherman Morrison and Cholesky updates

4 Conclusion :
In non-parametric model approximating of the func-

tion that describes the relationship between inputs (i.e.
joints position, velovity and accelrations) and outputs
(i.e. forces and torques). This was performed in both
linear and non-linear models. In real life robots, linear
systems are too restrictive, apart from this the covari-
ance matrix is well posed so it performs better in batch
learning but leads to high errors in incremental learning
due to instabilities in covariance matrix. In most of the
applications incremental learning is prefered than bacth
learning. However,non-linear models provide an efficient
solution towards this context. All the family of kernels
like RBF, polynomial etc will not perform well because
they are restricted with number of input features, needs
lots memory and computational time. To alleviate this
issue in non-linear models, Gaussian kernel approxima-
tion with random features sounds as an alternative solu-
tion for non-linear models. Sherman-Morrison update is
numerically unstable, to overcome this cholesky update
is preferred. It is stable even with increase or decrease
in random feaatures, high dimensional data etc. With
more number of features we will penalised by computa-
tional time.

In parametric learning method our aim is to identify
the small set of significant parameters i.e. mass, center
of mass & inertia matrix using Gautier algorithm. Due
to presence of cad offsets & F/T offsets it not possible
to categorize them for results obtained. However, inves-
tigated on regularization parameter λ effects estimation
of inertial parameters. Since we don’t have ground truth
we cannot say they are accurate. From theoritical point

of view, role of regularization parameter is to prevent
overfitting, this will give accurate predicitons in output.
In addition to this using Newton-Euler algorithm pre-
dictions of forces and torques which are almost equal to
ground truth, with this evidence we can say that inertial
parameters identified are close to true ones.

These techniques are used in robotics for safe opera-
tions. However, learning is common in both but context
is different. Future work is to obtain the accurate in-
ertial parameters (i.e. mass, center of mass and interia
matrix). Combining both non-parametric and paramet-
ric models for robot tracking control.
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Abstract— Navigation and therefore localization are two of
the most fundamental issues in Robotics. This work aims to in-
vestigate the benefits of using a minimalist poly-omnidirectional
camera rig for the topological localization of a humanoid robot,
namely the REEM robot from PAL Robotics. The proposed
system is composed of two non-overlapping fisheye cameras
for a complete spherical view acquisition. Such configuration
allows for a rich description of the robot environment and is
therefore well suited for the localization task.

Visual-based topological localization characterizes the map
nodes either in terms of global or local features extracted
from images. Following the local feature approach, this work
presents a comparison of localization performance between our
prototype and the currently embedded cameras. Addressing the
kidnapped robot issue, the naive SIFT matching method pre-
sented demonstrates the effectiveness of the proposed camera
system. Furthermore a comparison between regular SIFT and
Spherical SIFT both extracted from omnidirectional camera
images is performed.

I. INTRODUCTION

In a near future, robots will be part of our common life,
not in factories only anymore but also in public places
and our homes. However this will happen only if robots
are robust enough to be entrusted with simple tasks. Since
most of them implicitly imply a process of localization and
navigation, both those fields are extensively active research
areas. Moreover robots are still a curiosity for the public,
especially humanoid robots such as the REEM robot showed
in Fig. 1, which aims to assist people.

In Robotics the most common sensors used for localiza-
tion are laser range-finders [1], [2]. Despite their accuracy,
laser range-finders are expensive, cumbersome and give
a restricted profile line of the environment. To overcome
those problems, visual-based localization methods have been
proposed [3], [4], [5], [6]. Cameras have many advantages,
they are compact, increasingly cheap and most of all they
are more informative. However conventional cameras have a
restricted field of view (FoV), which limits the environment
description. This limitation can be overpassed be taking
several images of the same location [3] or by defining an
acquisition requirement [7].

Omnidirectional cameras are well suited for localization
due to their wide field of view and therefore received an in-
creasing attention. However their study is recent compared to
conventional cameras. Based on a stereographic projection,
the spherical model allows for a intrinsic [8] and extrinsic
[9] calibration of an omnidirectional camera rig.

Autonomous Robotics requiring compact and energy ef-
ficient sensors a minimalist hardware configuration is pro-

Fig. 1: The REEM robot

posed in the work. Whereas the rig is composed of 2 only
non-overlapping fisheye cameras, it is able to acquire a
complete spherical view leading to a rich information on
the robot environment.

This work aims at evaluating the benefits of integrating
the above mentioned camera system for the topological
localization of a humanoid robot, the REEM robot. The
growing interest for the use of omnidirectional camera in
Robotics localization led to a flourishing literature of the
topic. Topological maps aim at sampling the topological
space into differentiable subspaces called nodes. Nodes de-
scribe places based on their characteristics, in this work
their visual characteristics, or visual features. Either global
[10], [11], [12] or local [13], [14], [3] features are then
used to solve an image classification problem. Assuming a
topological map as an image atlas, topological localization
is the process of matching the current observation to one of
the known environment observations memorized in the atlas.

However, the size of such atlas increases rapidly with the
size of the map. It affects then the speed of the matching
process. Nodes must be organised in an efficient manner
in order to limit the time consumption of the localization.
Methods defining connections a node to another [10], [15],
[16] aim at focusing the search on a part of the topological
map only. They benefit from prior knowledge about the robot
localization, assuming that the robot can not move from an
extremity of the map to another without crossing the nodes in
between. Another approach is to use an efficient and compact
representation of the map such as a vocabulary tree [17],



[3]. The vocabulary tree aims at clustering the dataset by
a recursive k-means classification. Rather than memorizing
all the place feature sets, only the tree is memorized whose
leaves define the classes (the places).

Currently the REEM robot localization is performed using
two laser range-finders together with a Monte-Carlo local-
ization algorithm [18]. Although those sensors are accurate
and lead to a correct localization in static environment, their
acquired data can be easily corrupted. A new element in the
environment or people surrounding the robot may prevent
it to localize or lead to incorrect localization. Moreover it
embeds 3 conventional cameras for its visual tasks (face
recognition, object tracking etc). Those facts led to a study
for alternative solutions, more especially the study of local-
ization using omnidirectional cameras.

This work aims at investigating the benefits in the use of
omnidirectional cameras for the REEM robot localization.
A poly-omnidirectional sensor will be especially prototyped
for this work and its particular requirements in terms of en-
vironment acquisition and minimal footprint. An evaluation
of the camera effectiveness will be conducted and compared
to the cameras currently embedded on the robot.

Section II gives references for the reader to consider in
details omnidirectional cameras and non overlapping camera
rig calibration. Section III details the method for topological
localization. Section IV presents the experiments and results.
Finally Section V concludes and proposes further work.

II. MINIMALIST POLY-OMNIDIRECTIONAL CAMERA RIG
WITHOUT OVERLAPPING

Unlike conventional cameras and their limited field of
view, omnidirectional cameras offer the possibility to acquire
globally a scene thanks to their wider FoV, which can be
greater than 180 for some fisheye lenses. However one may
want to acquire the whole panoramic view of its environment
(360 in longitude and 180 in latitude). We briefly introduce in
this section the unit sphere model [19], [8] and the extrinsic
calibration of non-overlapping camera system, prior to detail
the proposed system.

A. The Single Viewpoint Constraint

The single viewpoint constraint is the basis of the unit
sphere model. This constraint implies that each ray of light
coming to the system will intersect at a single point in space,
the focal point. It has been detailed by Baker & Nayar [20].
A camera respecting this constraint is then called central
camera.

Moreover Ying & Hu [21] show that fisheye lenses can
be considered as central dioptric cameras.

B. Projection Model

Mei [8] proposes a unified model for central omnidirec-
tional cameras, mainly based on the model proposed before
by Geyer & Daniilidis [19]. The latter have introduced the
idea of using a generic unit sphere S2 instead of mirror curves
[20].

Moreover Mei has released a Matlab toolbox [22] for the
calibration of omnidirectional cameras.

C. Non-Overlapping Cameras Calibration

Similarly to conventional cameras, omnidirectional cam-
eras can be coupled one to another in order to complete
the FoV onto the unit sphere (i.e. the ladybug camera from
Point Grey). They can be classified into two groups: systems
with overlaps of the image from one camera to another and
systems without overlaps. Only the latter is considered in
this section.

As mentioned in Section II-A an omnidirectional system
can be modelled by the unit sphere model if it respects
the single viewpoint constraint. However a system made
of several cameras cannot physically respect this constraint,
each camera has it own unique viewpoint. The generalized
camera model of [23] aims at modelling exactly a multi-
camera system relying on light path and Plucker vectors.
However the main option to overcome this issue is to neglect
the baseline between cameras (assuming it as small as
possible) and therefore to assume they share a single optical
center. This approximation is valid if the distance from a
scene point to the camera is very large compared to the
distance between cameras optical center [24].

While stereo-system calibration is a common task for
systems with overlapping FoV it becomes more challenging
for systems without overlap. Several methods have been
proposed to this problem. A solution consists of using a
mirror such as [25] or [26] so that cameras do share a
FoV. However we preferred a simpler method in terms
of calibration procedure [9]. Considering a multi-camera
system with rigid transformation one to another, the goal
is to retrieve the pose of each camera with respect to their
respective calibration pattern. By moving the camera rig
between the calibration patterns, each camera trajectory Tk
is expressed with respect to their reference frame Si. The
calibration is then reduced to the resolution of two linear
systems to retrieve the unknown transformation ∆T from a
camera Ci to an other (slave to master). Considering only the
general motions case of [9] the calibration solution has the
advantages to be simple to set up and can be implemented in
the calibration scheme of [22]. Thus with a single procedure
both intrinsic and extrinsic calibrations are performed.

The reader can refer to [9] for a complete mathematical
description.

Once the rotation and translation have been estimated, they
can be used to initialize a non-linear refinement to minimize
the following cost function :

I

∑
1
‖T k

c1∆Ti−∆TiT k
ci‖ (1)

D. Fisheye Camera Rig

The proposed system aims at being integrated onto the
REEM robot as showed in Fig. 4 and must then be as
embeddable as possible while acquiring as much of the
environment as possible. The camera rig is composed of two
UI-3240CP uEye cameras from IDS-Imaging on which are
mounted fisheye lenses. Cameras are aligned regarding their
optical axis with a relative rotation of ≈ 180◦ over the Y axis.



Each camera has a full resolution of 1280*1024 however
once the fisheye image borders have been subtracted only
1.3M pixels remain for the whole system.

The calibration of our prototype gave us the following
result :

∆R =

−0.9998 −0.0207 −0.0026
−0.0209 0.9862 0.1642
−0.0008 0.1642 −0.9864

 (2)

The estimation of ∆R matches the expected result, that is
to say for a pure rotation over Y axis of π radian :

∆R =

−1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 −1.0

 (3)

Once the system is calibrated, the individual S2 spheres
can be merged into a single one. It implies that the images
acquired by each camera can be treated as a single one. Con-
sidering the spheres center lying on a same point (translation
neglected), the rotation ∆R is applied to the slave camera. It
stitches both hemispherical images as shown in Fig. 2.

Fig. 2: Two hemispherical images stitched together

To validate the relevance of the calibration, we visually
compared the images alignment using the estimated ∆R and
rotation of π over Y axis.

(a) Alignment with ∆R (b) Alignment with rotation of π

over Y axis

Fig. 3: Zoom of the spherical images

Fig. 3 highlights the benefit of the calibration step, it
allows for compensating slight misalignments of the cameras.

III. TOPOLOGICAL LOCALIZATION

A. Mapping

The map construction process is performed offline. An
operator drives the REEM robot over the place while the
robot records an image sequence. Once the place has been
fully visited, the map T M is build. Currently we create a node
at each frame (1 frame per second –fps, in average every
42.5 cm) of the recorded sequence so that for a sequence
of l frames T M holds l nodes. Following a local features
approach we characterize each nodes N j , j ∈ [1...l] as a
set of SIFT [27] points S{Pj} extracted from the image pair
Pj. Moreover the same manner as [13] we benefit from the
localization of the robot (SLAM using laser range-finders) to
label the nodes with it L{N j}. By doing so we can retrieve a
metric estimation of the robot position during the localization
phase. The mapping is summarized in Algorithm 1.

Algorithm 1 Mapping

Require: Cameras video stream

1: while PnewImage do
2: PnewImage → S{PnewImage}
3: Get LPnewImage from odometry
4: Associate LPnewImage → S{PnewImage}
5: end while

B. Naive Localization

For a new pair of query images Pquery, their SIFT points are
extracted S{Pquery}. In a second place we try to match each
feature point of S{Pquery} to those of each node N j of the
topological map. The matching is performed using the Fast
Approximate Nearest Neighbours Library (FLANN) [28].
We use the k nearest neighbours method (knn) which returns
the k closest features in the database. To assert a matching
is correct we evaluate the distance ratio as proposed in [27].
The node Nm which has the highest number of matches
Msum is then considered as the potentially current location
of the robot. An evaluation of the recognition confidence
is performed based on the number of matchings. Msum is
compared to a threshold MT hreshold, empirically defined,
below which the recognition is considered not reliable.
Therefore the robot is considered at an unknown location.
Finally, if the recognition confidence is high enough the label
Lm of the matched position Nm is retrieved and considered as
the robot position estimation. The localization is summarized
in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. Camera Systems Comparison

To evaluate the interest of integrating the omnidirectional
camera rig to the REEM robot as shown in Fig. 4, we
compared it to the cameras currently embedded. We have
chosen to use REEM’s left eye camera coupled with its back



Algorithm 2 Localization

Require: Topological map T M with l nodes

1: while Pquery do
2: Pquery → S{Pquery}
3: for x = 1 to l do
4: Msum = matching(S{Pquery},S{Px})
5: if Msum > prevMsum then
6: prevMsum = Msum
7: Lm = L{Nx}
8: end if
9: end for

10: if prevMsum > MT hreshold then
11: Robot Localized at Lm
12: else
13: Robot not Localized
14: end if
15: end while

camera in order to cover as much FoV as possible. For the
experiments we performed three indoor sequences, two of
them are similar (seq 1 & 2), whereas for the third sequence
the robot explores several rooms. We performed two tests
for each of the camera systems (2 tests, 2 camera systems,
4 evaluations). For the first test, seq. 1 is used as the map
whereas seq. 2 is used a test. For the second test, seq. 2 is
used as map and seq. 3 as test.

Fig. 4: REEM robot with the omnidirectional camera rig

The localization results for each of the 4 tests are shown
in Fig. 5. Moreover Tables IV and V detail the results of
the second test for both systems. Details are as follows :
True Positive (TP) – Correct matching, True Negative (TN)
– No matching. There exist no node for the position, False
Positive (FP) – Incorrect Matching, False Negative (FN) –
No matching. There exist a node for the position, Sensitivity
(SE) – Performance of the algorithm to localize correctly
the robot given that the position exists in the map. Range
from 1 (absolute effectiveness) to 0 (null effectiveness) and
Specificity (SP) – Performance of the algorithm to determine
correctly that the robot is at an unknown. Range from 0 (null
effectiveness) to 1 (absolute effectiveness).

The results shown in Fig. 5 and Tab. I highlight the fact
that our system is more effective to localize the robot when

its current position exists in the map. Also it has a lower
mismatch rate than the REEM cameras.

(a) REEM: Map seq1 - Test seq2 (b) REEM: Map seq2 - Test seq3

(c) Omni: Map seq1 - Test seq2 (d) Omni: Map seq2 - Test seq3

Fig. 5: Upper row: tests performed with REEM cameras.
Lower row: with our system. Blue squares are the map nodes.
Red dots are the true robot positions. Lines show matching
with MT hreshold = 25

System SE SP Mth
REEM cam 0.722 0.401 15
Omni cam 1 0.913 25

TABLE I: Comparison of camera systems performances

B. SIFT vs. Spherical SIFT

From the results presented in Section IV-A we aimed at
refining the image matching of the omnidirectional camera
system. Mota-Cruz & Al [29] propose an adaptation of the
SIFT feature points for spherical images (SSIFT). Relying
on Spherical Fourier Transform their work aims at being a
direct and robust adaptation of the so called SIFT feature
points [27] for images on S2. For further details the reader
can refer to [29].

To evaluate the benefits of using SSIFT we re-run the 2
tests detailed in Section IV-A for the omnidirectional cameras
only. Prior to extract the features, image pairs must be first
projected onto the S2 as shown in Fig. 2. To our knowledge
there exists only a Matlab implementation of the SSIFT, the
computation time to extract the features from a single frame
is in average 68.9 seconds. This is obviously not suitable for
real-time applications as it is.

The same manner as for the regular SIFT we evaluated
different values of MT hreshold from 0 up to 65, results
are presented in VI. Moreover Fig. 6 presents the matching
results of the second test. Whereas we were expecting results
similar to those in Section IV-A, it appeared during our
experiments that the SSIFT-based localization is actually per-
forming less than using the regular SIFT. While comparing
both experiments for a sensitivity score equal (SIFT : 0.949 ,
SSIFT : 0.927) it appears that the use of the SSIFT produces



4 times more incorrect localizations than using SIFT (SIFT
: 10 , SSIFT : 40). While comparing for a specificity score
equal (SIFT : 0.933 , SSIFT : 0.937) the SSIFT is not able
to find a correct position for 15 query pairs whereas SIFT
misses only 2. The results showed in Fig. 6 and Tab. I show
that the regular SIFT are more robust than SSIFT despite the
fact that we are using omnidirectional cameras.

(a) SSIFT: Map seq1 - Test seq2 (b) SSIFT: Map seq2 - Test seq3

Fig. 6: Localization results using SSIFT. MT hreshold = 18

Feature SE SP MT h
SIFT 1 0.913 25
SSIFT 0.927 0.722 15

TABLE II: Comparison of features best performances

C. System Effectiveness in Public Place

Since the REEM robot aims at assisting people in public
places and to ensure the results presented in Section IV-A
we performed a test simulating the conditions the robot can
encounter.

We recorded a fourth sequence during which groups of
people are roaming around the robot while it is navigating
over several rooms similarly to the third sequence. Moreover
several elements of the environment have been moved from
a place to another or even replaced. Using the third sequence
as the reference map we evaluate in this section the ability
of our camera system to localize in a dynamic environment.
As previously the robot position is evaluated at each frame,
which as been increased to 5 fps (510 images). In average
an evaluation is performed every 13.7 cm.

As we were expecting the localization results slightly
decreased for this experiment. Fig. 7 shows the general
localization matching with 3 closer views. We detail in Tab.
VII the localization results for different MT hreshold values.
For this experiment the best result obtained happened for
MT hreshold = 35 with sensitivity = 0.739 — specificity
= 0.738. It is therefore less effective to match the current
position to its referent one in the map and to filter out the
unknown positions. We recall in Tab. III the results and
compare them to those from Tab. V.

Type SE SP MT h
Empty office 1 0.913 25
Busy office 0.739 0.738 35

TABLE III: Localization performances in public place

V. CONCLUSION

We have shown in this work the feasibility of a minimalist
poly-omnidirectional camera system composed of only two

(a) Map seq3 - Test seq4 (b) Zoom on kitchen

(c) Zoom on office (d) Zoom on entrance

Fig. 7: Localization results for the fourth sequence.
MT hreshold = 25

non-overlapping fisheye cameras. However, due to slight
cameras synchronization issue and difference in illumination
received by each camera, remains a strong edge at the stitch-
ing area. Since traditional histogram equalization methods
do not smooth the illumination enough over the two images,
this problem requires to investigate methods such as gain
compensation, multi-band blending etc [30].

Moreover we demonstrated the benefits of integrating the
omnidirectional camera prototype to the REEM robot. For
localization task it performs ≈ 30% better in known places
and ≈ 51% better to label unknown positions correctly than
the currently embedded cameras. The localization method
used in this work is said naive because it does not benefit
from prior knowledge by exploiting the connections of the
map’s nodes. Fig. 7 highlights the fact that many wrong
matches happen for two nodes which are far apart one to
another. Our current work aims at benefiting from those
connections and prior knowledge.
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MT h TP TN FP FN SE SP
0 13 0 172 0 1 0
5 13 1 171 0 1 0.006

10 13 31 141 0 1 0.180
15 13 67 100 5 0.722 0.401
20 13 101 62 9 0.591 0.620
25 13 115 40 17 0.433 0.742
35 12 131 19 23 0.343 0.873
45 9 137 9 30 0.231 0.938
65 9 140 4 32 0.219 0.972

TABLE IV: REEM cameras. Third test results for different
MT hreshold

MT h TP TN FP FN SE SP
0 39 0 149 0 1 0
5 39 0 149 0 1 0

10 39 14 135 0 1 0.094
15 39 59 90 0 1 0.396
20 39 105 44 0 1 0.705
25 39 136 13 0 1 0.913
35 37 139 10 2 0.949 0.933
45 34 142 4 8 0.809 0.973
65 27 143 1 17 0.614 0.993

TABLE V: Omnidirectional cameras. Second test results for
different MT hreshold

MT h TP TN FP FN SE SP
0 39 0 146 0 1 0
5 39 1 145 0 1 0.007

10 39 48 98 0 1 0.329
15 38 104 40 3 0.927 0.722
20 28 133 9 15 0.561 0.937
25 24 139 1 21 0.533 0.993
35 14 140 0 31 0.311 1
45 8 140 0 37 0.178 1
65 6 140 0 39 0.133 1

TABLE VI: SSIFT features. Second test results for different
MT hreshold

MT hreshold TP TN FP FN SE SP
0 429 0 81 0 1 0
5 429 0 81 0 1 0

10 429 0 81 0 1 0
15 428 0 81 1 0.998 0
20 420 6 75 9 0.980 0.074
25 396 20 57 37 0.914 0.260
35 329 48 17 116 0.739 0.738
45 263 59 0 188 0.583 1
65 137 59 0 314 0.304 1

TABLE VII: Public place. Results of the third test for
different values of MT hreshold
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ABSTRACT

This paper presents a novel approach to estimate the human
pose from a body-scanned point cloud. To do so, a predefined
skeleton model is first initialized according to both the skele-
ton base point and its torso limb obtained by Principal Com-
ponent Analysis (PCA). Then, the body parts are iteratively
clustered and the skeleton limb fitting is performed, based on
Expectation Maximization (EM). The human pose is given
by the location of each skeletal node in the fitted skeleton
model. Experimental results show the ability of the method
to estimate the human pose from multiple point cloud video
sequences representing the external surface of a scanned hu-
man body; being robust, precise and handling large portions
of missing data due to occlusions, acquisition hindrances or
registration inaccuracies.

Index Terms— Human pose estimation, point cloud,
skeleton model

1. INTRODUCTION

Human pose estimation is indispensable in very active re-
search areas such as scene understanding, human-computer
interaction and action or gesture recognition. Among the vast
literature on this fundamental research topic, many authors
have considered predefined human models to simplify the
pose estimation task when using conventional 2-D cameras.
For instance, Ke et al. in [1] retrieve the human pose from
a monocular camera, using downhill simplex algorithm to
match 2-D feature points to a predefined 3-D human model.
Other approaches specifically parameterize the pose in a
lower dimensional space, using skeleton models. An example
is the work of Li et al. in [2], where the authors estimate
the 2-D human pose in a video sequence using a predefined
human skeleton model to fit the silhouette of a body shape.
Distance Transform (DT) and Principal Component Analy-
sis (PCA) are used to identify the skeleton base point and
to initialize the skeleton. Then, they perform an iterative
process to cluster the body parts to which they fit the prede-
fined skeleton model. However, a renewed interest has arisen

This work was supported by the National Research Fund, Luxembourg,
under the CORE project C11/BM/1204105/FAVE/Ottersten.

as a side-effect of the recent advances in 3-D sensing tech-
nologies. Indeed, recent consumer-accessible depth cameras
such as the Kinect or the Xtion Pro Live provide remark-
able advantages, such as easily overcoming the background
matting problem, i.e., segmenting foreground objects from
the scene background. Although recent approaches based on
depth cameras provide very promising human pose estimates,
most of them are intended for mono-view systems and thus
limited to applications in which the user is facing to the cam-
era. Approaches intended for multi-view systems and thus
to estimate the human pose from a full body scan, usually
extract a curve-skeleton representation of the shape to which
the skeleton model can be fitted and hence, estimate the pose.
However, these approaches are impractical for applications in
which the human pose must be estimated in real-time.

In this paper, the problem of human pose estimation is ad-
dressed in the context of 3-D scenes scanned by multi-view
systems composed of multiple depth cameras. To enable for
real-time applications, prior knowledge such as a predefined
human body skeleton model is also incorporated, from which
its skeletal joints will define the configuration and thus the
pose of the scanned body. The remainder of this paper is orga-
nized as follows: Section 2 presents a review of human pose
estimation based on depth sensing. In Section 3 a detailed
description of the current approach is presented. Section 4
evaluates the proposed approach on both synthetic and real
data. Finally, concluding remarks are given in Section 5.

2. RELATED WORK

Related to single-depth-image pose estimation, Ye et al. [3]
proposed a pipeline to combine pose detection with pose re-
finement. To do so, the depth map is used to find a simi-
lar pose within a database of prior full-body surface mesh
models. Lehment et al. [4] considered 3-D point clouds
extracted from depth maps to fit a mesh of a cylinder-based
stickman model using Annealing Particle Filters (APF). How-
ever, the aforementioned methods require a GPU-based im-
plementation. Shotton et al. [5] introduced two super-real-
time approaches to predict the positions of body joints using
a large and varied synthetic set of training images. Decision
forests and simple depth-invariant image features are imple-
mented. In [6], Zhang et al. considered a multi-view setup



with depth cameras to perform human pose estimation and
tracking. The method employs APF and partition sampling
in point cloud models, handles occlusions and reduces am-
biguities. The initial pose is estimated using a coarse-to-fine
search paradigm. To the best of our knowledge, this is the
only method using a multiple-depth-camera setup for human
pose estimation. Curve-skeleton-extraction approaches have
been successfully used for different kind of shapes besides
human models. Since they preserve the geometry and topo-
logical information of the object, they can be implemented
in human pose estimation by approximating the underlying
skeletal structure [7]. Au et al. at [8] proposed a Laplacian-
based contraction method intended only for watertight mesh
surfaces. An extension of this work was proposed by Cao et
al. [9] to handle surfaces with boundaries, polygon soups
and point clouds. Although both methods are robust against
noise and moderate miss of data, they are not optimized for
real-time applications. Tagliasacchi et al. presented in [10]
a method to extract curve skeletons based on a generalized
rotational symmetry axis (ROSA) of an oriented point cloud.
A similar approach was proposed by Sam et al. [11] using
the antipodes as a reference. In this case, both methods can
handle significant missing data, but require parameter tuning.
A real-time curve-skeleton extraction method was proposed
by Garcia and Ottersten [7] in which, inspired from [11], the
skeletal candidates are extracted in the 2-D space and then
back-projected to the 3-D space. The algorithm is robust
against significant portions of missing data. Limitations are
related to occluded body parts and limbs located very close to
each other.

3. PROPOSED APPROACH

In the following, a novel approach to estimate the human pose
from a body-scanned point cloud P describing a set of 3-D
points pi = (px, py, pz) representing the underlying external
surface of a human body is presented. Similarly to [2], the
current approach has considered an articulated human skele-
ton model composed of 15 nodes and 14 edges, presented in
Fig. 1 (a). By doing so, the complexity and flexibility of the
human body as well as the high dimensionality of the pose
space are reduced. The predefined skeleton model represents
a simplified version of the geometry and topology of the hu-
man skeleton. Although there are subtle differences between
people, human body proportions fit within a fairly standard
range and thus, prior knowledge can be considered. Indeed,
an average person uses to measure 7.5 times the height of his
head (including the head). This in turn allowed to initialize
the length of each skeleton limb as shown in Fig. 1 (b) [12].

In this work, P describes any possible body configura-
tion of an upright person. Hence, the height of a person
(7.5 × hu) is given by the difference between the maximum
and minimum z coordinates withinP . That is, hu = (pzmax

−
pzmin

)/7.5, being the head the highest body part.

(a) (b)

Fig. 1. Predefined human skeleton model. (a) Skeleton limbs
and nodes. (b) Human body proportions, with hu the height
of the head (head units).

The human pose estimation results from the configuration
of the skeletal joints after approximating the aforementioned
skeleton model. This is achieved with a four-steps framework.
First, both the base point of the skeleton model and the torso
orientation are extracted. These two parameters allow the ini-
tialization of the torso whereas the remaining skeleton limbs
are initialized by an iterative process in which the best initial
skeleton limb configuration is selected. Next step concerns
the clustering of the body parts, to which finally, their re-
spective skeleton limbs are progressively approximated. The
clustering and fitting are performed under a framework based
on the theory of Expectation Maximization. Note that the
3-D point clustering to find the torso orientation (Section 3.1)
and the initialization of the skeleton model using a predefined
set of limb configurations (Section 3.2) are solely performed
for the first frame. Indeed, the resulting fitted skeleton corre-
sponds to the initial skeleton for the consecutive frame. By
doing so, the time consumed during both stages is reduced,
ensuring a better initial skeleton estimate for the following
frames.

3.1. Torso and base point extraction

The node A = (Ax, Ay, Az) in Fig. 1 (a) corresponds to
the base point of the skeleton model whereas the segment be-
tween nodes A and B, skeleton limb l1 = B−A, to the torso.
The direction of the torso results from the Principal Compo-
nent Analysis (PCA) on P . Indeed, the direction of the prin-
cipal component v = (vx, vy, vz) coincides with the direc-
tion of the torso, assuming thatP describes an upright person.
The equation of the 3-D line in which the base point A lies is
thus defined from the centroid of P , i.e., p̄ = 1

k ·
∑k

i=1 pi,
∀pi ∈ P and the normalized vector v. The third coordinate
of A, i.e., Az , is retrieved from the human body propor-
tions denoted in Fig. 1 (b), whereas Ax = vx · t + p̄x and
Ay = vy · t + p̄y , with t = (Az − p̄z)/(vz − p̄z). Note
that the initialization of the skeleton model and hence, the



body clustering, are strongly dependent on these two parame-
ters. Indeed, a wrong direction of the torso entails to a wrong
initialization of the model and thus to an erroneous pose in
space. To increase the accuracy and robustness of the torso
direction, only those 3-D points that belong to the torso are
considered. To do so, the torso 3-D points are classified by
fitting a cylinder, a simplified geometric model that can be
quickly fitted to the dataset using Random Sample Consensus
(RANSAC) [13]. Alternative fitting algorithms with embed-
ded heuristic hypotheses generators can be also considered.

3.2. Initialization of the skeleton model

The initial skeleton model results from the skeleton limb’s
configuration that minimizes the distances between the 3-D
points and the set of skeleton limbs, i.e., the best matching
between the predefined skeleton model configuration and the
given point cloud P . However, in contrast to alternative ap-
proaches to estimate the human pose from 2-D images [2],
this task is far from trivial when considering the additional
degree of freedom in a 3-D space. First, the skeleton model is
aligned to the estimated base point and torso directions. Then,
the locations of the remaining skeleton nodes are progres-
sively computed from the set of skeleton limb configurations,
presented in Fig. 2, and using incorporated prior knowledge
such as the radii of the skeleton limbs and the initial angles
of the skeleton joints. Fig. 2 only shows the selected config-
urations to initialize the right body side. Nevertheless, as can
be inferred, the mirrored versions correspond to the configu-
rations of the left body side. Given a skeleton limb li with
radius ri, azimuthal angle θi, and polar angle φi, the 3-D co-
ordinates of the end node w = (wx, wy, wz) result from:

wx = ux + ri · cos θi · cosφi,
wy = uy + ri · sin θi · cosφi,
wz = uz + ri · sinφi,

(1)

with u = (ux, uy, uz) the 3-D coordinates of the initial node.
The spherical coordinate system and the right-hand rule are
used to define the initial angles that generate the coordinates
of each skeleton node. The angles θ and φ are fixed within
the range of [0, π] and [0, 2π), respectively. First, the location
of the skeleton nodes that are directly connected to the base
point A are computed, i.e., B, C, D and E. From them, the
location of F, G, H and I, followed by J, K, L and M are
computed. Finally, nodes N and O are computed.

When considering 3-D models that are differently ori-
ented with respect to the z-axis, the 2nd principal component
is used to rotate the initialized skeleton model. In the current
system configuration, the eigenvector of the 1st component
corresponds to the z-axis whereas the eigenvector of the 2nd

one corresponds to the x-axis. Thereby, a 3 × 3 rotation ma-
trix R is computed by rearranging the eigenvectors obtained
from PCA. The new location of the skeleton nodes is given
by w = R · u.

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Considered skeleton limb and node configurations to
initialize the skeleton model (only right body side configura-
tions are shown).

3.3. Body parts clustering

After initializing the skeleton model, the clustering of the
body parts to which each skeleton limb will be further approx-
imated is performed. To do so, each 3-D point pi is assigned
to the skeleton limb lk to which the distance is minimum, i.e.,
lk = arg mink∈[1,14](d(pi, lk)) ∀pi ∈ P .

Nevertheless, close distances between a 3-D point and two
or more skeleton limbs may induce to ambiguity in the clus-
tering. Hence, these 3-D points are not considered within the
clustering process.

3.4. Skeleton limb fitting

Next step concerns the medial axis estimation of each clus-
tered body part, to which their corresponding skeleton limb
will be fitted. It is important to recall that the nodes of the
torso, A and B, are fixed in this step, and the remaining nodes
to be computed are only connected to two limbs. From each
cluster, the mean point and the three principal components
are extracted using PCA. Note that the length of each skele-
ton limb is known from Fig. 1 (b). To decide which of the
three eigenvectors corresponds to the medial axis, they are
stretched from both sides starting from the mean point of the
cluster and by half of their known length. As a result, three
potential medial axes that are not connected to each other, but
oriented towards the directions of the principal components,
are obtained. The connectivity between the skeleton limbs is
ensured by selecting the medial axis candidates of adjacent
clusters with the shortest distances between the end node of
the previously fitted limb and the initial node of the limb to
be fitted. Fig. 3 details the fitting process between the left
hip and left thigh skeleton limbs. Red, blue and green seg-
ments are the candidate medial axes of each cluster, depicted
as cylinders. The three candidates of each cluster have exactly
the same length, which corresponds to the length of their re-
spective skeleton limb. The yellow point in Fig. 3 (a) denotes
the end node of the hip limb G′, whereas the orange dashed
line is the shortest distance to the skeletal node candidates of
the adjacent cluster, i.e., G′′. Next, the centroid q̄ between
G′ and G′′ is calculated, shown in purple color in Fig. 3 (b),
and the fitting of l6 is refined by reorienting it towards q̄, as
shown in Fig. 3 (c). The new 3-D coordinates of G result
from G = B + λ with λ = d(B,G) · (q̄ − B)/||q̄ − B||.
Note that the node G corresponds to the initial node of the



(a) (b) (c)

Fig. 3. Fitting process of the hip limb. The medial axis can-
didates corresponding to the first, second and third principal
components (in blue, red and green colors, respectively).

adjacent skeleton limb, i.e., the thigh. Therefore, the skeleton
limb l10 is translated to its respective location, which gives an
initial location for the node K, to be refined when fitting its
adjacent skeleton limb, i.e., l14.

3.5. Skeleton refinement

Similarly to [2], the fitting of the skeleton model is performed
through an iterative process based on Expectation Maximiza-
tion (EM). The Expectation (E) step comprises Section 3.3
and the first part of Section 3.4, where the expected human
skeleton is calculated for the current pose. The Maximization
(M) step corresponds to the last part of Section 3.3, where
the parameters that maximize the expectation of the skele-
ton model during the fitting process are computed. From the
experiments, the fitting process converges to a good pose es-
timation in only one or two iterations.

4. EXPERIMENTAL RESULTS

In the following, the proposed human pose estimation ap-
proach is evaluated on both real and synthetic data. All
reported results have been obtained using a Mobile Intel R©

QM67 Express Chipset with an integrated graphic card
Intel R© HD Graphics 3000. The proposed approach has been
implemented in C++ language using the OpenCV [14] and
PCL [15] libraries. Real data has been recorded using a multi-
view sensing system composed by 2 consumer-accessible
RGB-D cameras, i.e., the Asus Xtion Pro Live camera, with
opposed field-of-views, i.e., with no data overlapping. Nev-
ertheless, the relationship between the two cameras was
determined by a calibration step, using the stereo calibration
implementation available in OpenCV [14]. Better regis-
tration approaches based on ICP, bundle adjustment or the
combination of both can also be considered. However, the
current approach perfectly estimates the human pose on such
a coarse registered point clouds, handling large portions of
missing data as well as registration inaccuracies. Synthetic
data has been generated using V-Rep [16], a very versatile

robot simulator tool in which the user can replicate real sce-
narios. A simulated scene has been created to generate the
test cases with four virtual Kinect cameras installed in the top
corners of the virtual scene. It can be observed that the data
is perfectly registered since a full knowledge of the relation-
ship between the cameras and their calibration parameters is
known. Consequently, synthetic data has been considered as
ground truth data in the next evaluations. All datasets have
been voxelized to account for point redundancy after data
registration. Voxelization stands for a discrete approximation
of 3-D objects into a volumetric representation [17].

Some visual results on both synthetic and real body-
scanned datasets are shown in the Fig. 4. The first row
presents the considered datasets highlighting the estimated
orientation of the torso (green line) and the extracted base
point (purple dot). Second row shows the initialization of the
predefined skeleton model. The clustering of all body parts
is shown in the third row whereas the fitted skeleton model
is shown in last row, from which results the human pose. In
Fig. 5, the estimated poses of the synthetic Bill model and
a real dataset on some selected point-cloud video frames are
shown. These results show that the method is able to accu-
rately estimate the body pose of different body configurations
of an upright person.

4.1. Robustness to noise

Next, the robustness of the current approach against noise is
evaluated. To do so, the synthetic dataset of Bill has been con-
sidered, to which it has been applied a zero-mean Gaussian
noise with standard deviation σ ∈ [0.5, 5] cm, i.e., N (0, σ2).
In order to increase the reliability of this evaluation, the noise
has been added to the depth maps acquired by each virtual
Kinect camera, i.e., before being transformed to point clouds.
Fig. 6 depicts the error between the location of the resulting
skeleton nodes from the noise-free 3-D model (considered
as ground truth), and their respective ones from the noisy
models. As shown in Fig. 7, the proposed approach is able
to estimate the Bill pose for all σ values. However, it can
be observed that the fitting error of the skeletal nodes corre-
sponding to body extremities slightly increases with amount
of noise.

4.2. Runtime and performance analysis

Table 1 reports the time consumption to estimate the human
pose for each of the datasets presented in Fig. 4. Note that
most of the time is dedicated to cluster the 3-D points to es-
timate the direction of the torso. However, it is important to
recall that this operation might be done only once in the first
video frame, as discussed in Section 3.

If a better performance is required, one can increase the
voxel size to represent the body-scanned point cloud. Thus,
a voxel size of 1 cm3 has been considered when evaluating



Fig. 6. Fitting error of skeletal nodes for σ ∈ [0.5, 5] cm.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4. Human pose estimation on body-scanned point clouds
using both real and synthetic data. 1st row, input point cloud.
2nd row, initial skeleton model. 3rd row, body parts cluster-
ing. 4th row, approximated skeleton model. 1st col., Nilin
Combat dataset. 2nd col., Iron Man dataset. 3rd col., Jilliam
dataset. 4th col., Frederic dataset.

Fig. 5. Human pose estimation on different frames from syn-
thetic (1st and 2nd rows) and real (3rd row) video sequences
of body-scanned point clouds.

(a) (b) (c)

Fig. 7. Bill pose estimation for (a) σ = 0 cm, (b) σ = 2.5 cm
and (c) σ = 5 cm.



Table 1. Time consumption analysis for human pose esti-
mation on the datasets presented in Fig. 4 (units are in ms).
Reported are the mean values taken over 100 iterations. 1st

row, Nilin Combat dataset (12655 points). 2nd row, Iron
Man dataset (21975 points). 3rd row, Jilliam dataset (14855
points). 4th row, Frederic dataset (19675 points).

Data set
Cluster Torso and Initialize Cluster Skeleton Total

3-D torso base point skeleton body limb time (1st
points extraction model parts fitting frame)

Nilin 226.2 5.0 238.7 47.8 28.0 545.7Combat

Iron Man 316.8 8.5 412.4 82.1 47.2 867

Jilliam 219.3 5.4 274.5 56.2 30.8 586.2

Frederic 220.2 5.0 275.8 54.7 32.0 587.7

Table 2. Time consumption and robustness depending on the
voxel size to represent the Ironman dataset (units are in ms).

Voxel size
Cluster Torso and Initialize Cluster Skeleton Error

3-D torso base point skeleton body limb (mm)
points extraction model parts fitting

1 cm3

316.8 8.5 412.4 82.1 47.2 0.0(21975
points)
3 cm3

45.4 1.0 66.9 13.2 8.3 1.0(3516
points)
5 cm3

13.8 0.4 25.3 4.8 3.9 1.8(1305
points)

the approach. However, the performance is significantly in-
creased by increasing the voxel size, whereas the human pose
remains accurately estimated, as shown in Table 2. The only
constraint of this implementation is that there has to be a min-
imum distance of 5 cm between two 3-D points to be clustered
within the same object. Indeed, this preliminary clustering is
performed to cluster each individual in the scene. Another
improvement may be achieved by parallelizing the initializa-
tion of the skeleton model, the clustering of body parts, and
the fitting of the skeleton limbs. Indeed, the human body can
be divided in four different regions, i.e., left and right arms
and left and right legs, that are independent and thus, can be
performed in parallel.

5. CONCLUDING REMARKS

A scheme to estimate the human pose from body-scanned
point cloud datasets has been described. Using PCA and prior
knowledge on human body proportions, a predefined skeleton
model is initialized and then fitted to the given point cloud by
an iterative process based on the theory of Expectation Max-
imization. From the experiments, it is shown that a good
estimate is achieved in both synthetic and real datasets, and
even in the presence of high noise within the depth measure-
ments. As future work, the current approach will be extended
to alternative body configurations other than upright. Alter-
native techniques to segment the 3-D points belonging to the
torso (used to estimate its direction) will be further investi-

gated in order to address the limitations given by the cylindri-
cal model, such as the tuning of the model parameters.
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Abstract

This paper deals with the problem of estimating an
unknown parametric model of transformation and data cor-
respondences. We introduce a new algorithmic technique
based on geometry and optimization to solve these two
problems. The proposed method uses the branch-and-prune
(B&P) paradigm to search over the space of camera
transformation parameters. We propose a method that
combines B&P and sum-of-squares(SOS) optimization
method to certify the global optimality of the search.

Relying on the geometric consistency of feature points,
our algorithm outputs the correspondences with largest
number of inliers. In our approach, we formulate the
transformation estimation problem as an optimization
over polynomials. These polynomials belong to a class
that can be subjected to SOS optimization. We do so
by formulating the problem as a SOS polynomial using
Postivstellensatz-based relation and solving it using Linear
Matrix Inequalities (LMIs) technique. In this paper, we
apply this algorithm to estimate the rotation in a purely-
rotating camera. We demonstrate good performance of
estimation and data correspondences on the synthetic data.

1. Introduction
Most existing methods deal with Structure and Motion

problems in two steps, pairwise correspondences between
image pixels in two images are first established before
the motion of the camera (and 3D structure if applica-
ble) is calculated. The point correspondence problem can
be solved using feature similarity. Such similarity mea-
sures are plagued with ambiguities, resulting in mismatched
points across two images to be falsely paired as point corre-
spondences. The alternative approach is to rely on geomet-
ric consistency. Best results can be obtained by combining
both approaches is to combine both of these approaches. In
our method, we use the geometric consistency of point cor-
respondences to identify inliers and outliers.

In this paper, we address two problems related to geo-

metric Computer Vision: estimation of a global solution for
the geometric transformation and the identification of in-
liers/outliers. In fact, it turns out that the two problems are
related, that is, these two problems can be solved simultane-
ously. Firstly, in estimating transformations, we turn the ge-
ometric problem into one of solving a system of polynomi-
als. In the considered multivariate system of polynomials,
we exploit some of the properties of polynomials—namely
Positivity and Sum of Squares (SOS)—and together with
linear matrix inequalities (LMI), we check whether they are
solvable or not. Secondly, for identifying inliers, the ba-
sic principle is the commonality in solutions of the poly-
nomials for each point correspondence. This solvability of
polynomials and the commonality of their solutions implies
geometrical consistency of point correspondences.

We use geometry and appearance feature to identify in-
liers. For a pair of images, putative correspondences can be
obtained by matching well-known feature descriptors like
SIFT [7] and SURF [1]. Feature matching methods rely-
ing solely on local similarity have ambiguities, for instance
when the texture is similar throughout the image. To elim-
inate such ambiguities, we check the geometry induced by
such correspondences. Each of these correspondences are
subjected to SOS feasibility test. This test certifies whether
the correspondences have any geometric relation. Outliers
can be easily identified by their success in SOS feasibil-
ity test. Other correspondences that are not SOS feasible
may converge to different bounds. Among these bounds,
the one that is agreed upon by the highest number of corre-
spondences is the globally optimal bound.

Our algorithm is tested on the rotation estimation prob-
lem which involves solving a system of quadratic trivari-
ate polynomial equations. Numerical investigations are car-
ried out on synthetic data in the presence of image noise.
The results show that the proposed method provides signifi-
cantly better estimates for rotation and inliers identification
than homography-based methods using RANSAC scheme
as well as better minimization of Sampson error and root
mean square error.

Related work: Polynomial solving for minimal prob-
lems are used within a RANSAC framework to weed out
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outliers from noisy point correspondences. For example,
consider the polynomial solvers employed in the relative
pose estimation problem. This problem includes finding ro-
tation and translation across an image pair. Based on the
parametrization of the relative pose problem for two views,
the minimal number of point correspondences required is
five [5]. There are methods that provide an analytical so-
lution to the polynomial equations [5, 10, 8]. A practical
solution to the five point algorithm was given by Philip [10]
by extracting the roots of a thirteenth-degree polynomials.
As a further improvement of five-point algorithm, Nister [8]
derived solutions as the roots of a tenth-order polynomial
which is solved using Sturm’s root-bracketing approach.
These methods find analytical solutions. They however can-
not handle overdetermined polynomial systems.

In addition to analytical solutions there are methods pro-
posed for finding numerical solution of polynomial equa-
tions arising in the relative pose problem, for example [12].
The state-of-the-art method for numerically solving this
problem in [12] is grounded in the theory of algebraic ge-
ometry. The general outline of such algorithms is to cal-
culate the Grobner bases of the geometric problems. It de-
rives the Grobner basis of poylnomial constraints on the es-
sential matrix and constructs a matrix called action matrix,
whose eigenvalues and eigenvectors provide the solution. In
another such method, where at least eight point correspon-
dences are known, Longuet-Higgins [6] provides a solution
based on the essential matrix.

Another interesting way of solving polynomials is us-
ing Homotopy Continuation method [13]. This method has
been applied to solve the structure and motion [11] and
camera self-calibration problems [3, 4]. Homotopy contin-
uation is an iterative process that aims at finding all the solu-
tions. It starts with a calculated zeros for an arbitrary poly-
nomial and then gradually deforms the polynomial, solving
the original problem at hand. The problem with this method
is that the zeros of polynomials can turn real solution into
a complex one. In such a case there is an ambiguity intro-
duced by imaginary values for solutions.

Contributions: In particular, the contributions of the
present thesis are as follows:
• We devise a globally optimal transformation estima-

tion method based on the branch-and-prune paradigm
and SOS optimization technique. Transformation esti-
mation problem in Computer Vision is formulated into
an optimization over a system of polynomials.
• We develop a method to maximize the number of in-

liers. This is possible by considering each of the cor-
respondences separately. Those correspondences that
satisfy the geometric and appearance similarity con-
straint converge to a bound. The highest number of
correspondences agreeing on the same bound are iden-
tified as inliers.

2. Problem Overview

The main objective of the present thesis is to devise an al-
gorithm for finding the roots of a class of polynomial equa-
tions. This class of multivariate polynomials can be decom-
posed into sums-of-squares polynomials. The resulting al-
gorithm must be able to estimate such transformation and
be robust in presence of noisy image correspondences and
outliers (defined in section 2.2). In addition the method has
to be globally convergent and guarantee the optimality of
the solution. In this chapter we provide a mathematical for-
mulation to our problem.

2.1. Polynomials

Let us consider two images,left and right images, which
are related by a geometrical transformation. We denote pi
and p′j the correspondence point in left and right images.
Suppose there are Nl and Nr number of features in left and
right images. Let θ be a vector of n unknown transformation
parameters. Consider the number ofm polynomials defined
by each point pair. This transformation is expressed by the
polynomials fk where, k = 1, . . . ,m. Our goal is to find
θ such that fk(θ) = 0,∀k = 1, . . . ,m. In a noise-free
scenario, points that are consistent with the transformation
satisfy the polynomial equality fk are referred to as inliers.

2.2. Inliers and Outliers

Matching points using a feature based method like the
SIFT descriptor [7] does not always result in point pairs
that have geometrical consistency. Let ai and a′j are the
features for the points pi and p′j respectively. The prob-
lem then is to identify inliers that have geometrical consis-
tency (i.e, |fk(θ)| ≤ σ) and have similarity in feature, i.e,
h(ai, a

′
j) ≤ Th, where the distance function h is lower than

threshold Th. In this section we provide the representation
of inliers and outliers. Suppose zij refers the correspon-
dence between the point pair (pi, p′j). Then,

zij =

{
1 if, |fk(θ)| ≤ σ and h(ai, a′j) ≤ Th,
0 otherwise.

(1)
Inliers are represented as zij = 1 and outliers are repre-
sented as zij = 0.

2.3. Problem Statement

In our method we divided the variable space θ into
bounds [θ, θ]. We relax fitting a value θ in the polynomial
over constraints to searching a bound [θ, θ] of the parameter
that has zero crossing of the polynomial fk. Hence, we can
formulate our problem as,

2



arg max
z,θ,θ

Nl∑
i

Nr∑
j

zij

subject to, zijh(ai, a
′
j) ≤ zijTh, ∀i, j

∃θ ∈ [θ, θ], zijfk(θ) = 0, ∀i, j, k,
‖θ − θ‖ ≤ ε, ∀i, j, k
zij ∈ {0, 1}, ∀i, j.

(2)

The first constraint zijh(ai, a
′
j) ≤ zijTh has not

changed from the original formulation. This condition is for
feature similarity and Th is the user-selected threshold. The
second constraint establishes the relaxation of θ to [θ, θ].
The roots of polynomials fk(θ) must lie within this bound.
This constraint along with third constraint ‖θ − θ‖ ≤ ε en-
forces that, for a geometrically consistent point pairs, that
are the inliers, the model θ fitting the polynomial equality is
within user-selected tolerance threshold ε.

The second constraint of equation 2, in particular, im-
poses the condition that the bound must possess a root of
polynomial. The problem is then to provide proof of exis-
tence or nonexistence of a solution f(θ) = 0 in the bound
under consideration [θ, θ]. From an optimization perspec-
tive two related approaches provide this proof. The one is
the primal approach and the other is the dual approach. Both
methods provide existence/nonexistence of the solution in
the bound. The dual approach is based on sum-of-squares
(SOS) based optimization.

3. Proposed Sum of Squares optimization
We propose a method that combines B&P and sum-of-

squares(SOS) optimization method to certify the global op-
timality of the search. We branch the space of unknown
variables of polynomials into multiple bounds, and subject
each of them to some form of test. The guarantee of inexis-
tence of solution within a bound can be provided by check-
ing if the polynomial is SOS feasible within the bound.
We use Positivstellensatz-based relation that provides ir-
refutable evidence of the existence of solution within the
bound under consideration. We formulate the problem of
polynomial systems as a SOS feasibilty problem and solve
it via LMIs technique.

3.1. Sum of Squares

A multivariate polynomial p(x) for x ∈ IRn is sum-of-
squares if there exist, polynomials q1(x), . . . , qm(x) such

that p(x) =
m∑
i=1

q2i (x). If polynomial p(x) is a sum of

squares, then it obviously satisfies p(x) ≥ 0 for all x ∈ IRn.
Thus, an SOS condition is a sufficient condition for global
nonnegativity. Positivity of p(x) can be certified by decom-

posing p(x) into qi(x). This process is called SOS decom-
position. D. Hilbert’s 17th problem investigates the posi-
tivity of polynomials and the existence of sums of squares
(SOS) for such polynomials [9]. The SOS decomposition
of polynomial p(x) is equivalent to the existence of a posi-
tive semidefinite matrix Q, and a properly chosen vector of
monomials z(x) such that p(x) = zT (x)Qz(x).

3.2. Constrained SOS Feasibility

Sum of squares method can be used to check positivity
of polynomials fi(x), i = 1, . . . ,m over bound gj(x), j =
1, . . . ,∞. By construction, gj(x) are positive polynomials.
The polynomials fi(x) for i = 1, . . . ,m can be formulated
into SOS polynomials. One way to formulate SOS poly-
nomial is via Positivstellensatz-based relaxations, in short
P-satz. This method that allows any polynomial to be rep-
resented by SOSs can be seen as a generalization of the S-
procedure. The basic idea is to show positivity of fi(x)
search for a sum-of-squares polynomial, sj(x), such that
fi(x) ≥ gj(x)sj(x). The degree constrained Psatz-based
relation including fi(x) and gj(x) as,

F (x) − G(x) ≥ 0, (3)

where F (x) =
m∑
i=1

tifi, ti is any polynomial and G(x) =

∞∑
j=1

sjgj represents all the polynomials formed by multiply-

ing bounds, gj , with SOS polynomial,sj(x). If ∃ti, sj such
that equation 3 is satisfied, thenF (x) is SOS decomposable.

Testing a P-satz based relation, equation 3, is a convex
feasibility problem in ti, sj . To solve it, we consider a sub-
set of the cone to search, i.e, the maximum degree of poly-
nomial G(x) to be bounded. If degree of F (x) is 2d, we
consider only polynomials with degrees equal to or less than
2d for G(x). The infeasibility refutations for large degrees
are not necessary as explained in [9].

3.3. Linear Matrix Inequalities (LMIs)

The polynomial equation 3 can be solved for ti, sj using
LMI method. To do so, we need to formulate this equation
into LMIs form. A linear matrix inequality (LMI) in the
variable x ∈ IRn has the form

A(x) , A0 + x1A1 + · · ·+ xnAn � 0 (4)

where A0 ∈ IRk×k, . . . An ∈ IRk×k are symmetric matri-
ces. x = (x1, . . . , xk) is a vector of n real numbers called
the decision variables. The LMI is a convex constraint on
x, i.e., the set {x|A(x) � 0} is convex.

4. The Rotation Problem
The goal is to apply the method we have devised for

polynomial solving to estimate the rotation of a purely-
rotating camera.
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4.1. Camera Model

Let M be the mapping matrix of perspective camera
from 3D projective space P3 to 2D projective space P2.
It takes a point X = (x, y, z, 1)T to x ' MX. A camera
matrix may be decomposed as M ' K(R| − Rt), where
t represents the location of camera, R the rotation matrix
of the camera with absolute coordinate frame, K the upper
triangular matrix called calibration matrix of camera. We
assume the calibration matrixK is known and remains con-
stant for all the images. The matrix (R| − Rt) represents a
rigid transformation of R3. For a rotation only camera, the
camera matrix is M ' K(R|0) = KR.

4.2. Two view geometry for rotating camera

Let the two cameras be M1 ' KR1 and M2 ' KR2

and the projected image points are x1 ' KR1X and
x2 ' KR2X. As we already know the calibration ma-
trix K, we rearrange the formalization for the projected
points as, K−1x1 ' R1X and K−1x2 ' R2X. This gives,
K−1x2 ' R2R

−1
1 K−1x1. For calibrated images, we sim-

ply consider x2 ' R2R
−1
1 x1. Here R1 and R2 are absolute

poses of cameras with respect to the world coordinate. Now,
formulating the problem as a relative pose problem, let ori-
entation of image 1 be initial orientation that is R1 = I3×3
and R be the rotation of camera between image 1 and 2.
Then we have, R = R2R

−1
1 = R2I3×3 = R2. Then,

x2 ' Rx1. (5)

In equation 5 we know both the calibrated image points
x1 and x2, and we need to estimate the unknown parameters
of R. Next we introduce parameterization of the Rotation
matrix using Cayley’s transformation.

4.3. Rotation parametrization

Rotation can be parametrized by Cayley’s transforma-
tion. The advantage of using Cayley’s transformation is
that this transformation provides minimal parameters for
the parameterizing rotation matrix. Moreover, Cayley’s
parametrization provides a symmetric parametrization of
Rotation matrix. Let Cayley parameters be represented as
v = (vx vy vz)

T . We consider the following Cayley trans-
form for rotation parametrization

R = (I − [v]×)
−1

(I + [v]×) (6)

where, [v]× represents a skew-symmetric.

4.4. System of Quadratic Trivariate Polynomials

Using rotation parameters, Eq. 6 and substituting it in
Eq. 5 we obtain three polynomial equations. By rearrang-
ing the terms and taking the cross product of these collinear
vectors yields the zero vector. That is,

(I − [v]×) x2 × (I + [v]×) x1 = 03×1. (7)

On solving the equation above we get a system of polyno-
mials on variable vx, vy and vz as,

fi(vx, vy, vz) = 0, i = 1, 2, 3 (8)

Of these polynomials only the first two polynomials are
linearly independent. The last polynomial is a linear com-
bination of the first two polynomials. This implies that each
correspondence point gives rise to two independent equa-
tions. For three unknown variables at least three such equa-
tions are required. Hence a minimum of two correspon-
dence points are required for estimating all three parameters
of Cayley’s transformation.

4.5. LMIs formulation for purely-rotating camera

Assume the bounds are given as B(vx, vy, vz) = {vxl
≤

vx ≤ vxu , vyl ≤ vy ≤ vyu , vzl ≤ vz ≤ vzu}. This bounds
defines the polynomials G(x) of equation 3. G(x) for
purely-rotating camera is composed of a number of poly-
nomials which is influenced by the degree and number of
variables of polynomial fi(.) in equation 8. The detail to
obtain LMIs formulation is given in [2]. The final for of
Psatz based equation turns out to be,

3∑
i=1

tifi −
21∑
j=7

sjgj ≥ 0 (9)

where j = 7, . . . , 21 defines second-order polynomials
formed from B(vx, vy, vz). The linear polynomials (for
j = 1, . . . , 6) are discarded. This is because sj polyno-
mials can only be of even degree. Applying Gram matrix
method on each polynomials of equation 9, we obtain,

3∑
i=1

tiQi −
21∑
i=7

siQi � 0,

si ≥ 0.

(10)

where Q(x) is a Gram matrix such thatf(x) = xTQx.

5. Experiments with Synthetic Data
Our algorithm was tested on synthetic data to determine

its performance in the presence of noise. The synthetic data
consisted of 500 3D points distributed evenly in front of the
camera at viewpoint 1. We then randomly rotate the camera
to select viewpoint 2 meanwhile ensuring that the rotation
has at least 20 points overlapping in both viewpoints for a
more realistic purpose. The simulated camera was assumed
to satisfy the pinhole model. It took images of size 256
× 256 pixels. The magnification factors ku and kv both
equal to 100. The distortion was assumed to be d = 0 and
the principal point of the image was located at (uc , vc) =
(128, 128). For each experimental run, 20 sets of points
were selected from the entire overlapping point sets of the
two viewpoints. Finally, the image coordinates computed
using these 20 point sets were used to estimate the rotation.
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5.1. Performance in the presence of noise

For each synthetic data set, varying degree of noise was
added and rotation estimation was carried out. Gaussain
noise varying from 0 to 2.5 pixels was added to image. The
algorithm is executed for 1000 runs for all noise level. The
results are shown in figure 1. It summarizes the influence
of noise on the accuracy of our algorithm compared to that
RANSAC.

Findings When all of the inliers are corrupted with
Gaussian noise, the results were better for our method com-
pared to that of RANSAC alone. Both algorithms have com-
parable performance until noise of 1.2 pixels. Beyond this
level, our algorithm performs better, both in terms of the
root mean square error and Sampson error (figure 1).

In comparing the number of inliers estimated by our
method and by RANSAC, we observed that our method
identified more number of inliers than that of RANSAC.
This is illustrated in figure 2. Even when the error tolerance
of RANSAC was relaxed and sufficient number of iterations
were performed, RANSAC identified lower number of in-
liers. From the figures 2 and 1, it can be inferred that by
better classifying the inliers it is possible to decrease the
error in estimates.

On the other hand, after a certain level of noise (beyond
1.4 pixels), the Sampson error of RANSAC started to sat-
urate. This is due to the fact that the average error cannot
go beyond the error threshold, hence decreasing the number
of inliers. Whereas in our method, while still maintaining
lower Sampson error, almost all of the points were identi-
fied as inliers. Also, this observation shows that for a higher
level of noise increasing the number of inliers provides a
better estimate.

Note that we had not intentionally introduced any out-
liers in this process. However, in the presence of noise cor-
rect matches with bigger drifts in location are essentially
equivalent to outliers. Our method rejected only few such
outliers. Initial estimation of RANSAC is solely driven by
minimal number of points selected in each iteration. Such
initial estimate not being accurate enough cannot incorpo-
rate other inliers. Furthermore, search in the linear space
(unlike the exact rotation space in our case) is another rea-
son for initial estimate deterioration. We believe that, since
our method incorporates all the matches and searches in the
exact rotation space, it is able produce more inliers while
maintaining lower error in the estimate.

5.2. Performance in terms of running-time

Findings: The average time for execution of our method
coupled with RANSAC is shown in table 1. All the ex-
periments were conducted in a system of 3.6GHz, 12 core
(only one core running) with 64GB of memory. The table
is further divided into times required for execution of parts
of the algorithm. It was observed, higher the noise level
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Figure 2: Number of inliers identified by the proposed and
RANSAC methods from noisy image correspondences.

Noise level RANSAC SOS feasibility Total time
(pixel) (secs) test only (secs) (secs)

0 0.04 1.19 1.22
0.2 0.25 1.18 1.43
0.4 0.74 1.17 1.91
0.5 1.41 1.18 2.58
0.6 2.00 1.16 3.16
0.7 2.23 1.18 3.41
0.8 2.86 1.17 4.03
0.9 3.03 1.16 4.20
1.0 3.62 1.22 4.84
1.2 4.03 1.43 5.46
1.4 4.63 1.64 6.27
1.5 5.21 1.86 7.06
1.6 5.73 2.53 8.25
1.8 6.22 2.90 9.12
2.0 7.19 4.02 11.21
2.5 8.38 8.93 17.31

Table 1: Average running-time for RANSAC and for our method.
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Figure 3: Distribution of number of inliers identified for dataset
containing 10 inliers. 100 experiments were conducted for

outliers varying from 5 to 20 (in a step of 5).

is the slower the process becomes. The reason is that the
initial estimate of inliers by RANSAC cannot classify all
inliers mainly because of difficulty in distinguishing corre-
spondences. As a result the pruning condition imposed by
RANSAC is reduced in higher level of noise, resulting our
method to perform an exhaustive search throughout the ro-
tation space.
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Figure 1: RMSE for the proposed and RANSAC methods. Results are obtained over 1000 experiments for each noise levels.

5.3. Performance in the presence of outliers

We extended the experiments of section 5.1 for dataset
containing outliers. Basically, these outliers were gener-
ated by mismatching the point pairs. Multiple datasets for a
constant noise of 0.9 pixels and fixed number of inliers 10,
were generated. These datasets, after introducing different
number of outliers, were tested with both RANSAC and our
method. The distribution of number of inliers identified by
these two methods are shown in figure 3.

Finding: It can be observed that our method identifies
the correct number of inliers most of the times (74%) as
compared to that of RANSAC (55%). On the other hand,
RANSAC provides inconsistent number of inliers ranging
from [7 to 12] with a wider spread. The mismatch being
detected as inliers, i.e., 11 or 12 in our method, are mainly
due to the allowed threshold on bound gap. We believe,
this happens due to the randomly generated outliers. These
outliers at times fall within the threshold of the estimated
model. experiments

6. Conclusion

Although methods for computing geometric transforma-
tion between images are well known, such methods have
been known to suffer from ambiguities due to presence lo-
cal minima. Our method is based on Branching and Prune
for global optimality. In this paper we put efforts to provide
a mathematically guaranteed and globally optimal solution
to geometric transformation estimation. The pruning mech-
anism in our method relies on the SOS feasibility. For this,
the estimation problem is formulated into optimization over
polynomial problem. By exploiting the polynomial’s degree
and number of variables we opted for SOS optimization.

We showed the usefulness of our method for estimating
rotation in purely-rotating camera. Using Cayley’s param-
eter for rotation parametrization, the polynomials induced
by image correspondences resulted in a system of quadratic
trivariate polynomials. We used our method to solve type
of polynomials. Extensive experiments on synthesized data
have demonstrated the validity of our proposed method.
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Abstract 

During the past ten year, the reconstruction of fragmented object becomes an important field of research in many 
areas, such as surgery, forensics, art restoration, material failure analysis. In archeology, reconstruction of 
broken artifact is a really time consuming task due to the omnipresence of fragmented like pots, murals, statues 
and inscriptions which leads to the elaboration of a convenient tool for the reassembling of theirs parts. 

In this paper, we present an acquisition prototype for the 3D acquisition of an object contour based on an active 
stereovision system composed of a camera and a laser. The registration of each acquisition is done in parallel 
with a turntable allowing the rotation of the object. The propose solution have another camera for the 2D 
acquisition of the top face. 

We propose a reconstruction method based on the experimentation of the complementarities of the fragments. 
We present a segmentation of the data in faces in order to process a large number of fragments. 

 

1. Introduction 

During the past ten year, the reconstruction of 
fragmented object becomes an important field of 
research in many areas, such as surgery, forensics, 
art restoration, material failure analysis. In 
archeology, reconstruction of broken artifact is a 
really time consuming task due to the omnipresence 
of fragmented like pots, murals, statues and 
inscriptions which leads to the elaboration of a 
convenient tool for the reassembling of theirs parts. 

The object that must be reconstructed is a Roman 
tablet composed of an unknown number of slabs. 
Nowadays only 1200 fragments were found in 
Autun (France) most of them are 10 centimeter 
squared and a thickness of 8 to 20 millimeters. The 
tablet is mainly composed Pentelic marble. Each 
fragment has an arbitrary shape and in most cases a 
full or partial carved letter on the top faces. We can 
observe traces of burn on some fragments, cracks 
and holes are also present for the major part of the 
fragments. We can also observe some glue used for 
precedent reconstruction trial. The poor condition 
and the number of the fragments prevent all 
reconstruction attempts during the two last 
centuries. 

The outcome of this work is to a solution which 
allows the digitization of the fragments this task 
will permit a virtual manipulation of the fragment. 
The Virtual manipulation is an important tool for 

the archeologists the mains reasons are the 
possibility to have all the fragments in the same 
place without monopolized a whole room for this 
task, it also avoid any time consuming manipulation 
and prevent to damage the fragments. The second 
outcome of the project is to provide a tool that 
assists the reassembling process by giving a 
measure of the congruency between two fragments. 

 

2. Related work 

2.1. Overview 

In the literature, different approaches for 
reconstruction and automatic assembly methods can 
be found. 

 

3. Reconstruction techniques 

Most of the methods used for reassembly are based 
on the curve matching principle [1-3]. Assuming 
the object has 2D contours we are able to find 
experimentally a pair of corresponding contours by 
looking their outlines at sub-millimeter scale. 

These approaches are generally time consuming 
and some multiscale methods [4-7] appear to 
palliate this issue. 
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A small variation of the method, Partial curve 
matching [8], more adapted to natural material and 
by the way more adapted to solve the problematic 
in archeology domain. 

The reconstruction techniques are based on 
pairwise matching and then propagate the result 
most of them will fail if an entire fragment is 
missing or with badly damage fragments. 

However an automatic reconstruction is required 
even if the result is partial. These results can be 
used by the archeologists and help to have an 
overview of the correct solution. This will provide a 
list of candidates for the manual validation. 

 

4. Acquisition system 

4.1. Overview 

The acquisition systems must be transportable and 
usable by the Musée Rolin for later acquisition of 
fragmented objects and demonstration. 

We decide to build our own prototype. In addition 
to fill the requirements, advantage is the possibility 
to have a flexible system which can evolve with the 
requirements of the project and palliate possible 
issue. 

Figure 1: Acquisition system 

 

The actual acquisition system Figure 1 is composed 
of an active stereovision system with a camera (1) 
and a laser (2) this will provide the 3D information 
of the thickness contour. The turntable (3) provides 
the rotation necessary for the full digitization of the 
fragment. The camera (4) allows the 2D acquisition 
of the top. 

 

4.2. Calibration 

In our case the acquisition system and the rotation 
axis of the object are fixed according to the world 
referential, this configuration allows reducing the 

number of parameter to be estimated during the 
calibration part. In order to simplify the calibration 
step the laser planes include the rotation axis of the 
turntable. 

Figure 2: Axis position 

 

The coordinate of the optic center are zero in the 
camera referential and given by          in 
the world referential. 

 

 

 
 
 
 

   

         
             

  
  

          
   

  
 

  

  

  
  
 

  

 

       

                 
                 

 

   

 
 
 
 

  

 

For each single point in the image we can determine 
the related real coordinate. We choose the origin of 
the matrix on the CZ axis,             
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We know that, the point belong to the Laser plane 
so z = 0. We obtain the three following equations 

 

          
             
           

 

 

We obtain 

  
 

 
 
           

       
 

  
       

           

 

 

We have six independent parameters, as we don’t 
need the object position in the vertical axis. We can 
arbitrarily select the origin in the optical axis in 
order to remove t1 but we have to select the 
horizontal plane containing the optical axis. If the 
world contains horizontal line the one containing 
the optical axis are the only one to be horizontal in 
the image. That also implies the origin of the image 
referential must be select in the optical axis that 
means in the sensor center. The rotation axis y=0 is 
transpose in a vertical line of equation   

   

  
 in 

the image. 

In order to calibrate the system we need at least 3 
points, each of them gives 2 equations. We select 
the only horizontal line in the image that give. 

           

 

For each vertical line in the image we have the 
relation between the world and image reference as.  

 

     

  
    

  

  
    

  
 

 

y in meters and v in pixels. If we select more than 
two lines, that give an over determined system 
which can be easily solve. These results give the 
value of    

    
  and    

    
 

By measuring the slope in the image of the others 
horizontal line in the world we obtain 

 

       
 

  
    

 
  

    
 

 
    

 
    

 
      

  

    
 

  

    
  

 

The equation     

 
 represents the slope of the line. 

We have as many equations as we have lines in the 
image. We obtain another over determined system, 
which allow knowing     ,   known we are able 
to compute         and      due to square 
pixels. 

 
Figure 4: Representation of the calibration grid in 

the image 

 

5. Reconstruction: 3D point cloud 

processing 

5.1. Denoising 

Before any later processing we need to remove the 
noise. Two classes of noise appear in the system. 

The first is points who are not related to the object, 
the turntable below the fragment and the 
background above. The position of the points above 
the object is not known because of the variable 
thickness of the fragments. They are manually 
removed using a threshold adapted to the fragment 
thickness. An automatic removal is planned in the 
later stage of the acquisition prototype 
development. 

The second class of point we need to remove is the 
random noise introduce by the system. It can be 
some isolated points inside or outside the fragment, 
it also possible to find a group of outlier probably 
due to some specular reflection. An automatic 
threshold is compute for each point according the 
density of is neighbor. 

We obtain a denoised cloud of points ready to be 
processed.  
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Figure 5: Fragment in blue, outliers in red 

 

5.2. Contours extraction 

The main idea is to find two adjacent fragments by 
checking their mechanical compatibility. This 
solution is already used by the archeologist in order 
to find pair of fragments when texture information 
is not sufficient. Similar approach is curve 
matching for 2D object, in our case the thickness of 
the object can’t be neglect and with the 3D 
information of the contour we can transpose as a 
surface matching problem. The knowledge of the 
object will help the reconstruction by reducing the 
number of matching possibilities.  

It is possible to find the matching between two 
fragments by using the full set of points from these 
two objects but it also computationally costly and 
inefficient. We know that, two adjacent fragments 
share at least one fractured face and in the majority 
of cases only one. So we can segment the cloud of 
points into faces in order to reduce the number of 
points used for each matching trial. 

The first solution for the face extraction was to fit 
multiple planes in the object contour using Ransac 
algorithm [9]. The principle is finding the 
coordinate of the most significant plane in the point 
cloud, removing it and iterate. The results given 
using ransac were good approximation of the 
fragments face but we need to refine these results in 
order to remove aberrant plane and other artifact. In 
case of a single fragment the shape stay simple and 
the results were enough. Later we need to use more 
complex shape such as two or more merged 
fragments. Complex shape introduce new problem, 
these merged fragments can contain multiple faces 
in the same plane that create more instability with 
ransac and also start to be time consuming. 

The second approach is an iterative algorithm 
minimizing simultaneously the distance at each 
points to the nearest plane. At each iteration, each 
point is affected in the nearest plane, if the distance 
from the nearest plane is above a threshold 
belonging to the object geometry; a new plane is 
created in order to regroup all the points without 
face affectation. Faces are merged or split 
according the normal dissimilarity of the fitted 
plane, the proximity of points and the continuity of 

the faces. The main advantage is, no knowledge of 
the fragment is requiring. 

An initialization is still needed with some 
information, instead of giving a random number of 
planes at random position it is better to give an 
initialization close to the solution we want. This 
will reduce the possibility to find any local 
minimum and the time to converge. For the 
initialization we use ransac but with less restrictive 
parameter. 

Another advantage in comparison with the ransac 
based method is the possibility to keep previous 
results when we merged fragments. Due to that the 
initialization with ransac is done only once, for a 
new just digitized fragment. These possibilities give 
better result and drastically reduce the 
computational time. 

 
Figure 6: Faces given by iterative segmentation for 

a complex shaped fragment 

5.3. Matching 

As we have seen before using the only two faces of 
two different objects is similar to a registration 
approach, in this way we choose to use a slightly 
modified version of an Iterative Closest Points 
algorithm[10, 11]. The residual error of the ICP will 
give us a good knowledge about the matching of 
two opposite faces. 

The residual value is generally hundreds time less 
for a good position than for any other possibility. 
The matching of two opposite faces is also less time 
consuming than using the whole fragments, for 
each matching trial it take around a second. 
According to this value we can estimate the time 
needed to compare a single fragment with the 
complete set of thousand others. Assuming each 
fragment has 5 faces, we need 25 trials for each pair 
of fragments that means nearly 7 hours are needed 
to compare a fragment with the whole set. For this 
reason we need to reduce the number of 
possibilities 
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In order to reduce the number of trials for each 
fragment, we can use some knowledge we have 
about the tablet. Some of these clues are already 
used and implemented in the matching part. 

We actually know the North/South orientation of 
each carved fragment, they are all scan in order to 
have the same orientation. This information allow 
in theory discarding all matching of faces with non 
opposite normal and remove the rotation along z 
axis. The matching is now a pure translation 
between the two fragments. 

In practical we allow only few degrees of rotation 
in order to take account of any misplacement of the 
fragments during the acquisition process. In the 
same way we compute the matching of two faces 
even their normal are not strictly opposite. This 
important clue allow to reduce the number of 
matching for a pair of fragment to three most of the 
time and even less. 

Another important information about the object is 
the thickness which is not the same along the tablet 
Figure 7. This difference of thickness is only few 
centimeters along the tablet but it staying noticeable 
on biggest fragments. We can assume two 
corresponding fragments must have the same 
thickness. This will significantly decrease the 
matching possibility in the whole set. 

 

 
Figure 7: Global shape of the reconstructed object 

 

6. Experiments 

Below two digitized set of fragments for a total of 7 
fragments. The results given Figure (8-9) are 
obtained by selecting automatically the first ranked 
result for each pairwise matching. 

 

 

Figure 8: Two digitized set of fragments 

 

 

Figure 9: Automatic assembly of tested fragments 

 

7. Conclusion and future works 

7.1. Acquisition system 

We dispose of an acquisition prototype able to 
obtain the 3D information of the contour for each 
fragment and the 2D acquisition of the top face. 3D 
acquisition of the top face will be soon available. 
The acquisition time for a single fragment is 
approximately 3 minutes; this will take 60 hours in 
order to scan the full set of fragments. The planned 
development of the prototype should not increase 
this time. 

 

7.2. Software 

Regarding the software part, we successfully 
reconstruct the two set of fragments in an 
automatically way using only the 3D information of 
the contour. In the actual state this reconstruction 
takes few minutes. This time will increase with the 
data set but some implementations are planned in 
parallel to the acquisition system. 

 

Upper side 
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7.3. Evolution perspectives 

The next step is to digitize a large number 
fragments with the 2D/3D of the carved face and 
also the 3D acquisition of the contour in order to 
have a more representative sample of the tablet. 

Some evolutions of the process are planned such as 
adding the character feature. We previously detail 
the improvement regarding an optical character 
recognition. It’s also possible to target some time 
consuming task of the process. Contour extraction 
is one of them, the sharp edge detection were not 
used here, discard due to a lot of smooth transition 
between the face but can give interesting result in 
combination with the actual iterative method. The 
matching part of the process is another option due 
to the number of use during the process. In [12] 
Huang, Q.-X., et al propose a modification off the 
ICP algorithm which can solve the problem of 
collision between two fragments, adapted to our 
problem it will probably give a better adjustments 
of correct matching and reduce the number of false 
positive by increasing the residual errors in this 
cases. 

7.4. Generalization of the result 

The given results could be applicable for some 
similar problems such as fresco, murals, tablets etc. 
The solution also could be adapted to any broken 
artifact with non smooth fractured faces. This 
approach is particularly well suit for artifact made 
of stone or similar materials. The reconstruction 
process can also be used for the case of gigantic 
object were the manual reconstruction become 
impossible due to the proportion of the fragments 
such as the inscription found at Pompeii composed 
of enormous plate of stone 
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Head Pose Estimation from Time-of-flight Data

Cansen Jiang

Abstract— This paper presents two methods to recover the
Head Pose Estimation (HPE) from time-of-flight (ToF) data,
namely Head Tracking and Discriminative Random Regression
Forest (DRRF). The head tracking approach is achieved by
combining 3D feature matching and tracking using 3D feature
descriptors. The most relevant techniques to extract 3D key
points and feature descriptor generators have been evaluated.
The performance of the 3D feature descriptors is evaluated
in terms of computation efficiency and robustness. The DRRF
classifies the head patches, sampled from depth image, and
regresses the head pose. The training and testing of DRRF is
discussed.

I. INTRODUCTION

Head pose is an important indicator of a person’s focus
of attention. For automotive industry and especially for
Advanced Driver Assistance Systems, such information is of
high importance in the Human-Machine Interface in order
to increase car safety. HPE techniques have been profoundly
studied in both 2D and 3D domains. Interested readers
can refer to the survey presented in [3]. Recent 2D HPE
techniques are very accurate and robust, achieving real-time
performance under indoor environments with good lighten-
ing conditions [1][2]. However, under non controlled light
conditions, e.g., outdoor environments, these approaches are
less robust.

The fact that ToF cameras provide a depth map facilitates
the head segmentation of the background and allows the
computation of 3D features. The downside of ToF cam-
eras is their relative low resolution and noise in the depth
measurements. To estimate the HPE from ToF data several
approaches were assessed. The most promising ones in point
of view of requirements were implemented and evaluated in
detail. The proposed 3D Feature Tracking approach extends
the ideas from 2D feature tracking and matching. To track a
head in 3D, a set of key points have to be detected from the
face region. Then, 3D descriptors of these key points are used
to find the correspondence between the template (or reference
frame) and new frames. That is, a transformation matrix
between the current frame and the template is estimated and
decomposed into 3 rotations (Pitch, Yaw, and Roll) and 3
translations (X, Y, and Z).

HPE using DRRF is a combined classifier and regressor,
which fulfils the head region classification and head pose
estimation. The DRRF head estimator was trained using a
large set of depth image annotated with head pose ground
truth. The DRRF contains 7 trees, from where each tree has
N leaves that vote for the head pose. Given a depth image,

This work was supported by IEE S.A. Luxembourg.
C. Jiang is a MsCV student, University of Burgundy, 71200 Le Creusot,

France cansen.jiang@etu.u-bourgogne.fr

n patches are sampled and sent to the forest. These patches
go through the trees from root to leaves. Then, head pose is
estimated by taking the average of these votes.

The proposed head tracking requires a head segmentation
and an initialization, where a frame of the forward looking
driver is stored as a template. On the contrary, the DRRF
method requires no initialization, but a long time training
process.

The reminder of this paper is organized as follows: section
II covers the most relevant HPE techniques from literature.
Section III gives the scenario of our device setup and explains
our head segmentation approach. Section IV states our head
tracking algorithm, a brief introduction to 3D descriptors, and
the performance of the head tracker. Section V discusses the
DRRF approach in training and testing, and the performance
evaluation. Concluding remarks and future work are given
in section VI.

II. RELATED WORK

Various approaches had been explored and discussed to
estimate the head pose orientation, as surveyed in [3]. In
2D computer vision, HPE mainly focuses on facial feature
detection and localization. This information is used to esti-
mate the relative changing of the head pose between video
frames [5][6]. To improve the robustness of the tracking,
i.e., robust to facial expression changing, [2] proposed to use
an Active Appearance Model (AAM) that adapts the facial
feature distribution to a flexible structure. Using AAM for
tracking, the features points can be more precisely localized
and tracked. More recently, [1][2] applied a Cylinder Head
Model (CHM) to fit the head. The authors assume that the
head can be modeled by a cylinder, which implies a very
robust performance with wide angle HPE. The estimation
of the CHM is constrained to an intensity consistent con-
dition between two consecutive frames. The initialization
only considers the Yaw rotation of the head. Furthermore,
accuracy of the head position is highly related to the head
size assumption.

On the other side and thanks to the recently progression
of consumer-accessible depth cameras development, a notice-
able interest has raised on 3D HPE [7][8]. Breitenstein et al.
[7] proposed a 3D descriptor to localize the position of the
nose tip. Assuming the nose tip is always seen, the geometry
signature is calculated based on the local direction maximum.
After extracting the shape signature, the head orientation can
be estimated by comparing a set of annotated depth images
to find the most similar target. Another simple but also
computation heavy approach is HPE based on point cloud
registration. [9] proposed a 3D head registration based on the



Point-to-Plane and Point-to-Projection ICP (Iterative Closest
Point) algorithm. The performance of this method is slightly
better than the HPE using geometry signature matching.
On the other hand, Pashalis et al. [10] proposed an HPE
algorithm based on the Particle Swarm Optimization. This
method transforms the 3D points to a reference coordinate,
and a new depth image is generated and superimposed
with a reference depth image until it reaches the smallest
error. The rotation and translation are decomposed from
the transformation matrix. This approach achieves the best
results so far in the literature. However, all these approaches
are computational heavy and only can achieve real-time
performance based on GPU (Graphic Processing Unit).

Differently, Fanelli et al. [8] constructed a head pose
estimator based on the Random Forest framework with
real-time performance. This method learns the human face
appearance differences from a set of depth images, taking
the advantage of large data off-line training. The classifier
contains N random trees and n leaves, and mean value
of these leaves’ votes gives precise prediction of the head
translation and rotation. Moreover, this method is robust to
partial occlusion and able to perform in real-time without
using GPU.

III. HEAD SEGMENTATION

In order to track the head motion, segmentation is required.
This section states the scenario of device setup and the
segmentation method applied to robustly segment the head
region.

A. Scenario of device setup

A pmd [vision] R© CamBoard nano camera produced by
pmdtec. based on the ToF principle was used to acquire
3D data. The ToF camera has a resolution of 120 × 165
pixels with 6mm lens and independent infrared light source
with 30MHz modulation frequency. The frame rate of the
ToF camera is 23.5fps with 2ms integration time. The ToF
camera has robust performance in both indoor and outdoor
environments. The camera was statically installed in a test car
of IEE S.A., looking up (the angle between camera principle
axis and the ground is 20 ◦) and facing the driver, as shown
in Figure 1. The testing of our approaches was using the real
data recorded inside the test car. However, since the ground
truth acquisition device cannot be installed inside the test
car, an experiment was conducted to acquire the ground truth
data in the lab environment to evaluate the performance of
the algorithm.

B. Local Minimum Segmentation

Though the camera is fixed, when driving, the seat and
steering wheel can be adjusted by the drivers. In this case,
part of the background cannot be removed by clipping. Also,
the driver might be looking at different directions. In profile
view, the normal face detection algorithms, such as Cascade
Face Classifier, fail to detect the location of the face. In
order to segment the head region, a local minimum based
head segmentation approach was proposed.

(a) (b)

Fig. 1. Experiment setup: (a) is the ground truth device setup. (b) shows
how the ToF camera integrated in a testing car.

Fig. 2. Head segmentation pipeline

3D point cloud from Time-of-Flight camera are sparse
and noisy especially at the edges and complex geometric
structures, such as the nose tip, eyes’ and mouth’s corners. To
improve the quality the 3D point cloud, a set of preprocessing
techniques, including background clipping, median filtering,
head segmentation, jump edges elimination, and morphology
processing, are applied in sequence on the depth image, see
Figure 2.

As our camera is fixed, the background clipping is applied
so that the objects locate farther than the background are
removed. Therefore a clipping map has been generated by
recording and temporal filtering of a depth video sequence of
the car interior without a driver. The median filtering is also
applied to remove the noise by taking a 3×3 mask for each
non-background pixel, with only foreground neighbouring
pixels are evaluated.

The jump points, located in the sharp changed edges, are
noisy and unstable. For a point pi and its n nearest neighbors
{p1, p2, ...pn}, the average center-to-neighbor distance is
calculated using avi(di) = 1

n

∑n
k=1(|pi − pk|). For each

3D point, the average center-to-neighbor distance is used to
model a Gaussian distribution using N (µ, σ), where µ is the
mean value and σ is the standard deviation. A pixel that has
average center-to-neighbor distance larger d > µ + 2σ is
defined as a jump point.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Head segmentation: (e)-(h) shows the results by background
clipping, median filtering, morphology processing and final segmentation
result.



Fig. 4. Local minimum value search: from left to right, a 5 × 5 sliding
window shifts to the minimum value position, until the minimum value is
located in the window center.

In head segmentation, the head is assumed to be mostly
near the center of the image. A local minimum, such as
the nose tip, is the closest point to the camera within
the head region. Starting from the image center, a sliding
window (11 × 11 pixels) center is shifted to the position
where has smallest depth value within the window. Until
the smallest value locates in the center of the window, the
local minimum is found, see Figure 4. And then, the head
clustering is according to the head Anthropometry [12] which
acclaims that 99% of the men head has vertical distance
from the tip of the chin to the top of head are smaller than
213mm. In setting, neighbor distances smaller than 125mm
are considered as head region. In next frame, the searching
starts from the current local minimum position, assuming the
head is not moving too fast. The head segmentation based on
the local minimum works even far rotated head, and works
in real-time.

The last step is to apply the morphology processing in
order to remove the small objects in the image. As can
be seen from Figure 3g, the connectivity of the objects is
calculated and only the biggest object is kept, see Figure 3h.

IV. 3D HEAD TRACKING

After segmenting the head region, 3D feature based head
motion tracking approach is applied, in order to estimate the
transformation between the template and the new frames.
This section introduces the head tracking approach and its
performance evaluation.

A. Methodology

To track the motion of the head, the Intrinsic Shape Signa-
ture (ISS) key points on the head region are detected. Then
the 3D feature descriptors on these key points are extracted
and tracked by matching the similar feature descriptors on
the face. In tracking the feature points, different algorithms
are used to find the best tracking.

Firstly, a frontal face is taken as a reference frame and
the ISS key points are detected from the template. The 3D
descriptors of these key points are extracted and stored, and
their positions are taken as the initial position of the tracking
center in the next frame. These key points are tracked rather
than all the points on the face. To find the corresponding
points on the new frame, searching is conducted in a fixed
neighborhood of (5 × 5) pixels centred with the previous
position. Computing the descriptors only on the key points

(a) (b)

(c) (d)

Fig. 5. 3D keypoint detection: from left to right are the ISS key points
and Harr key points in 3D point clouds and their corresponding 2D images
respectively.

regions reduces the complexity of the calculation. The good
matching point pairs are evaluated by the criteria D <
dmed+ 2σ, where D is the distance between the point pairs,
dmed, σ are the median point pair distance, and the standard
deviation.

To match the key point descriptors, both the descriptor and
Euclidean distances are considered. The point pair has both
small descriptor and Euclidean distance are kept. To improve
the robustness of the matching, the matching is based on a
surface patch such that the point pairs are grouped and the
point pairs that have similar properties in terms of descriptors
distance and Euclidean distance are considered as correct
matches. If a point pair’s properties are very different from
other neighboring point pairs, the match will be discarded.
In case of lost tracking, when the matches are less than
30%, restart the tracker from the initial state and find the
matching points until enough matches are found, the tracking
reestablished.

B. ISS key point detection

To improve the efficiency of the tracking, a set of key
points, which are the landmarks like the nose tip, mouth cor-
ner, on the face are detected. ISS for key point detection was
proposed by Zhong et al. [15]. The ISS is a local and view
independent descriptor for fast pose registration that takes
an intrinsic reference frame. The intrinsic reference frame
is calcualted by taking the Principle Component Analysis
(PCA) of a weighted neighbor point scattering function. The
weights are applied to give more contributions of the points
located in sparse region, in order to compensate the uneven
sampling of the point clouds. Figure 5 shows the detected
key points using ISS covering most of the landmarks on the
face, spreading most of the area on the face. However, the
3D Harr detector is more likely to detect the key points on
the boundary as the Harr detector detects the sharp changed
features, such as corners.

C. 3D Feature Descriptor

Unique Shape Context descriptor (USCD) [16] is an
extension of the 3D Shape Context Descriptor [17] (3D SCD)



by adding the directional constrains on the 3D SCD with a
local reference frame. The computation of USCD consists
of two parts: the calculation of local reference frame and
the extraction of shape context descriptor. Taking the center
point as the origin of a spherical coordinate, the 360 ◦ angles
are divided into n bins with k sections. A histogram is built
by counting the points that fall in the region. The uniqueness
of the descriptor results from the local reference frame.

Similary, the Unique Signatures of Histograms of Orien-
Tation (SHOT) [18] feature descriptor is a local histogram
that describes the distribution of the point clouds within a
given radius of sphere. A support sphere is built based on a
local reference frame and divided into N different volume
sections. The local reference frame calculation is similar to
the USC descriptor. A 32 bins histogram is the accumulation
of 3D points locate within the specific region.

The Fast Point Feature Histogram (FPFH) [13] feature de-
scriptor involves from the Persistent Point Feature Hitograms
[19], becoming more robust and faster. The FPFH generalizes
both the surface normals and the curvature estimates so that
it is very robust in detecting the curvature changing regions.
For each point, the normal of the point is estimated using
PCA. Then a Darboux frames is applied to construct a feature
histogram that describes relationship between a center point
and its neighbors.

D. Evaluation

An OptiTrack Motion Capture System, see Figure 1, was
used to acquire a set of ground truth data. The OptiTrack
System tracks the movement of the optical sensors (marker)
that are attached on top of the head. The motion of marker is
captured and transformed into head translation and rotation.
During the data acquisition, 6 candidates participated to the
experiment. They were 5 men and 1 woman, with half of
them wearing glasses. Each of the participant moved his/her
head freely in all directions and small translations. The
rotations in Yaw, Roll and Pitch range from ±95 ◦, ±75 ◦,
±75 ◦ respectively. The total number of the video sequence
last for about 6,000 valid frames.

The performance of the head pose tracking is compared
to the ground truth data. The ground truth data covered the
wide range of movement regarding to the Yaw, Pitch and Roll
rotation angles. To evaluate the performance of the tracking
using different descriptors, only one direction of rotation was
validated at a time.

Figure 7 shows the head rotation around Yaw axis ranging
from ±95 ◦ with Pitch and Roll angels slightly changed.
For Yaw rotation, the tracking failed from frame 20 to 150.
But tracking recovered from frame 150 to 210 and 300 to
370, where the head rotations referring to the template were
small within the range of +10 ◦ to −30 ◦. The tracking was
failing because the rotation of the head was too big, so
fewer corresponding features could be seen in the new frame.
Regarding to Pitch rotation, the tracking was not correct.
Since the ToF camera was set looking up to the head about
20 ◦ with the ground, small rotations in the Pitch caused big
difference for the ToF data. Also, as the ToF camera is very

(a) (b) (c) (d)

Fig. 6. Head tracking using USC descriptor: (a),(b) are the frontal and
side view of the feature matches. The green dots are the detected key
points in new frame that match the key points in the template, and the blue
lines connect the good matches. (c),(d) shows the new frame and template
alignment by applying the transformation between the matches.

sensitive to depth changing, the Pitch rotation increases the
depth values of the lower part of head while decreases the
higher part of the head. In this case, the sampling of the
3D points on different parts of the head is not even and very
different from the template. For the Roll rotation, the tracking
was not working because the changing of the rotation is too
fast and the tracking got lost at the very beginning.

The performance of USC, FPFH, and SHOT descriptors
are evaluated using the same data set. The USC descriptor
performances slightly better than the FPFH and the SHOT
descriptor in terms of robustness and efficiency. The test
was run in a i5-3210M, 2.5GHz and 8.0GB machine, and
the USC, SHOT and FPFH can reach a frame rate about
3.5fps, 2.0fps, and 2.0fps by calculating 300 feature
descriptors. The performance of the tracking can be improved
by optimizing the code and reducing the searching space of
feature descriptors.

(a) (b)

(c) (d)

Fig. 7. Head tracking 3D shape descriptor

V. DISCRIMINATIVE RANDOM REGRESSION FOREST

DRRF head pose estimator is a machine learning based
approach that predicts the head pose. The DRRF approach is
discussed in this section, and the performance was examined
by using the ETH data base [8].

A. Methodology

The random forest is an ensemble of decision tree classi-
fiers, which fulfils the head classification and the pose esti-
mation. In head classification, the leaves of the trees contain
the probability p(class = head|P) of being a head leaf. The



head leaves give vote for the head pose in regression. In tree
growing, a large data set in both positive and negative cases
are randomly sampled. A positive sample is defined as having
more than 30% of the area belonging to the head. Starting
from the tree root, the testing set {U} is split to left subset
and right subset based on a feature response function. At
each node, a binary pool of splitting parameters T{Ii,F1,F2,τ}
are generated randomly. The testing set is split by the whole
binary pool and the optimal split is the one with minimum
class uncertainty.

Once the subset {S} reaches a leaf node, which has
maximum depth or less than 20 test samples, the probability
p(class = head|P) of the leaves belonging to foreground
is estimated and stored. Only the foreground leaves are
used for regression voting. Moreover, the mean values and
trace of the covariance matrix of head pose parameters
θi{θx, θy, θz, θya, θro, θpi} are also stored. The 6-vector con-
tains the translation (in mm) from the patch center point to
the head center position, and the rotation angles (in degree)
in Yaw, Roll and Pitch of the head. The testing set reaching
the leaf are modelled as a multivariate Gaussian distribution.
The higher value of trace represents the higher uncertainty
of prediction.

Regarding to pose estimation, a regression process is
conducted based on calculating the mean values of the
votes from all leaves. Running the classifier, the target
patches are sent to the classifier, going trough the whole
tree until they reach the leaves. Thanks to the classification,
the leaves contain the probability p(class = head|P) of the
patch belonging to the head. The multivariate Gaussian
model predicts the offset from patch center to the head center,
and the head rotation as well. Taking the mean value of the
predicted head center and head orientation, the head pose is
estimated.

B. Training

Given a set of depth images labelled with head center
and orientation, k trees are grown by randomly select M
training images and N negative and positive patches {Pi =
(Ii, ci, θi)} from each image. The patches are labelled with
the class property ci, and the 6-vector. Starting from the root,
the training set will be split into left and right child nodes
based on the feature responds function [8]:

|F1|−1(
∑
q∈F1

I(q))− |F2|−1(
∑
q∈F2

I(q)) > τ (1)

where F1, F2 are two rectangle asymmetric regions sub-
sampled from the training patch, and |F1|, |F2| represent the
size of the rectangles, τ is the threshold. I(q) is the feature
channel randomly selected from the feature vector (depth
image). From Figure 8, two feature vectors are randomly
generated from the depth patch, the size of the feature vectors
are constrained to maximum 50% of the patch.

To evaluate the split, the classification and regression can
be measured separately. In classification, the uncertainty of
the class label should be minimized, which is described by
the measure function [8]:

Fig. 8. Patch sampling and feature vector selection: Left image is a
training sample, with blue bounding box of head region. Middle image
is a subsampled patch from the training sample. Right image is integral
image of the patch, where the green and blue rectangles are two randomly
generated feature vectors.

Uc(P|tk)=
|PL|

∑
cp(c|PL)ln(p(c|PL)+|PR|

∑
cp(c|PR)ln(p(c|PR)

|PL|+ |PR|
(2)

where |PL|, |PR| is the number of the left and right subset,
p(c|P) is the ratio of the patches belonging to class ci ∈
{0, 1}. Equation 2 measures the performance of node split
in discriminating the foreground patches and the background
patches.

In regression, the measure function aims to maximize
the information gain to favor the regression accuracy. The
measure function is defined as [8]

UR(P|tk) = log(|Σtr|+|Σro|)−
∑

i={L,R}

wilog(|Σtri |+|Σroi |)

(3)
where UR(P) is the differential entropy of set P and wL, wR
is the ratio of the left and right subset of the split. Σ·i is the
covariance matrix of the 6-vector, and |Σ| is the determi-
nant of the covariance matrix. The covariance between the
translation vectors and the head rotation angles is assumed
to be block-diagonal. By minimizing the determinant, one
can maximize equation 3 to minimizing the uncertainty of
the regression. The equation 2 and 3 can be combined into
an weighted optimization function [8]:

argmax
k

(Uc + (1.0− e− dλ )UR) (4)

where d is the depth of the node and λ is the scale factor that
controls the weight of the regression. Taking the exponential,
the deeper the tree grows, the higher weight of the regression
function.

C. Evaluation

The classifier was trained using 80% of the data set and
20% was used to test the classifier without cross-validation.
The training was run in an i5-3210M, 2.5GHz and 8.0GB
machine, and it took around 10 hours to build a 7 trees
classifier. The testing results in terms of head translation
and rotation are compared in Figure 9. The average absolute
errors in X, Y, Z axis translations are 58mm, 51mm, 24mm
respectively, where X axis is horizontal and Y axis is pointing
down and vertical to the ground, Z axis is pointing out the
camera. The error of Z axis is much better even though the
variation of the Z values are bigger. For prediction in X and
Y direction, the mean distance is less than 60mm, which



means that, in most cases, the head region can be correctly
determined.

Regarding to the regression of the rotation, the average
absolute errors in Pitch, Yaw and Roll are 30.7 ◦, 32.6 ◦

and 9.6 ◦ respectively. Considering that the average absolute
error within 6 ◦ is correct estimation, the regression can reach
5.2% correct rate. Some estimation result using the classifier
is shown in Figure 10.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Random forest classifier evaluation: 9a,9c,9e are the comparison
between the estimated head center with the ground truth values; 9b,9d,9f
are the head orientation comparison between the prediction and the ground
truth values.

(a) (b) (c)

Fig. 10. DRRF in HPE result

VI. CONCLUSIONS AND FUTURE WORKS

A dedicated robust and fast head segmentation method for
3D ToF camera has been developed. The Local Minimum
value based segmentation works robustly even with far
rotated head in real-time. For determining head orientation
and translation, the feature base head tracking approach was
implemented and tested, different feature descriptors were
applied to evaluate their performance, in terms of accuracy
and time consuming, in head tracking. Experiment demon-
strated the template based tracking is robust but limited
at small rotation. Discriminative Random Regression Forest
(DRRF) head pose estimator was implemented to fulfill the
tasks in head classification and head pose estimation. Result
showed that the head region can be correctly classified, while
the regression in head center and orientation need to be
improved.

Future work to overcome the limitation of head tracking
by introducing more templates. For instance, at every 30 ◦,

templates are stored and registered to a zero rotation tem-
plate. When tracking results show that the head rotates more
than 30 ◦, the tracking template with be changed and new
frames will be tracked based on the new template. For DRRF
head estimator, the units of the head translation and rotation
should be normalized, and the calculation of the covariance
matrix determinant of the optimization function should be
explored to avoid the singularity problem.

VII. ACKNOWLEDGMENTS

The authors gratefully appreciate the support and useful
comments from Dr. Bruno Mirbach and Dr. Frederic Garcia,
and all the colleagues at IEE S.A.

REFERENCES

[1] R. Valenti, N. Sebe, and T. Gevers. Combining head pose and eye
location information for gaze estimation. IEEE Trans. on Image
Processing, vol. 21(2), 2012, pp 802-815.

[2] J. Sung, T. Kanade, and D. Kim. Pose robust face tracking by
combining active appearance models and cylinder head models. IJCV,
vol 80(2), 2008, pp 260-274.

[3] E. M. Chutorian and M. M. Trivedi. Head pose estimation in computer
vision: A survey. TPAMI, vol 31(4), 2009, pp 607-626.

[4] R. Valenti, Z. Yucel, and T. Gevers. Robustifying eye center localiza-
tion by head pose cues. CVPR, 2009, pp 612-618.

[5] A. Gee and R. Cipolla. Fast visual tracking by temporal consensus.
Image and Vision Computing, vol 14(2), 1996, pp 105-114.

[6] N. Gourier, D. Hall, and J. L. Crowley. Estimating face orientation
from robust detection of salient facial structures. In FG Net Workshop
on Visual Observation of Deictic Gestures, FGnet (IST200026434)
Cambridge, UK, 2004, pp 1-9.

[7] M. D. Breitenstein, D. Kuettel, T. Weise, L. V. Gool, and H. Pfister.
Real-time face pose estimation from single range images. CVPR 2008,
pp 1-8.

[8] G. Fanelli, J. Gall, and L. V. Gool. Real time head pose estimation
with random regression forests. CVPR, 2011, pp 617-624.

[9] S. Choi, U. Wijenayake, and S. Park. Head pose tracking using gpu
based real-time 3d registration. RO-MAN, 2013 IEEE, pp 114-119.

[10] P. Padeleris, X. Zabulis, and A. A. Argyros. Head pose estimation on
depth data based on particle swarm optimization. CVPRW, 2012, pp
42-49.

[11] S. S. Cheung and C. Kamath. Robust techniques for background
subtraction in urban traffic video,Visual Communications and Image
Processing, 2007.

[12] J. W. Young, R. F. Chandler, C.C. Snow, K. M. Robinette, G. F.
Zehner, and M. S. Lofberg. Anthropometric and mass distribution
characteristics of the adult female. Technical report, 1983.

[13] R.B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Persistent point
feature histograms for 3d point clouds. IAS, Baden, Germany, 2008,
pp 119-128.

[14] S. Filipe and L. A. Alexandre. A comparative evaluation of 3d keypoint
detectors in a RGB-D object dataset.VISAPP, 2014.

[15] Y. Zhong. Intrinsic shape signatures: A shape descriptor for 3d object
recognition. ICCV Workshops, 2009, pp 689-696.

[16] F. Tombari, S. Salti, and L. D. Stefano. Unique shape context for 3d
data description. In Proceedings of the ACM workshop on 3D object
retrieval, 2010, pp 57-62.

[17] M. K rtgen, G. Park, M. Novotni, and R. Klein. 3D shape matching
with 3d shape contexts. In The 7th central European seminar on
computer graphics, vol. 3, 2003, pp 5-17.

[18] F. Tombari, S. Salti, and L. D. Stefano. Unique signatures of his-
tograms for local surface description. ECCV, 2010, pp 356-369.

[19] R.B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms
(fpfh) for 3d registration. ICRA 2009, pp 3212-3217.



Quasi-Isometric Volume-Based Shape-from-Template

Shaifali Parashar, Daniel Pizarro and Adrien Bartoli

Abstract— Reconstruction of 3D objects from images is a
key problem in Computer Vision with important applications.
Reconstruction for rigid objects is mainly solved with Structure-
from-Motion (SfM) techniques. However, rigid-based methods
fail when applied to objects undergoing deformations, such as
the human body or a piece of cloth. Reconstruction problems
such as Non-Rigid Structure-from-Motion (NRSfM) and Shape-
from-Template (SfT) have been recently studied for particular
deformations and thin-shell materials or surfaces. This thesis
studies SfT for deforming volumes. In SfT, a template is known
and the objective is to find the deformation from a single input
image. It is a challenging problem, as, for opaque objects, only a
portion of the objects surface is visible. We model deformations
with a Quasi-Isometric model that softly imposes local rigidity,
allowing deformations. Quasi-Isometric SfT for volumes has not
been studied before. This thesis presents three main contribu-
tions: First, we describe the problem with a system of partial
differential equations and differential inequalities. We show
that the system does not admit point-wise solutions. Second,
we propose to find a global solution transforming the system
into a variational optimization problem that can be solved
using unconstrained iterative optimization. Third, we present
a method to find an initial solution based on local rigidity
propagation and surface isometric reconstruction. Experiments
with real and synthetic data show that our method is very
accurate in recovering large volume deformations. They also
verify that our initialization method is always very close to the
correct minimum.

I. INTRODUCTION

Recovering 3D from images is an important problem in
computer vision that has been successfully solved in case
of rigid environments with Structure-from-Motion (SfM).
However, rigid-based methods fail when objects undergo
deformations, such as piece of paper or the human body.
Non-rigid reconstruction methods represent an important
challenge with a wide spectrum of applications (e.g., medical
imaging, entertainment industry, etc.).

We highlight two important non-rigid reconstruction
problems: i) Non-Rigid Structure-from-Motion
(NRSfM) [5] [3] [7], where given a set of images of
a deforming object, we obtain the set of shapes and ii)
Shape-from-Template (SfT) [16] [1], where given a single
image and a template of the object, the objective is to obtain
the shape. Our work falls into latter category, extending the
shape estimation to volumes.
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Most of SfT methods apply only to thin-shell materials
by modelling surfaces deformations. In SfT deformations
has to constrained, otherwise the problem is ambiguous. We
distinguish two different approaches to model surface defor-
mations: i) learning-based methods [6] [17], where the space
of possible shapes or deformation is learn from data and is
assumed to live in a low dimensional space and ii) physics-
based models such as isometric [16] [1], conformal [1] or
linear elastic deformations [11]. Isometric deformations have
received most of the attention as they are good models for a
wide range of thin-shell materials. Recently [1] proved that
SfT for isometric deforming surfaces is well-posed and can
be solved analytically.

Volume-based SfT is a hard problem as only a partial view
of the volume’s external surface is projected in the image.
In this paper, we study the SfT problem for volumes that
deform quasi-isometrically. Isometric deformations between
volumes are rigid transforms. Quasi-isometry relaxes rigid-
ity to allow deformations, while preserving, up to certain
degree, the structure of the object. This model has been
widely used in graphics to perform mesh editing of animated
characters [19].

Contrary to surfaces, volume-based SfT is almost com-
pletely unexplored. To our knowledge, only a recent pa-
per [18] has proposed volume reconstruction from a single
image. However, their method only works for shapes that can
be inferred from its silhouette, which poses important con-
straints on the topology of the object and the deformations.
In addition, their reconstruction is based on a orthographic
projection which cannot be applied in all imaging conditions.

Our contributions are three-fold: First, we show that quasi-
isometric volume based SfT for perspective projections can
be described as a system of partial differential equations
involving differential inequalities. We show that in general
the system is not locally solvable. Second, we introduce a
criterion that allows to convert volume SfT into a constrained
variational optimization problem, where we impose the sur-
face to be as isometric as possible. We show how to discretize
and to relax the constraints to convert the variational cost
into an unconstrained non-linear least squares optimization
problem. Third, we present a method for initializing the
solution based on local isometry propagation on the volume
and surface isometric SfT. The initialization method involves
linear least-squares only. Experiments with real and synthetic
data show that our method is very accurate capturing volume
deformation of objects. They also verify that our initialization
method is always very close to the correct minimum.



II. MODELLING VOLUME SFT

Fig. 1 shows a general diagram of the volume recon-
struction problem that involves: i) the 3D template volume
VT ∈ R3, ii) the unknown deformed volume VS ∈ R3, iii)
the image plane I projecting the visible surface S of
VS and iv) a 2D flattening F of the external surface T
of the template VT . Deformation between VT and VS is
given by the unknown mapping ψ ∈C2(VT ,VS). We assume
opaque objects and thus image I projects a surface S
that belongs to the exterior of volume VS. The rest of the
volume is self-occluded. Note that self-occlusions depend on
the unknown deformation but they can be estimated during
registration [8] [14]. We define as T the corresponding vis-
ible surface in the template. We use Π to denote perspective
projection in image coordinates normalized with respect to
the camera’s intrinsic parameters:

Given Q ∈ R3 then Π(Q) =

(
Qx
Qz

Qy
Qz

)>
. (1)
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Fig. 1. General diagram of Volume SfT

Note that Π involves geometric projection but does not
deal with self-occlusions directly. We define ∆ ∈C2(F ,T )
as the embedding that describes surface T from a 2D
flattening F ∈ R2. ∆ and F are known. From F , we
parametrize the unknown surface S using the embedding
ϕ ∈C2(F ,S ). Following the consistency between mappings
we have ϕ = ψ ◦∆.

Finally we define as η ∈C2(F ,I ) to the known registra-
tion warp between F and the image. The warp η establishes
the reprojecton constraint on ψ .

η = Π◦ϕ = Π◦ψ ◦∆. (2)

A. Isometric Surface Deformations

Isometric deformations have proven to be a good model
for real thin-shell materials such as paper or a piece of
cloth [16] [1]. To illustrate them we follow [1]. Let us assume
that the surface T deforms isometrically, resulting in S . The
isometric mapping between T and S preserves surface first
fundamental form [10]:

J>ϕ Jϕ = J>∆ J∆, (3)

with J an operator giving the first-order partial derivatives.
By taking first derivatives of ϕ = ψ ◦∆ we get Jϕ = (Jψ ◦
∆)J∆. Introducing this result in Eq. (4):

J>∆ (Jψ ◦∆)>(Jψ ◦∆)J∆ = J>∆ J∆→ (Jψ ◦∆)>(Jψ ◦∆) = I3×3,
(4)

where we derive that (JψS ◦∆) is an orthogonal matrix.
Note that JψS ◦∆ only operates in the surface T which allows
the surface to bend while preserving distances on the surface.
This distinction is important when defining volume isometry.

1) SfT for Isometric Surfaces is Locally Solvable: In
surface-based Shape-from-Template [1] the reprojection con-
straint and the surface isometric deformation constraint of
Eq. 4 are combined to obtain the unknown embedding ϕ:

Find ϕ s.t.

{
J>ϕ Jϕ = J>

∆
J∆ Deformation Constraint

η = Π◦ϕ Reprojection Constraint
(5)

Eq. 5 is a system of Partial Differential Equations (PDE).
Recently [1] shows that SfT system (5) can be solved locally
and analytically, which means that we can obtain point-wise
solutions without solving a boundary value problem.

B. Quasi-Isometric Volume Deformations

If ψ is an isometric transformation between volumes VT
and VS we have:

J>ψ Jψ = I3×3. (6)

Condition of Eq. (6) in volumes makes ψ a rigid trans-
formation (see Mazur-Ulam theorem [15]). Given a point
Q∈ VT , we thus have ψ(Q) =RQ+ t, where R is a constant
orthogonal matrix and t is a constant translation vector.

In quasi-isometry [9] we relax the condition Eq. (6) to
obtain the following deformation constraint:∥∥∥J>ψ Jψ − I3×3

∥∥∥2

p
≤ c c≥ 0, (7)

where p is any matrix norm (e.g., p = F for Frobenius
norm) and c is a given constant that controls how rigid the
mapping is. We refer the reader to [9] for a formal definition
of quasi-isometric mappings.

III. VOLUME BASED QUASI-ISOMETRIC SFT

We present our volume based SfT approach for quasi-
isometric mappings, showing that it involves boundaries and
partial differential inequalities. The objective in volume-
based SfT is to find the deformation map ψ that transforms
volume VT into the unknown volume VS given that we
partially observe it in I . We combine quasi-isometric defor-
mation constraint in Eq. (7) and the reprojection constraint
of Eq. (2) to get:



Find ψ s.t.

{∥∥J>ψ Jψ − I3×3
∥∥2

p
≤ c Deformation Constraint

η = Π◦ψ ◦∆ Reprojection Constraint
(8)

Eq. (8) is a system involving Partial Differential Inequal-
ities [13]. Finding local solutions of Eq. (8) is not possible
for two reasons: i) the system is a boundary value problem
as the reprojection constraint only involves a surface that
is a subset of the volume S ∈ VS and ii) the deformation
constraint is an inequality which means that we may have
infinite solutions.

A. A Variational Solution for Quasi-Isometric SfT

As was mentioned before, we cannot find point-wise
solutions of Eq. (8). We propose to convert Eq. (8) into a
variational optimization problem where we obtain a global
solution for ϕ . We add the following criterion: we select a
function ϕ that is as isometric as possible, where Eq. (7) is
minimized for all points in the volume. This condition yields
the following optimization problem:

ψ = argmin
ψ

∫
VT

∥∥∥J>ψ Jψ − I3×3

∥∥∥2

p
dVT︸ ︷︷ ︸

As Isometric as Possible

s.t. η = Π◦ψ ◦∆︸ ︷︷ ︸
Reprojection Constraint

.

(9)
The analytical solution for Eq. (9) is in general not

achievable as it involves integrals, non-convex functionals
and equality constraints. However, we can transform Eq. (9)
into an unconstrained non-linear least squares program that
we can solve numerically.

We first define the deformation functional εd [ψ] that ap-
proximates the As Isometric as Possible cost by discretizing
VT and substituting the integral by a sum:

∫
VT

∥∥∥J>ψ Jψ − I3×3

∥∥∥2

p
dVT ∝ ∑

P∈VT

∥∥∥J>ψ (p)Jψ(p)− I3×3

∥∥∥2

p
= εd [ψ]

(10)
Instead of imposing the reprojection constraint exactly,

we use a lagrangian relaxation that employs the following
functional over a discretization of F :

∑
p∈F
‖η(p)−Π(ψ(∆(p)))‖2 = εr[ψ] (11)

Finally, we propose to optimize the following uncon-
strained cost:

ψ = argmin
ψ

ρεd [ψ]+ (1−ρ)εr[ψ] 0 < ρ < 1 (12)

where ρ is a hyperparameter that balances between isom-
etry and reprojection error.

1) Optimizing the Cost: To find a solution to Eq. (12),
we propose a parametric representation of the solution ψ ∈
C2(VT ×Rn,VS), where n is the dimension of the parameter
space. Let l ∈ Rn be the parameter vector and Q ∈ VT we
have ψ(Q, l)∈VS. We have multiple choices for representing
ψ such as the popular linear basis expansion warps (e.g.,
NURBS [12], TPS [2], B-Spline [4], Tetrahedron Mesh
displacements, etc.).

The cost (12) is then optimized in function of the pa-
rameters l using an iterative optimization method, such as
Levenberg-Mardquardt. Iterative methods can be arbitrary
accurate but as Eq. (12) is non-convex the iterative algorithm
is prone to be stuck in a local minimum.

2) Initialization with Greedy Propagation of Local Isom-
etry: We propose an algorithm that provides an accurate
initialization ψ0 to the non-linear refinement algorithm. It
is based on surface SfT followed by a greedy propagation of
local quasi-isometry. It is composed of the following steps:
Step 1) Discretizing the domains: First, we discretize the
template volume VT with a set of N 3D points that we call
PV = {P1, · · · ,PN}. We denote as PT ∈ P the subset
of Ns < N points corresponding to surface T . From PT

and knowing the flattening function ∆, we compute the
corresponding set of 2D points PF = {p1, · · · ,pNS} in the
flattened domain. Using a triangulation method (e.g., Delau-
nay) we define a tetrahedron mesh with PV as vertexes.
Step 2) Surface SfT: We assume for the initialization that
the deformation between T and S is a surface isometry. We
can thus solve system (5) using [1] to obtain the set PS of
points belonging to surface S .
Step 3) Mesh Propagation: For a given tetrahedron, we
denote as Pn1 ,Pn2 ,Pn3 ,Pn4 the four vertexes in VT . Let us
assume that three of the vertexes (n1,n2 and n3) belong
to the surface T . From the previous step, we know their
corresponding points in S , namely Qn1 ,Qn2 ,Qn3 . We esti-
mate a rigid transform between the two sets that is used to
obtain Qn4 . As a sanity check, we test that the mean distance
between the obtained points is similar to that in the template,
otherwise the point is discarded. Once we’ve finished with
all tetrahedrons belonging to T , we repeat the process by
recursively finding all tetrahedrons from which we have three
known corresponding vertexes in VS. We repeat the process
until the last tetrahedron with a missing vertex is found. The
result of this step is the deformed set QV ∈ VS.
Step 4) Obtaining ψ0: From the two sets PV and QV we
obtain ψ by solving the following optimization problem:

ψ0 = argmin
ψ
{αεe[ψ]+ (1−α)εsmth[ψ]} 0 < α < 1, (13)

where εe[ψ] minimizes the transport error between the two
sets and εsmth is a smoothing term (e.g., Bending Energy).
Note that system (13) involves linear least-squares.

IV. EXPERIMENTS AND RESULTS

In this section, we will describe the experiments that
we performed to test our method and discuss the results
obtained. We conducted the experiments in order to test the
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limitations of our method. We implemented our method in
MATLAB. We conducted experiments with synthetic data
and two sets of real data with different geometries: a book
and a tube.

a) Experiment with synthetic data: We consider a
cuboid of dimension 20× 20× 2.5 cm and deform it at
an angle of 20 degrees. We use 100 points on the surface
for the experiment. The results are shown in Figure 2. We
measured the 3D residual error in mm as the average distance
between the simulated and the reconstructed 3D points. For
each configuration, we kept the average of the 3D residual
error over 20 trials. Our initialization method provides a good
starting point for the optimization setup, the optimal solution
is achieved within 3 or 4 iterations only. We tested the
behaviour of our method in different conditions to illustrate
the effect of change of number of keypoints, deformation
angles and the noise. The graphs are shown. We see that the
accuracy of our method decreases with increasing noise and
deformation angle and increases with more number of points
used in SfT.
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b) Experiment with real datasets: For the experiments
on real datasets, we use a set of 20-30 images with different
poses of the object to create the 3D models of the objects.
These models can be built by laser scan, structured light or
any other 3D reconstruction technique. We have built these
models with the help of a commercial Structure-from-Motion
software, which gives a very accurate model for the objects.

Experiment with the book We conducted two experi-
ments on this dataset. The results are described in Figure
3. The views for the template and the object with 208 and
327 feature points are shown. For both experiments, we use
these two images to obtain the ground truth for reprojection
(the visible surface of the template) and generalization (the
non-visible surface of the template) surfaces. In the figure,
we see that the results of Experiment 2 are slighty better
than Experiment 1 because of the number of feature points.
The error at the generalization surface is larger due to the
accumulation of error in propagation step.

Experiment with the tube We conducted three experi-
ments on this dataset. The results are described in Figure 4.
The views for the template and the object with 108, 139 and
126 feature points are shown. For Experiment 1 and 2, we use
the two images to obtain the ground truth for reprojection
and generalization surfaces. In the figure, we see that the
results of Experiment 2 are slighty better than Experiment
1 because of the number of feature points. The error at the
generalization surface is larger due to the accumulation of
error in propagation step. For Experiment 3, we increased
the deformation in the object in order to test our method in
extreme conditions. We see that the errors at reprojection and
generalization have almost doubled. This is in accordance
with the deformation of the object.

V. CONCLUSIONS

We presented a method to construct the complete volume
of a 3D object using a single image and an object template.



We extend the surface isometry to volumes considering the
quasi-isometric deformations. We use SfT to initialize the
points on the surface, propagate the deformations using
tetrahedral mesh and refine the results by using data and
deformation constraints. Our experiments show that our
method achieves a good accuracy in recovering the visible
and non-visible parts of an object. We also show that our
method handles large deformations very well. Our initializa-
tion method is very close to the optimal minimum.
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Graph Based Feature representation for Category Object Recognition

Sai Krishna PATHI, Alamin MANSOURI and Fabrice MERIAUDEAU

Abstract— In this paper, we propose a graph-based represen-
tation of three features devoted to category object recognition,
namely skeleton, superpixel and self-similarity of an object. These
features are computational models interpreting gestalt laws in
terms of shape of an object and appearance of an object through
colour distribution. The skeleton defines the structure of the
object, superpixels provide the global appearance of the object
and self-similarity provides the internal geometrical information
of parts with respect to others in the object. We represented these
features as graphs, namely skeleton graph, superpixel graph and
self-similarity graph and we performed graph matching pairwise
and then we propose a new method to represent all these graphs
in one graph inspired by hypergraph. The results obtained over
Caltech 101 database show good and promising results. Graph
Theory applied in object recognition is a challenging task and
this work proposes new ways of addressing such problem under
the point of view of computer vision domain.

I. INTRODUCTION
One of the most interesting and amazing things in the

human life is vision. The ability to see around us and
understand the world is an interesting fact. Most of us
don’t even think of how does it work. How can we see
and understand the things around us. Our visual system
is quite interesting such that we sense the world and get
the very minute detailed information about the environment
effortlessly. Vision is a complex system or process that
has many components for interaction, which are involved.
For example, our vision recognizes the object by or with
color analysis, texture of the object, shape and depth and
we use visual information for locomotion, recognition and
manipulation [1].

We can identify the things, recognize people and classify
things most of the time easily. All these things are most of
the time effortless for human beings and actually we should
say for most of the living beings such as animals. The tasks,
which are trivial for most of the living beings even when
the conditions are not favorable, are the basic problems in
computer vision where still struggle is going-on to achieve
solutions. One explanation for this resides in the so-called
semantics gap between low-level content and higher-level
concepts [2].

Generally, machines are able to extract and process low-
level visual information but cannot interpret the same data for
a given situation. While humans are doing this process with
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ease and even we don’t realize that. This is because of the
visual system in the living beings, which has been evolved
over many centuries. There are numerous attempts going-on
in this process to teach the machines to understand the scene
with different type of features. To some extent we are even
trying to replicate the human visual system yet there is no
success to a notable extent. So still the question remains the
same: How can we build a system that sees and perceives
the world as we do?

The work done and time taken by the visual system
(eyes and brain) of humans in this context is negligible
while machines perform an exceeding work in processing
the information. In this process, there are many experi-
ments conducted and still in process about the living beings
visual system in areas such as neurophysiology, artificial
intelligence and computer vision. Along the years the three
psychological theories of visual perception, which aimed to
explain how things look as they do to us, were Structuralism,
Gestaltism and Ecological Optics [3].

Among these theories, the Gestalt movement leaded by
Max Wertheimer, Wolfgan Kohler and Kurt Koffka in 1935
gained a lot of respect from scientific community due to
the systematic description of its approach and beliefs which
included many examples based on real-world experiments
[3]. According to Gestaltists the whole is different from the
sum of its parts, which could be interpreted, as that humans
perceive the whole structure first rather than the details. The
innovation in Gestalt theory was to describe this phenomenon
through a series of mechanisms for perceptual organization
known as Gestalt Laws. Therefore, visual perception in the
Gestalt point of view obeys to some kind of organization
from which both; the whole and its parts have importance
for understanding the scene.

There have been different types of structures used for
object recognition such as histogram, graphs and so on. In
this project, we use graphs as the structure to represent
the features. Some among many reasons for why graphs
are used in the field of computer vision are: the flexibility
and powerful representation. The advantages while using
this are that there is no fixed dimensionality for the objects
and the efficient representation of the relations between the
objects and within itself. Last but not the least, graph is an
appropriate structure to represent both local and non-local
relationships among the object.

The basic problems in computer vision are identification,
recognition and classification of objects. Our main goal in
this thesis is to recognize and classify the objects. More
precisely speaking to build an image retrieval system using
different types of features, which are combined together to



form a more reliable feature for this system.
Generally, an image retrieval system consists of describing

the image. For decades until today, images are described
using textual information in different languages, in this
case the image is associated with a set of words, which
describes the image. These techniques are widely used in the
Internet for example, Google images. These set of words that
describes the image are potentially extracted automatically
from the web page that contains the involved image, such
as the file-name of the image, the page title, etc. The
words used to describe the image do not necessarily always
reflect the content of the image. In order to overcome this
problem, some researchers came up with an image retrieval
system where visual data is used to describe an image.
This technique uses some pattern recognition methods to
extract important features (visual content) that are used
to describe the image. This is called content-based image
retrieval (CBIR) [4]. This organizes the digital pictures by
taking only the visual data into consideration. This approach
utilizes computer vision techniques to analyze the image at a
pixel level in order to infer the semantic meaning of the scene
and to recognize its inner parts including objects and people
[5]. This paper is organized as follows: section II describes
previous work, section III describes our method, section IV
presents the results obtained and section V concludes the
paper.

II. PREVIOUS WORK
Object recognition is an active area of research for more

than five decades [5]. Many methods have been evolved
down the line until today but yet we are not much near, as
still there doesn’t exist any method, which give robust results
in all conditions and with all images. In order to recognize
the object, classification is an intermediate step for the object
recognition. Our thesis work is an extension of the previous
work [5] where features were extracted using Gestalt theory
based on shape and color distribution. Among all aspects
underlying visual information, the shape of an object was
used as it plays a special role. They represent the words of the
visual language. The main idea of using such descriptor was
to represent relevant information about shape, which holds
semantic and physical meaning. Besides this, they used them
to validate the improvement in recognition when used with
others. This descriptor is most common way to describe a
shape and include measurements regarding shape properties
such as area, perimeter, curvature, junctions, end points, etc.
And shape decomposition allows decomposing the shape into
simple parts, called primitives and represent some type of
topological arrangement of the shape. For their work they
used skeleton and its constituent parts. The feature they
used was skeleton, which represents the shape of an object.
Another feature they used was based on color distribution
throughout the object region. They are using this feature to
capture the perceptual information associated to the objects
appearance, which is a different approach compared to others
as they were using only primitive information. Depending
on color distribution they defined two types of features,

one based on self-similarity measurement and the other
constructed by a linear transformation between color pixels
and its spatial location inside the objects region. So here
they worked with superpixels for self-similarity descriptor.
So from their work we are considering to use the three
features. Namely Skeleton, Superpixels and Self-similarity.

A. Graph Theory

Normally, a graph represents a set of elements and a set
of pairwise relationships between those elements. The set of
elements are called vertices or nodes and the relationships
are called edges or weights.

A Graph is defined as G = (V, E)
Where

V = {v1, v2, v3, ...., vn} − V ertices,

E = {e1, e2, e3, ...., em} − Edges.

Now, we combine these features with the structure and
build the graphs.

III. METHODOLOGY
A. Goals and Method Overview

The goals of our work can be summarized as follows:
• Extract the features according to Gestalt laws.
• Using these features, build different graphs.
• Match these graphs using different graph matching

procedures.

B. Graphs and feature representation

In the context of this work, we represent the features
extracted using Gestalt theory based on shape, appearance
and color distribution using the Graph theory. In Graph
theory, there are different types of graphs such as directed
graph, undirected graph, weighted graph and so on, which
can be used for different purposes. But which graph is more
suitable in the context of our thesis in representing the
visual data. So after conducting some experiments, we use
weighted undirected graph in our project. The reason for
using weighted graph is to have weights, which will be very
useful when comparing two graphs. The reason for using
undirected graph is because here we are not using any flow
or path to follow and we need a mutual relation between the
pixels.

Now, we build weighted undirected graphs based on the
skeleton, superpixels and self-similarity. So, our approach
extends these ideas by providing the following:

• Represent the features based on the skeleton, superpixel
and self similarity.

1) Skeleton: Skeleton (or medial axis) plays an important
role in the body. Sometimes just a glance of the skeleton is
enough to recognize the object. It integrates the geometrical
and topological features of the object. Now a days, lot of
researches are working with skeleton as it is an important
shape descriptor for object recognition [6]. Here we consider
the Skeleton of an object. By just giving a glance, we can say
that it is a Skeleton of Human being that’s the information



Fig. 1. Human skeleton (Taken from Google images)

we get from a skeleton of an object that’s one of the main
reason why researchers are using the skeleton for object
recognition. Our motivation is quite same. This gives the
basic information of an object.

2) Skeleton graph: Recent years have witnessed a popular
way in which skeleton graph is involved in the image com-
parison problems. Skeleton is the support structure, which is
inside, of the body or object.

Skeleton pruning is done after the extraction of skeleton
from the object. Then the graph is built using the outcome,
which is Skeleton Graph. A skeleton point having only one
adjacent point is an endpoint and a skeleton point having two
or more adjacent points is a branch point. These points are
the vertices and the geodesic distance between the end point
and its nearest branch point are the weights between those
vertices. The figure 2 is the skeleton graph of an elephant

However, it is a challenging task to automatically recog-
nize objects using their skeletons due to skeleton sensitivity.
Probably the most important challenge for skeleton similarity
is the fact that the topological structure of skeleton graphs
of similar objects may be completely different. Sometimes
the skeletons of the two objects are similar but their skeleton
graphs may be very different and vice versa. So summing
up, only basing on the skeleton graph object recognition has
some false matches. So to make it more robust we also want
to include other graphs in our recognition system.

Fig. 2. Skeleton graph

3) Superpixels: Superpixels can be defined as a polygonal
part of an image, larger than a normal pixel that is rendered to
have the same color and brightness information. In terms of
perceptual organization, a superpixel presents more physical
meaning regarding the internal structure of the object than a
single pixel [5].

4) Superpixel graph: The number of pixels is less, when
we consider the supepixels so it is easy to build a graph
from the less number of pixels, which will be an advantage
for the processing time. As previously we got the structural
information of the object now we are looking for some other
information, which form the global appearance of the object.
So here we consider the superpixels for global appearance.
The figure 3 is the Superpixel graph of an elephant

Fig. 3. Superpixel graph

5) Self-similarity graph: The overall appearance of an ob-
ject can be described by its internal similar structures. These
structures can be used to differentiate the object from other
objects, which doesn’t contain such elements. Therefore, [5]
devised a more compact self-similarity descriptor based on
the work of Irani et al [7]. Superpixels are used by the
self-similarity descriptor. The similarity is computed against
other superpixels in the object. This self-similarity metric
compares each pixel inside a superpixel with the equivalent
pixel in the other superpixel. The result was self-similarity
surface, a symmetric matrix.

C. Graph matching

Indeed to compare graphs, we perform graph matching in
three different types.

1) Pairwise graph matching: Generally, graph matching
is done in pairwise i.e. vertices of one graph are matched
with vertices of the other graph and the same is done in
the case of edges. The figure below shows the concept of



pairwise graph matching [8]. The figure 4 represents pair
wise matching.

Fig. 4. Pairwise graph matching

Here we perform the graph matching of all the three
graphs pairwise. Firstly we consider the skeleton graph of
one object, which is compared with the skeleton graph of
other image. Depending upon the total number of matches
and the matches matched we calculate the percentage of
matching. In the same way we perform superpixel graph
matching and self- similarity graph matching. Then all the
three percentages are collected and evaluated and the object
recognition process is done.

2) Graphs represented as graph (Graphs in a graph):
We consider the three graphs and represent them as a single
graph where vertices are these three graphs and the edges are
defined according to the vertices, which they are connected.
The below figure 6 shows the fully connected graph.

Fig. 5. Graph in graph matching

The adjacency matrix of the graph is shown in the below
matrix form ‘G.

G =

SKG 1 1
1 SPG 1
1 1 SSG


In the above figure 4.10 and in the matrix, SKG represent

the Skeleton Graph, SPG represents the Superpixel Graph
and SSG represents the Self-Similarity Graph and the ones
represent the full connectivity. And the sample adjacency
matrices of the three graphs are shown in the matrix form

below SKG, SPG, SSG.

SKG =

0 · · · 0
...

. . .
...

1 · · · 1

 SPG =

1 · · · 0
...

. . .
...

1 · · · 1



SSG =

1 · · · 1
...

. . .
...

0 · · · 0


3) Graph Merging: Generally, in graph merging nodes of

the same type are merged together to form a union [9]. The
figure 5 shows the concept of graph merging.

Fig. 6. Graph merging

Here we are trying to merge the three graphs into one
single node, which can be used for matching. The processes
is first merge the whole skeleton graph into one single node
and do the same for the other two graphs and get the nodes.
Then merge all the three nodes into one single node [9]. Now
the result is, the three graphs are merged into one single
node. This single node is used for image comparison and
similar images can be retrieved. This is one way of merging
where all the three graphs are merged into one single node.
The figure 5 shows the concept of graph merging in this way.
The other way is to merge the whole skeleton graph into one
single node and do the same for the other two graphs and get
the nodes. Now, instead of merging all the three nodes into
one single node, build a graph using the three nodes. Now the
result is, the three graphs are merged into one single graph.
This single graph is used for image comparison and similar
images can be retrieved. This concept is shown in the figure
6. The superpixel graph and self-similarity graph have a lot

Fig. 7. Graph merging 2

of vertices so while merging them into one single node or one



single graph. It is a time consuming process. It may be easy
to build a graph using the three nodes than to merge them
into one single node. Merging the three nodes into one single
node may be quite a difficult task as the three graphs are built
using three different features. Generally, Graph Matching is
an NPC problem [6], thus, we tried our best to obtain some
approximate solutions.

IV. EXPERIMENTS AND RESULTS
A. Data and Experiments

In order to accomplish these goals we have developed
all our codes in matlab. In order to test our results we
used Caltech 101, which is an image dataset maintained by
the Computational Vision group at the California Institute
of Technology (Caltech) [10]. The Calthech 101 dataset
is considered as a challenging database as the images are
taken under different conditions of position, scale, color
and illumination which makes Caltech 101 a challenging
database with large intra-class variations.

It is important to mention that object detection is not
included as part of our solution. We consider that the object
is isolated from the background by using the annotation file,
which contains information about its contour. We take this
information to generate a binary image, which is used by
the feature extraction process to concentrate on the object’s
region. Due to some inconsistencies found in the annotation
files in Caltech 101 we also developed algorithms based on
morphology operations to guarantee good contour points as
well as to generate smoother and clearer binary images.

In order to evaluate the efficiency of our solution for the
purpose of object recognition. We have tested by taking
random images from the dataset.

B. Results

1) Skeleton graph: Here we did the image comparison
of different images using the skeleton graphs of the images.
Then we calculated the matching percentage based on the
number of matches matched to the total number of matches.
Some of the results for the image comparison are shown in
the below table

TABLE I
EFFICIENCY FOR THE IMAGE COMPARISON USING SKELETON GRAPH

Images
considered

Elephant Plane Rooster

Elephant 60% -70% 40% - 45% 25%-28%
Cougar 50% - 60% 40% -45% 20%-25%
llama 30% - 35% 18% - 25% 10%-15%

The results are good but there are some false negatives
when matching is done. This is one of the reason for elephant
and plane matching being so high, as the skeleton graphs
i.e. the medial axis of both the images are long and then the
matching is not good at the branches.
And in some cases, where the skeleton graphs of different
objects are similar, the matching results in more than we
expected due to the false positives such as elephant and

cougar. So, we conclude this section by saying that, only
using the skeleton graph is not sufficient most of the time to
automatically recognize objects.

2) Superpixel Graph: Here we did the image compar-
ison of different images using superpixel graph. Then we
calculated the matching percentage based on the number of
matches matched to the total number of matches. Some of
the results for the image comparison are shown in the below
table

TABLE II
EFFICIENCY FOR THE IMAGE COMPARISON USING SUPERPIXEL GRAPH

Images
considered

Elephant Plane Rooster

Elephant 80%-90% 45% -50% 60%-65%
Cougar 65%-70% 60% - 70% 50%-55%
llama 55% - 60% 30% - 40% 70%-75%

The results are good but there are some false negatives
when matching is done. This is one of the reason for elephant
and rooster matching being so high, as the superpixel graphs
of both the images at the middle and the neck are similar.

There are sometimes false positives in the some cases such
as in the case of cougar. When the elephant is matched to the
cougar it gives more percentage, one reason for this could be
explained: as the matching depends on the number of nodes
present in the image and the global shape. So sometimes
there are few chances of false positives. As we can see when
the images of elephants are matched they give good results.

Fig. 8. Objects that performed better

V. CONCLUSIONS

In the context of object recognition systems, the general
framework goes from considering low-level feature to high-
level semantics. During this process, there is gap between
the low-level and higher-level semantic. So, Our main idea



behind this thesis was to bridge the ‘semantic-gap between
low-level features and high-level features.

To bridge the gap, we thought of building an image re-
trieval system in the context of CBIR to retrieve images using
image comparison. For this, we represented the features
extracted using Gestalt theory based on shape and color
distribution using the Graph theory. The main concept was
to extract the visual information in the form of object and
to represent this object in the form of graph and further use
this graph in image comparison for CBIR system.

For this system, we built three graphs using three different
types of features. They are Skeleton Graph, Superpixel
Graph and Self-Similarity Graph. These are matched in three
different ways. Namely, Pairwise Graph Matching, Graphs
represented as a graph and then graph matching and the third
way is to merge the three graphs. The third way is to merge
the graphs in two ways. One way is to merge the three graphs
into one single node and then matching and the second way
is to merge the three graphs into three nodes and build a
graph using them and then graph matching.

This project address and gives an introductory framework
to or about graphs which are not still widely in use in
the field of computer vision. It explains about different
kinds of graphs and how the graphs can be used for the
image comparison. The image retrieval system that we are
proposing here is a novel system. Previously these features
were used but not in the same way as we are using and not
in this direction.
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Abstract— One of the open challenges in medical imaging is to
develop automatic methods for interpreting visual information
present in endoscopic images during Minimal Invasive Surgery
(MIS). A specific objective being currently researched is how
to register organs in a pre-operative image such as MRI or
CT to endoscopic images. Currently all existing methods for
performing this registration problem involve manual input.
This includes manually locating the organ and any anatomical
landmarks in the endoscopic images. In this paper the organ
we focus on is the uterus in gynecological laparoscopic surgery.
We proposed the first method for automatically detecting the
uterus in a laparoscopic image, automatically segmenting it,
and automatically detecting two important landmarks, which
are the junctions between the uterus and the two Fallopian
tubes.

I. INTRODUCTION

Computer Assisted Intervention (CAI) is the research field
which aims to develop algorithms for assisting a surgical
team to perform tasks during surgery. One important area of
CAI is to perform Augmented Reality (AR) in Minimally
Invasive Surgery (MIS). Examples of AR that are being
researched today include visualizing sub-surface structures
such as tumors and blood vessels captured by a pre-operative
Magnetic Resonance Image (MRI) of the patient [3]. An
MRI can show the positions of tumors, and so if it can
be overlaid onto the endoscopic images, it can show the
surgeon where the tumor is during surgery. To solve this
problem one has to align (or register) the MRI to the
endoscopic image. One way to achieve registration is to
detect anatomical landmarks that are visible in pre-operative
MRI and laparoscopic images. Once detected their positions
can help to solve the registration problem. In this paper we
propose a methodology for detecting the uterus and junction
between the Fallopian tubes and the uterus in a laparoscopic
image based on part-based models [13]. We also present an
approach that uses result of the detector to segment the uterus
in laparoscopic images.

A. Contributions

The main contributions of this thesis are four-fold:
• The collection of the first database of inter- and intra-

patient laparoscopic images of the uterus, which consists
of 2838 images annotated with the positions of the
uterus and junction locations

• The development of discriminative part-based object
detectors for detecting the uterus and tube junctions.

• The development of a contextual model for modeling
the geometric relationship between the uterus and the
tube junctions, which we learn from training images.
This contextual model significantly improves detection
performance.

• The development of a method for automatically seg-
menting the uterus which opens up many future research
directions, such as fully automatic registration of the
uterus from pre-operative images.

II. BACKGROUND
A. Related Work

Several approaches were recently proposed in [14], [17],
[20], [21] to tackle the problem of registering pre-operative
images to intra-operative images in image guided medical
systems. The authors of [17] propose to use a biomechanical
model to compute a volumetric displacement field from
partial 3D liver surface motion captured by a stereo laparo-
scope. This approach was shown to work well for short
video clips with manual registration of the CT scan to the
laparoscopic images in reference view. A multi-modal image-
guided tumour identification approach for robot-assisted la-
paroscopic nephrectomy was proposed in [14] which uses a
semi-automatic method for kidney and tumor segmentation
in pre-operative CT scans. It uses an interactive version of
the random walker algorithm [2] and requires manual se-
lection of correspondences. Another two similar registration
methods for AR - assisted robotic partial nephrectomy were
presented in [20], [21]. In the system presented by [20], a
single feature on the surface of the kidney was identified and
aligned through a spatial translation with the corresponding
feature on the surface of the CT scan. Once this point was
computed, it was used as a center of rotation around which
the image is moved until it coincided with the CT scan.
Registration in [21] was achieved using a modified rigid
Iterative Closest Point (ICP) technique [4], [7], [23].

The methods of detecting or tracking the uterus were
presented in [6], [8], [9], [18]. The problem of live image
parsing in uterine laparoscopy with the classification of
the uterus, surgical tools, specularities and other tissues
tackled in [8]. Support Vector Machines (SVMs) were used
to learn dense feature descriptors that encoded both color
and texture. The patient specific classifier is trained using
manually selected Region of Interest (ROI). The system
for tracking the uterus proposed in [18] uses a method



which allows to track the uterus in laparoscopic images by
applying a similarity transformation locally using matches
between reference frame and a current frame. The authors
propose to use Shape-from-Shading to recover the 3D shape
of the surface, and the 3D shape is flattened by a confor-
mal mapping which preserves angles on the surface. The
objective of the method presented in [6] was to determine
which image features belonged to the uterus and to compute
their 3D positions. The idea uses the assumptions that the
camera is approximately fixed and the image motion is
induced only by the movement of the uterus. Therefore
features on the uterus can be segmented from features on
background structures using the magnitude of their image
motion. A way to register the uterus between monocular
laparoscopic images in realtime using a two-phase approach
was recently proposed in [9]. The objective here was to
mask the uterus from the background in a set of reference
frames and use the features found within the masked region
to reconstruct a 3D model. The authors proposed to use
Mask Bootstrapping from Motion (MBM) Fig. (??), method
which uses a small number of manually-segmented masks to
bootstrap computing the masks in all frames. Once the 3D
model is constructed it is used to track the uterus a variant
of RANSAC-based rigid pose estimation.

As it was shown mostly all related works for registerin
pre-operative images to intra-operative endoscopic images
use manual input at a starting phase of their methods which
include manual selection of correspondences in a set of ref-
erence frames. This is very challenging to perform and may
take many minutes which introduces delay during surgery.
The lack of any camera or organ tracking in [20] means
that registration had to be repeated by manually selecting
correspondences each time the camera is moved, potentially
impacting the surgical workflow. The large inter-patient vari-
ation in color, camera and illumination differences between
surgeries lead the system in [8] to be patient-specific which
restricts its direct application. Moreover it requires user input
in order to provide the mask of the tools and uterus for
training the color and texture model. Despite of robust feature
matching, tracking and augmentation results the system in
[18] is not automatic and the surgical site is frst marked by
the surgeon in the 2D input images and in the reconstructed
3D surface video at an early stage of the laparoscopy. The
method from [6] works well when the camera motion is
controlled and the uterus motion is significantly greater than
the background. However, it cannot work using a single
image, and can fail when the camera or background is also
in motion. Also if the uterus stops moving then it is possible
for features from the background to be wrongly estimated as
belonging to the uterus. The methodology proposed in this
paper, in contrast, is fully automatic, patient independent and
does not require any manual selection. These allows to make
the registration process fully automatic by automatically
detecting the location of an organ and anatomical landmarks
in the laparoscopic images using 2D object detector trained
for a specific organ.

B. Part-based Detection

Part-based detectors has been used widely in computer
vision. Most of the state-of-the-art detectors [5], [11], [12],
[22] show very good results in detecting generic objects in
2D images. To introduce the concepts of part-based detector
to medical imaging applications we propose to use the
system based on multiscale deformable parts models. In
this paper we build our approach using the state-of-the-art
part-based detector proposed in [11]. The main idea behind
is to represent objects by a collection of parts arranged
in a deformable configuration. Each part can capture local
appearance properties of an object while the deformable con-
figuration is characterized by parent-child relations between
certain pairs of parts. Such representation is well known as
pictorial structures [12]. We adapted learning-based system
for detecting and localizing objects in images from [15] to
detect the uterus on laparoscopic images. The original system
is available as open source for study and research purposes.
We refer the reader to [11], [16] for detailed description of
the methodology and implementation.

III. METHODOLOGY

A. Sources of Class Variability

The abdominal cavity environment in laparoscopic surgery
is a very challenging for computer vision tasks. The surgical
instruments interacting with the uterus may cause large
occlusions, the illumination variations caused by endoscopic
light can be very strong, the uterus can undergo bleeding
or smokes due to electrocautery, which may disturb organ
appearance. We provide a comprehensive list of factors
which lead to variation in the appearance of the uterus and
Fallopian tube junctions in Table I. We divide them to intra-
patient variability factors which means the variability in the
appearance of the same uterus and inter-patient variability
which appear between different patients and can vary sig-
nificantly. The variation can be either due to the factors
mentioned above also by additional factors due to the fact
that the shape of the uterus and the Fallopian tube junctions
can be quite different.

Sources of Class Variability Intrapatient Interpatient

viewpoint change
√ √

specular reflection
√ √

smoke
√ √

bleeding
√ √

deformation by tools
√ √

external occlusion
√ √

resection
√ √

partial views
√ √

uterus shape
√

pregnancy stage
√

pathology type
√

anatomic specifications
√

hormonal ’picture’
√

TABLE I: Summarized representation of the possible factors
affecting the appearance of the uterus and Fallopian tube
junctions in laparoscopic images. We divide this to intra-
patient and inter-patients variation.



B. Simplifying the Classification Problem using a Canonical
Viewpoint

The sources of class variability are the main sources of
the complications for classification problem. There are many
possible approaches can be used in order to simplify the
detection task and/or adapt the system itself to cope with it.
If objects usually appear in a relatively few stable positions
with respect to the camera, then they can be represented
efficiently in one suitable viewpoint so called canonical view-
point. The specifications of laparoscopic surgeries such as
hysterectomy or myomectomy implies that that the canonical
viewpoint of the objects of interest (uterus and Fallopian
tubes) is the upright image of the uterus the the laparoscope
approximately 10 cm away from it. Additionally, the bladder
should appear moved away from uterus so it does not occlude
it. The uterus and Fallopian tubes remain in their natural
appearance without outer surface deformation cause by tools
manipulation (Fig. 1). The definition of canonical viewpoint
and usage of the images filtered with respect to this definition
allows to overcome the viewpoint change and occlusion
variability factors. This simplification also allow us to benefit
while constructing training database and its annotation by
making the overall annotation task much easier.

(a) (b) (c)

Fig. 1: Examples of images with Canonical Viewpoint. The
images were rotated and aligned such that they appear in
upright position.

C. Proposed Uterus, Junction and Combined Detectors

Our initial idea in the project was to adapt the part-based
detector to enforce that two parts in the uterus detector exist
at the positions of the Fallopian tube junctions. Thus unlike
the greedy selection process for part locations described in
[11], we would enforce that two of the parts would be located
at, or close to, the positions of the junctions in the training
images. To test this idea, we inspected whether two of the
parts were naturally being selected at the tube junctions. This
would be understandable because the tube junctions contain a
lot of discriminative image structure, and more discriminative
than e.g. the middle of the uterus or somewhere on the uterus
boundary. We found that in some test images the parts did
indeed correspond to the tube junctions, but many times they
did not. In Fig. (2) we show the positions of the parts of a
trained uterus detector in 3 test images. The part locations
are marked by blue bounding boxes. In the first image two
of the parts have been located at, or approximately at the
junctions (Fig. 2a) only the left junction has been located
by a part. However the 2b and 2c show other input images
where the no parts were located at the junctions. We found
that this was occurring in as many as 50% of test images.

(a) (b) (c)

Fig. 2: Locations of parts in test images for a uterus detector
trained with six parts.

1) Method: Our proposed solution is to train two part-
based detectors: one for the uterus and one for the two
Fallopian tube junctions. The uterus and junction detectors
are part-based detection models trained and run using the
methodology and source code provided by [15]. The junction
detector therefore has multiple sub-parts, and so it can handle
strong geometric variation. The two models are combined
with a contextual constraint which constrains the relative
position of the uterus and junctions in an image. An overview
of the three components of our system is given in Fig. (4).
Our detection system works as follows. First the uterus is
detected in the input image, and the single best detected
bounding box is kept which has the higest detection score
that is above a detection threshold. Then the junction detector
is run, and all detected junctions are kept if they are above
a detection threhold. Finally, we use geometric contextual
constraints from the uterus to eliminate false positive junction
detections.

(a) (b)

Fig. 3: Combined Detector. Contextual constraints defined
between uterus and Fallopian tube junctions are shown.

Normally, if the patient does not have any extreme pathol-
ogy and all the organs, the locations of the junctions are
at the left and right sides of the uterus. Depending on the
uterus they can appear towards the bottom or towards the
top of the uterus body (Fig. 3). Furthermore, the relative size
of the junctions compared to the uterus is also constrained.
The bounding boxes of the ground-truth uterus and junctions
locations are shown in Figs. (3a, 3b) in white. The center of
the bounding box of the uterus is marked with qU . The centre
of the bounding box of the left and right junctions is denoted
by qJL and qRL respectively. We show with the number of
colored ellipses all the area where the junction most probably
may appear due to its anatomical position and relation to the
uterus. This schematic representation allows us to think of
the task for detecting junctions as the problem of computing
the probability of a given position to be a center of a junction
(left or right) relative to the center of uterus bounding box.
We model this problem as a problem of probability density
estimation given a feature vector which describes the spatial



 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

  

Input Image Input Image Junction part-based Model Uterus part-based Model 

HOG -PCA feature pyramid => sliding 
window => % overlap + Score(root+parts)  

HOG -PCA feature pyramid => 
sliding window => % overlap + 

Score(root+parts)  

High Scoring Bounding Box 
All Bounding Boxes 

Patient-Independent Uterus 
Detector 

Patient-Independent 
Junction Detector 

Contextual constraints defined between 
uterus and Fallopian tube junctions 

Conditional Probability with GMM for all detections for each 
junction (left/right) 

Keep all detection which probability satisfies the threshold  

Bounding Boxes of Detected Fallopian Tube Junctions 

Combined Detector using 
Contextual Constraints 

Fig. 4: Proposed processing pipeline for automatic, patient-
independent detector of the Fallopian Tube Junctions.

relationship between the uterus and junctions.
2) Modeling: We propose to use Gaussian Mixture Model

(GMM) to tackle the task. One of the powerful attributes
of the GMM is its ability to form smooth approximations
to arbitrarily shaped densities. Given training vectors and a
GMM configuration, we wish to estimate the parameters of
the GMM, which in some sense best matches the distribution
of the training feature vectors. We use DU to denote a
positive detection of the uterus. This comprises the center
of its bounding box in the image (qU ), and the width wU
and height hU of its bounding box. We use DJL to denote a
positive detection of the left Fallopian tube, with a bounding
box width wJL and height hJL. Similarly we use DJR to
denote a positive detection of the right Fallopian tube, with
a bounding box width wJR and height hJR. We model the
conditional probability of DJL given DU as the following
GMM:

p(DL | DU ) ∝ Π
K
k=1wL

k N( fL(DL,DU ) | Σk | µk) (1)

The GMM has K components, where each component is
given by a Gaussian distribution with covariance Σk and
mean µk, and weighted by wL

k . Hence, fL is feature vector
describing spatial relationship between uterus and junction
bounding boxes. We compute this as follows:

fL = [dx,dy,d2
x ,d

2
y ,sw,sh]

>

dx
def
= 1

wU
(qJL(1)−qU (1))2

dy
def
= 1

hU
(qJL(2)−qU (2))2

sw
def
= wU

wJL

sh
def
= hU

hJL

(2)

dx gives the relative displacement along the x axis of the
center of the left junction bounding box relative to the center
of the uterus bounding box, scaled by the height of the uterus
bounding box. Similarly dy gives the relative displacement
of the center of the left junction along the y axis. The GMM
for the right Fallopian tube has the same form as Eq.(1) and
the feature vectors though computer acording to Eq.(2).

We train the GMMs using the bounding boxes of positive
training examples with Expectation Maximization (EM) al-
gorithm initialised with K-means, and we use a validation
set to compute the optimal number of components (we refer
the details of how the training and validation sets were con-
structed to §III-E). The optimal k for both models was found
to be 2, which indicates the geometric relationship between
the uterus bounding boxes and the junction bounding boxes
is quite simple to model.

3) Testing: We use the GMMs for a given test image as
follows. First the uterus and junction part-based detectors
are run on the image. For any uterus bounding boxes, we
evaluate the conditional probability of detections from the
junction detector using Eq.(2). If the probability is above a
threshold τL then we keep it as a positive detection for the
left junction, otherwise it is considered as a false positive
and the detection is removed. We do exactly the same for
the right junctions using a threshold τR. To select τL and
τR we evaluate the GMM probabilities from the validation
sets, and set τL and τR to be the 98th percentile (i.e. the
probability for 98% of the validation examples is τL and τR
respectively).

D. Using the Uterus Detector to Automatically Segment the
Uterus in Laparoscopic Images

We have seen in §II-A that the task of segmenting the
uterus in laparoscopic images is an important component for
existing AR systems. It has been shown that segmentation is
performed manually by demarking the uterus in one or more
images. Our approach is based on the fact that it is possible to
segment the uterus automatically from background structures
if we have patient-specific texture and color information
for the uterus and background structures a priori [8]. We
propose using the bounding box provided by our uterus
detector to automatically obtain the necessary texture and
color information in a patient-independent manner. Once
obtained, we then segment the uterus in the input image
by classifying each pixel using a similar approach as [8].
Our approach can therefore be thought of obtaining a rough
segmentation of the uterus using an patient-independent
method (i.e. the patient-indepentent object detector), which
is then followed by learning a patient-specific model of the



uterus’ texture and color. This patient specific information is
then used to provide an accurate segmentation. In Fig. (5) we
present the proposed pipeline for automatically constructing
the patient-specific classifier using the output from the uterus
detector.

Single Training/test image 

Bounding box 

Dense feature extraction (texture and colour) 

SVM Training using only pixels in 

uterus/background classes 

Patient-specific Pixel-

level Classifier 

Patient-

independent 

uterus detector Classification of uncertain pixels 

Segmentation given by pixels 

classified as uterus, followed by 

morphological post-processing 

Segmented uterus 

Assign high-confidence 

labels based on 

bounding box 

Uterus class 

Uncertain 

Background class 

Fig. 5: Proposed processing pipeline based on [8] for au-
tomatically constructing a patient-specific classifier for seg-
menting the uterus using the output from the uterus detector.

Our method works as follows. First the uterus detector is
run on the input image. If there are any positive detections
then we keep the single bounding box with the highest
detection score. We then make the assumption that within
the bounding box the shape of the uterus is approximately
an ellipse centered at the center of the bounding box and
with its axes oriented with the x and y-axes of the image.
We are safe in making the assumption that its axes is
approximately aligned in this way because the images used
to train the uterus detector were rotated so that the line
passing through the two Fallopian tube junctions is parallel
to the y-axis. Because the uterus has approximate bilateral
symmetry, and when viewed from the canonical viewpoint
gives an approximately elliptical image, then the ellipse axes
should approximately align with the image axes. Denoting
the bounding box center, height and width by p ∈R2, h ∈R
and w ∈ R the ellipse is given by:

1
w
(x−px)

2 +
1
h
(y−py)

2 = 1 (3)

We then assume that at a small region of the ellipse centred
at p, if the detection is a true positive, then we can be very
sure that pixels within this region belong to the uterus. By
the same token, for all pixels that lie very far outside of
the the ellipse then we can be very sure that these do not
lie on the uterus and so can be considered as background
pixels. For all other pixels, we cannot be certain whether

they lie on the uterus or on the background, and so these
need to be classified with another means. Specifically, we
classify these using texture and colour models built from the
pixels that have been labelled as uterus and background with
high certainty. We therefore make an initial classification of
each pixel (x,y) in the image into three types: either uterus,
background or uncertain. This is given by the following rule: f (x,y)< 1+d ⇒ (x,y) isclasseduterus

f (x,y)> 1−d ⇒ (x,y) isclassedbackground
1−d ≤ f (x,y)≤ 1+d ⇒ (x,y) isuncertain

f (x,y) def
= 1

w (x−px)
2 + 1

h (y−py)
2

0≤ d ≤ 1
(4)

The free parameter d denotes how conservatively we classify
pixels using the ellipse. When d is large then only pixels
within a small region at the center of the ellipse are classed
as uterus, and only pixels very far outside of the ellipse are
classed as background. Although a conservative value of d
is advantageous to prevent mis-classification of pixels, if it
is too large then we may not be able to obtain a sufficient
number of pixels with which to model well the color and
texture characteristics of the uterus and background. In our
experiments we have found a value of d = 0.2 works well and
meets a good trade-off, and in all training examples d = 0.2
never causes background pixels to be incorrectly classified
as uterus.

We then train a patient specific texture and colour classifier
using all pixels labeled as background and uterus with the
approach of [8]. Once trained, we then apply this to classify
all unclassified pixels. We achieve this using the same models
as developed in [8]. The difference between [8] and our
approach is that we are running a patient-specific segmenter
on the same input image as was used to train the texture
and color models. After the segmenter has classified all
unclassified pixels, the segmentation is cleaned up with
several post-processing steps as described in [8] to remove
holes and retain only the largest uterus segment.

E. Constructing the Training Database
At present there exists no publicly available collection of

laparoscopic data that might serve as a training database
for this project. Here we present the first database of la-
paroscopic images of the uterus. The constructed database
was annotated with respect to the format used in PASCAL
dataset [10]. The data for database database was obtained
from two different sources. The primary source was hospital
CHU Estaing in Clermont Ferrand. The dataset collected
from the hospital consists of videos from 4 of gynecologic
laparoscopy. A videos were captured by a Karl Storz la-
paroscopy system and the size of image at each frame is
1048x576 pixels at 25 fps. Each captured video file was
converted to the image sequence. The data collected from
internet was used as the second source with respect to the
doctrine of ‘fair use‘ [1]. It includes still images of uterus as
well as images obtained from videos of laparoscopic surg-
eries. All images containing 80% visible uterus body with
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Fig. 6: ROC analysis of uterus, junction and combined detectors. 6a - results for uterus detector trained with 1,4,6,8,10,12
parts; 6b - results for junction detector trained with 1,2,3,4,5,6 parts; 6c - comparison results for combined detector and
junction detector for the best performing uterus and junction models.

Fallopian tubes in a canonical viewpoint as defined in section
III-B were considered as positive examples. Other images,
where the uterus body was no present were considered as
negative examples. (Table II)

train val test

P N T P N T P N T
uterus 382 804 1186 191 402 593 198 403 601

junction 1037 1060 2097 515 530 1045 515 525 1040
joint 325 600 925 160 350 510 160 300 460

TABLE II: Summary of constructed training database. P -
positives; N - negatives; T - total; train - training dataset;
val - validation dataset; test - dataset used for testing.

IV. EXPERIMENTS AND RESULTS

The implementation of our detection system and segmen-
tation method was done in MATLAB and C++. The dataset
of 2838 laparoscopic images were used for validation. The
dataset was divided to training, validation and testing subsets
(see §III-E for details). The images were chosen to include
difficult cases and views with large variabilities. We adopt the
PASCAL VOC challenge protocol [10] to generate Receiver
Operating Curves (ROC). A predicted bounding box is
considered true positive if it overlaps more than 50% with
the ground-truth bounding box, otherwise it is considered
a false positive detection. To evaluate the performance of
the detectors we trained various 1-component models with
different parts for uterus and junction detector and combined
them using contextual information described in §III-C to
produce combined detector. We use as a metric NFPPI which
is given by the average number of false detections on a
typical laparoscopic image, resulted to a width of 500 pixels.
NFPPI is a useful error metric because it tells us how many
false positives we are likely to encounter in typical images.

The evaluation curves shown in Fig. (6) illustrate quanti-
tative results. The uterus model trained with 12 parts gives
lowest Average Number of False Positive detection Per
Image (ANFPPI: 10) (green line in Fig. (6a)). The similar
plot for junction detector shows very weak results compare
to one from the uterus where the AFPPI shown in Fig. (6b)

stays withing 39 units which is tree times higher. We used
uterus detector trained with 12 parts and junction detector
trained with 6 parts as they have shown better results in
order to construct combined detector. The overall improve-
ment obtained with combined detector compare to junction
detector is shown in Fig. (6c). Given the random sample
where NFPPI: 10 the Recall: 0.65(65%) while for the same
sample in the combined detector the Recall: 0.92(92%).
The qualitative results shown in the Fig. (7) illustrating the
uterus, junction and combined detector performance in terms
of intra-patient variability and show the decline of false
positives detection obtained with junction detector by using
contextual constraints from the uterus.

(a) (b) (c)

(d) (e) (f)

Fig. 7: Examples of automatically detected Fallopian tube
Junctions. The detection results from uterus detector are
shown in 9a, 7d. The results from junction detector presented
in 9b, 7e and combined detector results are in 9c, 7f.
This illustrates how the false positives produced by junction
detector were eliminated using contextual information from
uterus.

To evaluate the segmentation performance we used all
positive uterus test images. For each of these images we
manually computed a ground-truth segmentation. We evalu-
ated performance using the DICE score. Because our method
is the first method which can fully automatically segment
the uterus, we though a reasonable baseline method would
be the segmentation obtained using the bounding box of the
uterus detector. In Fig. (8) we show the performance of the



baseline and our proposed method as boxplots. The DICE
statistics for the baseline method are mean: 0.7977, min:
0.0, max: 0.8749, median: 0.7985 and standard deviation:
0.0308. The DICE statistics for the proposed method are
mean: 0.8738, min: 0.0, max: 0.9798, median: 0.8900 and
standard deviation: 0.0767. The reason why the minimum
DICE scores for the baseline and proposed methods is 0
is because in rare instances the uterus detector may find
a different region of the test image which has a higher
detection score than the uterus, in which case the DICE sore
will be zero if there is no overlap with respect to the uterus in
that image. In Fig. 9 we show some example segmentations.

(a) (b)

Fig. 8: Dice boxplots showing performance improvement of
our proposed segmentation system (8b)

(a) (b) (c)

(d) (e) (f)

Fig. 9: Examples of automatically segmented uteri using our
proposed method..

V. CONCLUSIONS AND FUTURE WORKS

The initial goal of this thesis was to develop a method
for detecting the uterus and junctions between the Fallopian
tubes and the uterus in a laparoscopic image based on part-
based models [13]. After reviewing recent related work and
the state-of-the-art it become clear that the Object Detection
with Discriminatively Trained Part Based Models [11] will
provide the strong and efficient base to our methodology. The
detection method described in this paper is fully automatic,
patient-independent and does not require any manual selec-
tion. This allows to make the registration process fast and au-
tomated. The remarkable performance of the uterus detector
encouraged us to propose our automatic uterus segmentation
approach. The segmentation results are very encouraging.
Although the presented work satisfies the initial goal of the
project, we have defined a number of directions for future

research. First of all we are looking forward to improve on
the junction detector by using more specialised features than
PCA-HOG features in the part-based detector. One possible
direction would be to include the texture features that were
used in [8]. We also aim to investigate online learning to
adapt the detectors to different viewpoints of the uterus. We
also want to use the uterus and junction detectors to enable
fully automatic registration of a pre-operative MRI of the
uterus to intra-operative laparoscopic images. We want to
incorporate our automatic method for uterus segmentation
into the method of [9] to allow fully-automatic Structure-
from-Motion of the uterus from laparoscopic images.
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Abstract— In this paper, we address the analysis of activities
from long range video sequences. We present a method to
automatically extract high level scene semantics from low
level motion features. Literature on the area propose the use
of complex probabilistic models, here instead, we propose
a much simpler method that nevertheless obtain high level
semantics and global scene states. The scene layout is first
extracted, with a set of regions that have homogeneous activities
called Motion Patterns. These regions are then analyzed and
the recurrent temporal motifs are extracted for each Motion
Patterns. Through experimentation we analyze the use of
several proposed video representations and motif recovering
approaches. Results show that our method can accurately
extract important temporal motifs from video surveillance
sequences.

I. INTRODUCTION

Most of public areas are now monitored with surveillance
cameras. The manual analysis of all this information is
clearly impossible. Nowadays, most of these CCTV are never
screened and are recorded to be later used as evidence.
However, even the search for specific events in a large
collection of video is also a very time consuming and tedious
task that can be impossible if the amount of video is too
large. It is conceivable to browse several hours or days of
videos if there exists some metadata about the content of the
video.

Therefore, an automatic way of processing all the recorded
data to compact the videos, classify and browse this data is
needed. But, because video scene understanding is not an
easy task it has kept the researchers on the field very busy.

Moreover, if we consider that not all the videos are the
same, for instance, one video can has really dense activity
flow and another can be very sparse. Also, one video can
has structured and simple layout and another can has very
complex with overlapping activity areas. In the same way we
can find videos with structured activity patterns and another
with random activities. All this makes very difficult to come
up with an unique solution without considering a lot of
constrains or making a lot of assumptions.

Being able to analyze the scene, to automatically identify
normal and abnormal behaviors could be really useful. If we
consider a method that can identify abnormal activities could
be possible with this to highlight or to show the streaming
from that camera in a big main screen.

Activity mining in video analysis can be used not only
for a later browsing or classification of the videos, but

many applications can be achieved. Two main task can be
considered in the video analysis area; to recover the spatial
organization in a video scene and to recover the activities
happening in a video sequence.

Retrieving the spatial organization in all the scenes of
those videos could ease the activity mining task, and also
to understand a classify videos, that is why, we also address
this in our approach. Manually extract the activity patterns
in video sequences is not an easy task. If we consider for
instance a network of surveillance cameras that record all
day long, this task would be very time consuming, almost
impossible.

Many video content anaysis methods use conventional
tracking-based methods to recover individual moving object
trajectories [7]. Specific information about moving objects
such as position, velocity or acceleration is then used for
high-level tasks. However, it is broadly accepted that object
tracking is ill-suited for videos with a large number of
moving objects such as in crowded scenes. Other video
representation have been proposed in the litterature based
on background subtraction [1], optical flow [4] or spatio-
temporal features [6].

These low-level features are latter used with supervised
or unsupervised learning methods to recognize a specific
activity or identify an usual behavior. Supervised approaches
can perform quite well when accurate labels are provided
however it can be difficult to explicitely define positive and
negative classes in complex scenes when several activities
occur simultaneously. To take into account the sequential
nature of activities and the possible causal dependencies
between them, it is necessary to use more complex models
such as Hidden Markov Model [5], Bayesian network [3] or
Probabilistic Topic Models [8].

II. METHODOLOGY

Our proposed approach is based on three steps: 1) com-
puting low level motion features, 2) extracting the spatial
organization of the scene (Motion Patterns), and finally, 3)
using the obtained MPs to extract the recurrent activity
patterns or motifs in each of them. Fig 1 show a diagram
of our approach.

A. Motion features

As part of the first stage of our approach, we take as input
long range video sequence that lasts 1 hour. The number of



Fig. 1: Method Overview

frames in each sequence is very high and in order to reduce
the number of operations and hence, the computational time,
all frames are resized to 128x128.

The next step is to compute the low level motion features
for every pair of frames in the whole video sequence. We
compute dense optical flow using the method developed
in [2]. The flow matrix is then divided into a grid and just
one value is kept in each of its cells:

Ci(xc, yc) =

{
θ, if ρ̄ ≥ ρt
−1, otherwise

, (1)

where Ci is a cell in the grid G, xc and yc are the coordinates
of the center of Ci, θ is the dominant angle in that cell, ρ̄ is
the average magnitude of all the flow vectors in Ci and ρt
is a threshold.

(a) Computed motion flow (b) Quantized motion flow

(c) Virtual grid with cells of
size 6x6 pixels

(d) Virtual grid with quantized
motion flow

Fig. 2: Low level motion features

Finally, from this quantized motion flow we propose four
possible representation that can be observed in Fig 3.

(a) Full sequence (Spa-
tial and Temporal organi-
zation)

(b) Motion histogram per
cell (Spatial organization)

(c) Motion histogram per
cell (Temporal organiza-
tion)

(d) Motion histogram per
clip (Temporal organiza-
tion)

Fig. 3: Possible features representation (see color version)

B. Spatial organization

To accomplish the spatial segmentation we use Motion
Histogram per Cell Φ as the motion features representation,
because with this representation we have a general model
of every cell during the complete video sequence and we
are able to avoid noise (random activities that could happen,
i.e. a pedestrian crossing the street when there are still cars
going). Here, Φi is a 9-bins histogram with each of the bins
representing one of the possible outcomes for Ci, [0o, 45o,
90o, 135o, 180o, 225o, 270o, 315o, −1].

A feature matrix Fm representing the whole video is
created concatenating row-wise every Φi, the matrix Fm ∈
Rm×9, where m is the number of cells in G and 9 is
the length of every Φi. We finally compute the similarity
between each pair of histograms Φi representing the model
of each cell, obtaining the matrix (6)

S1 =

d1,1 · · · d1,m
...

. . .
...

dm,1 · · · dm,m

 (2)

where m is the number of cells and di,j is a distance function
that measure the similarity between the histograms Φi and
Φj . In this case we use Euclidean distance because the
representation used are Histograms.

Later, in a next step of our approach, we compute the
Symmetric Normalized Laplacian matrix L (given in (3)
from the similarity matrix S using the diagonal degree matrix
Di,i =

∑
j Si,j .

L = I −D−1/2SD−1/2 (3)

where I is the identity matrix. To this matrix L we do



an eigendecomposition such that L = QΛQ−1 where Q is
an square matrix and whose columns represent each of the
eigenvectors of L and Λ is a diagonal matrix whose diagonal
elements represent each of the eigenvalue of L such that
Λi,i = λi.

In order to find spatial organization of activities in the
video, a hierarchical clustering is applied on the symmetric
normalized Laplacian matrix L.

We set the number of clusters so that 90% of the total
variance is retained, i.e.∑k

i=1 λi∑
λ
≥ τ2, (4)

being λi the eigenvalues in Λ, τ2 a defined threshold (in this
case 90%) and finally k is going to be the maximum number
of clusters.

The obtained clusters define the Motion Patterns, and all
the cells belonging to the same class are said to be part of the
MP represented by that class. Figure 4b shows an example
of the results after the clustering. As it can be seen in the
resulting image there are some isolated cells. To clean the
image a common filtering is applied, using the majority or the
most common value for every cell using its 8 neighbors. This
is done in cell-based resolution not in pixel-based resolution,
and the results are shown in Figure 4c.

(a) Resized frame (b) Before filtering (c) After filtering

Fig. 4: Example of recovered MP (see color version).

C. Temporal organization

At this stage of our method the final objective is to retrieve
the motif or activity patterns found in the video sequence and
for that we first divide the long video sequence into small
video clips (of about 1 second duration) and later we do
Hierarchical clustering on this video clips.

The same way as we did for the Spatial organization we
have to build here a similarity matrix S2 but this time we
use the Full Sequence feature representation for every cell
in every video clip.

Also, for the virtual grid Gi only the cells that fall into the
motion pattern being analyzed (the binary mask image from
Figure ??) are the ones who are going to be considered for
the signal SCi representing the FullSeq of the cell Ci. All
these signals are then concatenated into a features matrix

Fm,n =

SC1,1 · · · SC1,n
...

. . .
...

SCm,1 · · · SCm,n

 (5)

where m is the number of cells times the number of frames
in the small video clip and n is the number of small video
clips.

From the matrix F we compute the distance between each
pair of video clips obtaining the similarity matrix:

S2 =

d′1,1 · · · d′1,m
...

. . .
...

d′m,1 · · · d′m,m

 (6)

where m is the number of video clips and di,j is the
Cosine distance between video clips [SC1,i · · · SCm,i]T and
[SC1,j · · · SCm,j ]T . Here is important to mention that we use
the Cosine distance because we are measuring similarities
between angles, this is because we are using the FullSeq
representation. Also, it is important to mention that because
we convert the orientation angle θ to the unit circle coor-
dinates we check all the incidences of −1 (no-activity) and
assign (0, 0) so the distance from no-activity to any other
activity or orientation is always the same.

After getting the labels for each small video clip we obtain
a signal representing the long video sequence and applying
a majority vote filter to remove noise we end up with a long
signal that we can represent as a string S.

In a following step we remove all the repetition of every
single activity on S, for instance the string ”AABBCC” would
become ”ABC”. We pass the string S as parameter to the
Algorithm 1, which returns a list of tuples. Each entry of
this list is of the form (”ACB”, 20), where ”ACB” is the
substring found in the original signal and 20 is the number
of occurrences of this substring.

Algorithm 1 Substrings recovering algorithm

Require: Long string filtered representation of video S′
Ensure: subs as set of tuples (motif, occurrences)

1: subs← {} . Empty set for future results
2: init← 0 . The first position of S
3: end← lenght(S)
4: ϕ← S[init] . The first character of S
5: for i← init+ 1 to end do
6: rest← S[i : end] . All characters from i to end
7: for j ∈ rest do
8: ϕ← ϕ+ j
9: if ϕ /∈ subs and S.count(ϕ) < 2 then

10: nlen← lenght(ϕ)
11: ϕ′ ← ϕ[0 : nlen]
12: if lenght(ϕ′) > 1 then
13: tmp tuple← (ϕ′,S.count(ϕ′))
14: subs.add(tmp tuple)
15: end if
16: ϕ← S[i]
17: break
18: end if
19: end for
20: end for

The returned list is sorted by the number occurrences of
the substrings in decreasing order, which mean that the first
entry of the list is the substring that repeat the most (without
considering its length). Having this list we can easily use any



criterion to retrieve our motif; our approach is to get the most
recurrent substring (MSR) in disregard of its length. and as
result we finally obtain the most recurrent substring which
in this case is our recurrent motif.

Fig. 5: Clustering output with recovered motif and its partial
matching highlighted (see color version).

III. EXPERIMENTS

We selected three video sequences for running our ex-
periments on them. For each of the video sequence the
motion patterns ground truth was manually extracted for
a later qualitative comparison with the output of the first
stage of our approach. The three video sequences selected
are surveillance video from street traffic where the activity
flow is controlled by traffic lights. Each of the video has a
minimum length of 50 minutes. The Figures 6, 7 and 8 shows
the first frame and an example of the manually extracted
ground truth motion pattern masks for the three videos:
Hospedales 1, Hospedales 3 and Kuettel 4 respectively.

(a) First frame (b) MP #1 (c) MP #2 (d) MP #3

Fig. 6: Firs frame + example of ground truth motion patterns
for Hospedales 1

(a) First frame (b) MP #1 (c) MP #2 (d) MP #3

Fig. 7: Firs frame + example of ground truth motion patterns
for Hospedales 3

(a) First frame (b) MP #1 (c) MP #2 (d) MP #3

Fig. 8: Firs frame + example of ground truth motion patterns
for Kuettel 4

From the output of the Algorithm 1 we get the most recur-
rent substring (MRS) which we treat as the most common
motif, in this case we keep the MRS without considering its

length. We propose three approaches for doing the match of
the recovered motif and the original signal.

- Exact motif matching
For this approach what we propose is to do a general
matching only on those occurrences of the recovered motif
not allowing any change of variation of the motif. In
this case we do not consider the duration of each of the
activities in the motif.
To explain how the general matching is done we are
going to go through an example; For instance, if the
recovered motif is m′ = ACB and the original signal
is s′ = AAAAACCCCCCBBB, the entire signal s′

match the motif m′ because the recovered motif is only
the pattern of the activities in without considering each
activity’s duration.
On the other hand, if we have the signal s′′ =
AAACCCBBBEEEEE, the same motif m′ will only
match from the first occurence of the activity A to the last
occurrence of the activity B leaving out all the occurrences
of E.

- Partial motif matching
This approach works as the previous one (the exact match-
ing) but with the difference that now we allow one of the
activities of the motif to be replaced by another one. The
replacement could be only one at a time, for instance, if
the recovered motif is ABC our approach will match every
occurrence of ACB and also BCB.
For this we create a list of possible partial motif. Like
this, if the number of clusters was for instance 3, that
means that the possible activities are A,B and C. Hence,
the list of possible partial motif for ACB will be
[BCB,CCB,AAB,ABB,ACA,ACC]. Figure 5 show a
plot of the signal obtained after clustering the small video
clips with a motif partial matching with different color for
each occurrence.

- Average motif matching
Finally for the last approach, it is needed to loop over
the entire signal first, for performing a exact matching and
after this, the mean µ and the deviation σ of the duration of
every match is computed. In a later step these matches are
filtered and we only keep those matched whose duration
fall in the range of [µ− σ

2 , µ+ σ
2 ].

Also, for the experiments that we ran, we considered
three evaluation criterion. The three of them give quantitative
results and lead us to a better configuration of all the thresh-
olds, data representation, filtering and clustering techniques.

All the criterion are based on the matching of the recov-
ered motif on the original signal.

(a) Amount of signal matched
With this criterion we compute the ratio between the
amount of signal matched and the length of the original
signal. It is important to mention that when we state
”original signal” wee mean the long string sequence that
represent the long video sequence and that comes as
output from the clustering step.
After the motif matching we are able to know which



section of the original signal was matched or not, and
computing this ration give a quantitative value that is
close to 1 for a complete matching of the original signal
or close to 0 for a poor matching.
In Figure 9 we show an example of a periodic signal
(the perfect video sequence scenario) and the recovered
motif matched (in different colors for each occurrence),
in this case the amount of signal matched ratio would
be 1.

Fig. 9: Example of periodic signal with motif matched
highlighted (see color version).

(b) Recovered Periods
This criterion gives the ratio between the expected num-
ber of periods and the actual number of periods matched
with the recovered motif. First, we compute the expected
number of periods and we do this by computing the Fast
Fourier Transform of the original signal. In a later step,
just dividing the length of the original signal over the
found period we obtain the expected number of periods.
After this, because we also know the number of times
the recovered motif is matched in our original signal (for
instance, this number of occurrences can be checked in
Figure 9) we computer the ratio between the matched
periods (the occurrences of the motif) and the expected
number of periods.

(c) Period Length
The final criterion proposed to measure the accuracy
of our approach is also a quantitative value, the ratio
between the length or duration of the average motif and
the expected period found in (a).

In the same way, the thresholds throughout these experi-
ments and all the other experiments during the realization of
this project were setted as follow: τ1 = 0.06 and τ2 = 0.90
for the spatial organization and τ2 = 0.95 for the temporal
organization.

From these experiments we could found what feature rep-
resentation works better for spatial organization and which
one works better for temporal organization, we could also
found the best setting for our thresholds.

In Fig 10 it can be seen the recovered spatial distribution
(motion patterns) from the selected videos.

IV. DISCUSSION

After analyzing the results (experimental section) of our
experiments and its outputs we want to use this section to
discuss of at least one possible application for our method.
For instance, one of its application could be to improve
already existing tracking techniques.

(a) Kuettel RMP #1 (b) Kuettel RMP #2 (c) Kuettel RMP #3

(d) Hospedales 1
RMP #1

(e) Hospedales 1
RMP #2

(f) Hospedales 1
RMP #3

(g) Hospedales 3
RMP #1

(h) Hospedales 3
RMP #2

(i) Hospedales 3
RMP #3

Fig. 10: Recovered motion patterns (RMP) for the three video
sequences (make sure to see the color version)

If we consider for example a method like Particle Filter
in which we have a model of the object been tracked and
generate randomly certain number of particles around the
last tracked position and then we do a weighted comparison
between the model of the object with the new model at each
of the generated particles and like this we can obtain the new
position of our object.

Now, if we also consider the spatio-temporal organization
of our scene, where we know the position of the tracked
object (this tell us to which motion patterns it belongs),
at a time t we know which activity (the classes from our
clustering stage) is more probably to happens and with this
we can put more emphasis on that region for the generation
of particles for instance.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

After reviewing the literature on video analysis, we have
proposed a method that taking a long video sequence (mak-
ing the assumption that is has some activity pattern) it
can recover the spatial and temporal organization (Motion
Patterns and Motifs respectively).

Throughout all the experiments done we were able to ver-
ify that the use of histograms for the features representation
yields to better results when recovering the spatial structure
of the scene. Also, a more detailed representation as the Full
Sequence proposed yields to better results when recovering
the activity patters on the video sequence.

Our proposed method simplify the activity patterns recov-
ering task by first finding the spatial structure of the scene,
allowing us later to use a simple string matching approach
instead of having to build complex models.



In the same way, we were able to verify that it is very
difficult to retrieve the activity patterns on video sequences
when the activity flow is sparse with this kind of methods.
On the other hand, this approach shows promising results on
videos with a dense activity flow.

B. Future Works

As we could verify, with our proposed approach it is
difficult to retrieve the motion patterns on video sequence
when there is an sparse activity flow, hence, as future work
we have proposed to find an approach that can handle this
kind of situations. Perhaps, a different feature representation
combined with a different distance functions.

Also, we have proposed to try a different approach from
signal analysis to recover partial periodic components on the
Full Sequence signal representation.

In the same way, we have proposed to improve the method
to recovering the spatial organization on video scenes when
there are overlapping motion patterns.

And finally, we are going to implement the improved
particle filter tracking approach using the output from our
method.
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